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Abstract

A procedure is derived for computing standard errors in random intercept

models for estimates obtained from the EM algorithm� We discuss two dif�

ferent approaches� a Gau��Hermite quadrature for Gaussian random e�ect

models and a nonparametric maximum likelihood estimation for an unspec�

i�ed random e�ect distribution� An approximation of the expected Fisher

information matrix is proposed which is based on an expansion of the EM

estimating equation� This allows for inferential arguments based on EM esti�

mates� as demonstrated by an example and simulations�
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� Introduction

We consider a generalized variance component model for n clusters of independent

response variables yi � �yi�� � � � � yini
	t� i � �� � � � � n� The response yi is assumed

to depend on the covariate matrix xi � �xi�� � � � � xini
	t and the unobservable ran�

dom e
ect zi� The mean response is modeled by the conditional generalized linear

model E�yijjzi� xij	 � �ij � h�xtij� � zi	 where h��	 is the inverse link function and

� denotes the associated p dimensional parameter vector of interest� Conditional

on the random e
ect� the components of yi are assumed to be independent� i�e�

f�yijzi� �	 � Q
j f�yijjzi� �	 where the density f��j�	 is assumed to be of exponential

family form� For ni � � the model can be used for equi�correlated dependent ob�

servations� see e�g� Diggle et al� ��

�� chapter 
	 or Breslow � Clayton ��

�	 and

references given there� If ni � � the model is known as random e
ect model which

provides a general and convenient way for modeling overdispersion� see e�g� Aitkin

��

�	�

The random e
ects zi� i � �� � � � � n� are assumed to be independently and iden�

tically distributed with density f�zi	� Since the zi are unobserved this leads to the

observed �marginal	 log likelihood l��	 �
Pn

i�� log
R
f�yijzi	f�zi	dzi which can be

maximized by the iterative expectation maximization �EM	 algorithm �see Demp�

ster et al�� �
��	� In the t�th step this gives the function

Q��j��t�	 �
nX

i��

R
log ff�yijzi� �	f�zi	g f�yijzi� ��t�	f�zi	dziR

f�yijzi� ��t�	f�zi	dzi
� ��	

which has to be maximized in � with ��t� held �xed� It is a traditional and also

convenient approach to assume normally distributed random e
ects� which allows to

approximate l��	 by a Gau��Hermite �GH	 quadrature� More �exibility is however

achieved by treating the e
ect distribution as unknown� as suggested by Aitkin

�



��

�� �


	� This leads to nonparametric maximum likelihood �NPML	 estimation

as introduced by Laird ��
��	� In both settings the EM algorithm can be applied�

A criticism of the EM algorithm is� that it does not automatically provide esti�

mates for the variance�covariance matrix of the EM estimate ��� As pointed out in

McLachlan � Krishnan ��

�	 for a variety of examples� this point is closely related

to the problem of slow convergence� If the maximization of ��	 is done by a Newton�

Raphson procedure based on ��Q��j��t�	�����t� directly applying successive E and

M steps will provide an estimate of the complete information at convergence� How�

ever� this does not account for the missing information on the unobservable random

e
ects� Louis ��
��	 provides a very general derivation of the observed information

matrix and shows that this matrix can be rewritten as a di
erence of the complete

and the missing information� Oakes ��


	 discusses a formula for the observed in�

formation which depend only on derivatives of Q��	� We suggest a simpli�ed version

of this approach yielding the appropriate measure of information � the estimated

a priori expected information � which takes the special structure of the considered

models into account� see also Meilijson ��
�
	�

In Section � we embed the EM algorithm in the framework of estimating equa�

tions� For both settings� GH approximation and NPML estimation� we expand the

EM estimating equations� The �rst order derivative provides an approximative vari�

ance for the estimates� In Section � we apply this variance approximation in a data

example and investigate its small sample behavior by a simulation study�

�



� EM Estimating Equations

��� Gaussian E�ects

Assuming zi
iid� N��� �	� we can model �ij � h�xtij� � zi	z	 which allows to approxi�

mate the integrals in l��	 by a quadrature formula like GH� Hinde ��
��	 uses this

technique in random e
ect models� Anderson � Aitkin ��
��	 apply it to variance

component models� The quadrature yields the approximation

f�yi� 
	 �
Z
f�yijzi� 
	��zi	dzi �

KX
k��

f�yij�k� 
	
k �� fK�yi� 
	� ��	

where � denotes the standard normal density function� 
 � ��t� 	z	
t and K is the

number of approximation points� Note that for given K� the masspoints �k and their

associated masses 
k are known and available from tables� Applying this quadrature

also to the nominator in ��	� approximates Q��	 by

QK�
j
�t�	 �
nX

i��

KX
k��

w
�t�
ik flog f�yij�k� 
	 � log
kg ��	

with weights w
�t�
ik � f�yij�k� 
�t�	
k�fK�yi� 
�t�	� These weights can thereby be seen

as masses for the masspoints �k corresponding to the posterior distribution f�zijyi	�
Formula ��	 represents the E�step of the underlying EM algorithm� The M�step is

given by the p� � dimensional estimating equation

�QK�
j
�t�	
�


�
nX

i��

KX
k��

w
�t�
ik sik � �� ��	

with sik � sik�
	 � � log f�yij�k� 
	��
 denoting the i�th score contribution� given

zi � �k�

We embed the EM algorithm into the concept of estimating equations by de�ning

g��
	 �
�QK��
j
	

��


�����
����

�



as estimating function for 
 �see also Oakes� �


	� It is easily seen that the EM

estimate �
 solves g���
	 � �� Let now 
 denote the vector of true parameter values

in the approximating density ��	� This means EKfg��
	g � �� where subscript K

indicates� that the expectation is calculated using the density fK��	� As in the usual
likelihood theory� we can expand g���
	 about 
 and �nd in �rst order approximation

�
 � 
 � �
�
�g��
	

�
t

�
��

g��
	�

Di
erentiation of g��
	 has to take into account that the weights �ik in ��	 depend

on 
� Assuming f�yjz� 
	 to be of exponential family form one gets ��ik��
 �

�ik�sik �Pl �ilsil	� This yields

�g��
	

�
t
�

nX
i��

KX
k��

wik

�
siks

t
ik �

�sik
�
t

�
�

nX
i��

KX
k��

KX
l��

wikwilsiks
t
il� ��	

Using density fK��	 we �nd EK�wiksiks
t
ik	 � �EK�wik�sik��


t	 so that the �rst

component in ��	 has zero expectation� Hence� we can approximate ��	 in the usual

likelihood fashion by the Fisher type matrix

FK�
	 �� EK

�
��g��
	

�
t

�
�

nX
i��

KX
k��

KX
l��

EK

�
wikwilsiks

t
il

�
� EK

�
g��
	g

t
��
	

�
� ��	

In �rst order approximation one has varK��
	 � F��
K �
	 where the variance of the

regression coe�cient �� is obtained by extracting the corresponding submatrix of

F��
K �
	� One should note that this implicitly takes the variability due to the esti�

mation of the random e
ect variance 	�
z into account�

Formula ��	 can be related to the results given in Louis ��
��	� We can rewrite

the observed information ��	 as the di
erence of the complete and the missing infor�

mation� again using the approximate density fK��	� Direct calculation provides

the complete information
Pn

i��

PK
k��wik�sik��


t� whereas the remaining compo�

nents in ��	 give the missing information� Important for this assignment is the

�



property that the random e
ect distribution does not depend on 
� Therefore�

the conditional scores sik can be also de�ned as the complete scores evaluated at

zi � �k� Hence� si�
	 ��
P

k wiksik gives an approximation of the i�th observed

score component� which is the conditional expectation of the corresponding com�

plete score� given the data� Rewriting ��	 as the sum of observed score variances�

i�e� FK�
	 �
Pn

i�� varKfsi�
	g� leads to the idea suggetsed in Meilijson ��
�
	� He

uses the empirical Fisher information matrix to estimate the Fisher information for

identically distributed variates� The arguments above do not hold� if the e
ect den�

sity is totally unknown� We show however that the estimating equation approach

directly provides variance estimation also in this setting�

��� Unknown E�ect Distribution

Let now f�z	 be unknown so that � and f�z	 have to be estimated simultaneously

by the NPML approach as suggested by Aitkin � Francis ��

�	 or Aitkin ��

��

�


	� see also Laird ��
��	� This approach directly generalizes ��	� however now

� � ���� � � � � �K	
t and 
 � �
�� � � � � 
K	

t are both treated as unknown and are esti�

mated from the data� Like in the previous section� Q��j�	 is used to approximate ��	

with 
 � ��t� � t	t and 
 as unknown parameters� We get ��	 as M�step for 
 and the

masses are obtained from 

�t�
k �

Pn
i�� niw

�t�
ik �

Pn
i�� ni� For the following expansion

of the EM estimating equations it is helpful to reparameterize 
 by the canonical

multinomial representation 
k � expf�k � ���	g for k � �� � � � � K � �� This guar�

antees 
k � � for all � � ���� � � � � �K��	
t � �K�� where ����	���k � 
k� The

resulting K � � dimensional estimating equation for � is then

g��
� �	 ��
nX

i��

K��X
k��

ni�ek�wik � 
k	� ��	

where �ek is a vector of dimension K � � that consists of zeros except of a � at the

k�th position� Moreover� as in Section ��� we have the p�K dimensional estimating

�



equation for 


g��
� �	 �
nX

i��

KX
k��

wiksik ��	

where the weights wik � wik�
� �	 now depend on both parameters� whereas sik �

sik�
	 solely depends on 
� The EM estimates are de�ned through g��
� ��	 � � with

g��	 � fg���	t� g���	tgt� A linear expansion about the true parameter �
� �	 ful�lling

EKfg�
� �	g � � gives in �rst order approximation

�
BB�

�
 � 


��� �

	
CCA � �

�
BBB�

�g��
� �	

�
t
�g��
� �	

��t

�g��
� �	

�
t
�g��
� �	

��t

	
CCCA
���
BB�

g��
� �	

g��
� �	

	
CCA �

The derivative �g��
� �	��
 is found as in ��	� Di
erentiation of the weights gives

��ik���l � �ik��k � l	 � �ik�il with ��k � l	 � � for k � l and � otherwise� This

in turn provides the derivatives of ��	 and ��	 by

�g��
� �	

��t
�

nX
i��

K��X
k��

wiksik�e
t
k �

nX
i��

KX
k��

K��X
l��

wikwilsik�e
t
l �

�gt��
� �	

�


�g��
� �	

��t
�

nX
i��

K��X
k��

�wik � 
k	ni�ek�e
t
k �

nX
i��

K��X
k��

K��X
l��

�wikwil � 
k
l	ni�ek�e
t
l �

Let FK�
� �	 � �EKf�g�
� �	���
� �	g denote the entire Fisher matrix which con�

sists of the submatrices FK�����	� FK�����	 and FK�����	� As before� one gets with ��	

the entries for FK�����	 and using EK�wik	 � 
k we �nd for the remaining components

FK����
� �	 � EK

�
��g��
� �	

��t

�
� EK

�
��gt��
� �	

�


�

� EK

�
g��
� �	g

t
��
� �	

�
�

nX
i��

KX
k��

K��X
l��

EK

�
wikwilsik

�
�etl �

FK����
� �	 � EK

�
��g��
� �	

��t

�
� EK

�
g��
� �	g

t
��
� �	

�

�
nX

i��

K��X
k��

K��X
l��

ni�ek�e
t
lEK

�
�wik � 
k	�wil � 
l	

�
� �
	

The inverse of FK��	 provides a �rst order approximation for the variance of ��
� ��	�

The variance for ��� the parameter of interest� is obtained by extracting the corre�

�



sponding submatrix of F��
K ��	� It should be noted that this automatically takes the

variability stemming from the estimation of �� and �
 into account�

Though FK��	 in both settings above has a simple structure� analytic calculation

is not directed� This is because the weights wik depend on yi which makes analytic

integration complicated� To overcome this point one can use Monte Carlo integration

by drawing n random e
ects z�i from the discrete distribution with masspoints ��

and masses �
� where �� � � and �
k � 
k are �xed for Gaussian random e
ects�

Given z�i we draw y�i from f�yijz�i � �
	 and calculate the simulated Fisher matrix by

replacing the expectations in FK��	 by the simulated empirical moments� Taking

average about several simulations provides the Monte Carlo estimate �FK � say� It is

moreover advisable to correct the variance for a degree of freedom of the estimates� in

particular if NPML estimation is used� In simulations we found that the correction

factor n��n�df	 appears as appropriate choice� where df is the number of estimated

parameters� i�e� the dimension of FK��	�

� Example and Simulation

��� Example

We demonstrate the variance approximation with a data example taken from the

literature� Thall � Vail ��

�	 analyze data observed at �
 epileptic patients �see

also Breslow � Clayton� �

�� or Diggle et al� �

�	� The response yij gives the

number of epileptic seizures of patient i during the observation period j where

j � �� � � � � �� The �rst period has length � weeks denoted by l� � � while the

remaining periods have length � weeks� i�e� lj � � for j � �� � � � � �� Between the �rst

and the remaining periods the patients received a therapy t� which was randomized

to treatment �t � �	 or placebo �t � �	� The focus of interest is on inference about

�



the treatment e
ect� A detailed description and analysis of the data is found in

Diggle et al� ��

�� pages ������ �������	� They suggest the mixed e
ect model

E�yijjzi� ti	 � lj expfzi � ��j � �	�� � ti�t � ti��j � �	�t�g ���	

where ��j � �	 is an indicator for the period� i�e� ��j � �	 � � for j � � and zero

otherwise� In ���	 �t� gives the therapy e
ect� �� adjusts for a placebo e
ect while

�t copes for a possible randomization e
ect� We �t model ���	 by NPML estimation

which suggests K � 
 distinct masspoints� If a model with K � 
 masspoints is

�tted� the resulting additional masspoints either do not di
er from these 
 or have

negligible masses� The resulting distribution function from �� and �
 is plotted in

Figure � and shows a uniform shape� Table � gives the estimates for the regression

coe�cients with variances calculated by Monte Carlo integration� We also used

a Gau� Hermite quadrature �K���	 to �t the data where the corresponding �tted

random e
ect distribution is also shown in Figure �� The GH estimates hardly di
er

from the NPML estimates� Also the inference allows for similar interpretations� The

estimated variances resemble those given in Diggle et al� which are based on a normal

approximation of the likelihood as suggested by Breslow � Clayton ��

�	�

�Table � and Figure � about here	

��� Simulation

We run a simulation study to investigate the small sample behavior of the suggested

variance approximation� We consider the model yijjzi � Poissonf�i � ��zi�xij�g�
i � �� � � � � n and j � �� � � � � ni with � � �� n � �� and ni � �� The covariate xij is

taken as binary factor� i�e� xij � f�� �g� with balanced design in the sense xi� � xi�






and xij � � for half of the data� The zi�s are drawn from the three settings�

a	 normal� zi � N��� ����	�

b	 mixed� zi �


���
��


N��� ����	 with probability ���

N��� ����	 with probability ����

c	 contaminated� zi �


���
��


N��� ����	 with probability ��


N����� ����	 with probability ����

We �t the model by NPML estimation starting with K � � masspoints and reducing

K until all masspoints are di
erent� We also use a GH quadrature with K �

�� masspoints� Table � shows the mean and standard deviation of ��� simulated

estimates� Both quadrature formulae provide unbiased estimates and for settings a	

and b	 they show the same variability� In setting c	 however the NPML estimate is

clearly less variable than a GH estimate� In general� NPML estimation shows to be

not less e�cient than GH estimation� even if random e
ects are normally distributed

where the GH procedure gives the right quadrature� Moreover the NPML approach

can cope for non�normality of the random e
ect distribution�

In Table � we also report the coverage probability of con�dence intervals based

on the suggested standard errors� The variance approximations show to work rea�

sonably well with a slightly liberal character though� In the contaminated case on

the other hand� the NPML con�dence bands are conservative� In general� con�dence

bands based on NPML estimates behave rather promissing in all three settings�

�Table � about here	

� Results and Conclusions

The above results suggest a variance approximation of EM estimates in random

e
ect models based on quadrature formulae� Assuming the di
erences between the

��



density f��	 of the random e
ect and its approximation fK��	 to be negligible� we can
use Fisher type matrices for variance estimation� The same arguments used above

also allows to examine di
erences between masspoints �j and �k or the relevance

of the masses 
k� This indirectly gives an exploratory procedure to evaluate the

number K of masspoints used and comply with the proposals in Laird ��
��	�
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Table �� Estimates and standard errors for epileptic seizure data

random coverage

e
ect mean���	 s�e�� ��	 
� � 
� �

NPMLE

normal ��
� ��� ���� 
���

mixed ���� ��� ���� ���


contaminated ���� ��� 
��� 
���

GH

normal �

 ��� ���� 
���

mixed �
� ��� ���� 
���

contaminated ���� ��� ���� 
���

Table �� Mean and standard error of EM estimates and the resulting coverage

probability of con�dence intervals based on ��� simulations�
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