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Abstract

A procedure is derived for computing standard errors in random intercept
models for estimates obtained from the EM algorithm. We discuss two dif-
ferent approaches: a Gauf}-Hermite quadrature for Gaussian random effect
models and a nonparametric maximum likelihood estimation for an unspec-
ified random effect distribution. An approximation of the expected Fisher
information matrix is proposed which is based on an expansion of the EM
estimating equation. This allows for inferential arguments based on EM esti-

mates, as demonstrated by an example and simulations.
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1 Introduction

We consider a generalized variance component model for n clusters of independent
response variables y; = (yi1,...,¥in;)', © = 1,...,n. The response y; is assumed
to depend on the covariate matrix z; = (x;1,...,Z;,,)" and the unobservable ran-
dom effect z;. The mean response is modeled by the conditional generalized linear
model E(yi;|2i, xij) = pij = h(x}; 8+ 2;) where h(-) is the inverse link function and
(B denotes the associated p dimensional parameter vector of interest. Conditional
on the random effect, the components of y; are assumed to be independent, i.e.
f(Wilzi; B) = I1; f(yij]2i, B) where the density f(-|-) is assumed to be of exponential
family form. For n; > 1 the model can be used for equi-correlated dependent ob-
servations, see e.g. Diggle et al. (1994, chapter 9) or Breslow & Clayton (1993) and
references given there. If n; = 1 the model is known as random effect model which

provides a general and convenient way for modeling overdispersion, see e.g. Aitkin

(1996).

The random effects z;, © = 1,...,n, are assumed to be independently and iden-
tically distributed with density f(z;). Since the z; are unobserved this leads to the
observed (marginal) log likelihood I(3) = Y1, log [ f(vi|2i) f(z;)dz; which can be
maximized by the iterative expectation maximization (EM) algorithm (see Demp-

ster et al., 1977). In the ¢-th step this gives the function

" [lo (|25 2 26 BO) f(2i)dzi
Q(ﬁW(t)) _ Z: J1 g{f(y2| uﬁ)f( Z)}f(y2| i B )f( Z)d i (1)

J f(yilzi; BO) f (2i)dzi ’
which has to be maximized in 3 with 8® held fixed. It is a traditional and also
convenient approach to assume normally distributed random effects, which allows to
approximate [(3) by a GauBi-Hermite (GH) quadrature. More flexibility is however

achieved by treating the effect distribution as unknown, as suggested by Aitkin



(1996, 1999). This leads to nonparametric maximum likelihood (NPML) estimation

as introduced by Laird (1978). In both settings the EM algorithm can be applied.

A criticism of the EM algorithm is, that it does not automatically provide esti-
mates for the variance-covariance matrix of the EM estimate B As pointed out in
McLachlan & Krishnan (1997) for a variety of examples, this point is closely related
to the problem of slow convergence. If the maximization of (1) is done by a Newton-
Raphson procedure based on 9%Q(3|5%) /0303, directly applying successive E and
M steps will provide an estimate of the complete information at convergence. How-
ever, this does not account for the missing information on the unobservable random
effects. Louis (1982) provides a very general derivation of the observed information
matrix and shows that this matrix can be rewritten as a difference of the complete
and the missing information. Oakes (1999) discusses a formula for the observed in-
formation which depend only on derivatives of Q(-). We suggest a simplified version
of this approach yielding the appropriate measure of information — the estimated
a priori expected information — which takes the special structure of the considered

models into account, see also Meilijson (1989).

In Section 2 we embed the EM algorithm in the framework of estimating equa-
tions. For both settings, GH approximation and NPML estimation, we expand the
EM estimating equations. The first order derivative provides an approximative vari-
ance for the estimates. In Section 3 we apply this variance approximation in a data

example and investigate its small sample behavior by a simulation study.



2 EM Estimating Equations
2.1 Gaussian Effects

Assuming 2z ¢ N(0,1), we can model pij = h(xj; B + zio.) which allows to approxi-
mate the integrals in I(5) by a quadrature formula like GH. Hinde (1982) uses this
technique in random effect models, Anderson & Aitkin (1985) apply it to variance
component models. The quadrature yields the approximation
K

fs0) = [ Slulzi0)elada = 3 TwlsOm = fcwio)
where ¢ denotes the standard normal density function, § = (§%,0,)" and K is the
number of approximation points. Note that for given K, the masspoints (; and their

associated masses 7 are known and available from tables. Applying this quadrature

also to the nominator in (1), approximates Q(-) by

n K
£ (010) = 33wl 108 £ 116 0) + log i) )

with weights w' = f(y;|Cu; 0/ fic (yi;00). These weights can thereby be seen

as masses for the masspoints (; corresponding to the posterior distribution f(z;|y;).
Formula (3) represents the E-step of the underlying EM algorithm. The M-step is

given by the p + 1 dimensional estimating equation

t n
M Zzwzkslk_o (4)

i=1k=1

with s = s;x(0) = 0log f(yi|(x; 0)/00 denoting the i-th score contribution, given
zi = (-
We embed the EM algorithm into the concept of estimating equations by defining

(o) — 2250010



as estimating function for 6 (see also Oakes, 1999). It is easily seen that the EM
estimate 6 solves gg(é) = 0. Let now 6 denote the vector of true parameter values
in the approximating density (2). This means Fx{gg(0)} = 0, where subscript K
indicates, that the expectation is calculated using the density fx (). As in the usual

likelihood theory, we can expand gg(é) about 6 and find in first order approximation
) 9ge(0)\ "
h—0=— ( ;e(t )> 90(0).

Differentiation of gy(6) has to take into account that the weights wy, in (3) depend

on 0. Assuming f(y|z,0) to be of exponential family form one gets Ow;,/00 =

wik (S — >y wasq). This yields

90(0) _ S5 (st + 25 35553 s (5)
90t ey ik \ 2ik9k ot : kil oik il

Using density fr(-) we find Ex(wipsiust,) = —Ex(wix0siy/00") so that the first
component in (5) has zero expectation. Hence, we can approximate (5) in the usual

likelihood fashion by the Fisher type matrix

Fx(0) :== Ex (— 89;9(?)) = zn: >3 Brc(wwwasisly) = Frc(90(0)95(9) ). (6)

i=1k=11=1

In first order approximation one has varg (0) = Fi'(#) where the variance of the
regression coefficient B is obtained by extracting the corresponding submatrix of
Fi'(0). One should note that this implicitly takes the variability due to the esti-

mation of the random effect variance o2 into account.

Formula (5) can be related to the results given in Louis (1982). We can rewrite
the observed information (5) as the difference of the complete and the missing infor-
mation, again using the approximate density fx(-). Direct calculation provides
the complete information »; Z,ﬁ;l w08, /06", whereas the remaining compo-

nents in (5) give the missing information. Important for this assignment is the

5



property that the random effect distribution does not depend on f#. Therefore,
the conditional scores s;; can be also defined as the complete scores evaluated at
zi = (. Hence, s;(0) := >, wisik gives an approximation of the i-th observed
score component, which is the conditional expectation of the corresponding com-
plete score, given the data. Rewriting (6) as the sum of observed score variances,
le. F(0) = X0 varg{s;(0)}, leads to the idea suggetsed in Meilijson (1989). He
uses the empirical Fisher information matrix to estimate the Fisher information for
identically distributed variates. The arguments above do not hold, if the effect den-
sity is totally unknown. We show however that the estimating equation approach

directly provides variance estimation also in this setting.

2.2 Unknown Effect Distribution

Let now f(z) be unknown so that 5 and f(z) have to be estimated simultaneously
by the NPML approach as suggested by Aitkin & Francis (1995) or Aitkin (1996,
1999), see also Laird (1978). This approach directly generalizes (3), however now
¢ = (.., Ck) and ™ = (my,...,7x)" are both treated as unknown and are esti-
mated from the data. Like in the previous section, Q(-|-) is used to approximate (1)
with 6 = (4%, ¢")" and 7 as unknown parameters. We get (4) as M-step for 6 and the
masses are obtained from W,(Ct) =3 niwg,? /> n;. For the following expansion
of the EM estimating equations it is helpful to reparameterize m by the canonical
multinomial representation 7, = exp{Jy — k(¥)} for k = 1,..., K — 1. This guar-

antees m, > 0 for all ¥ = (Jq,...,9x_1)" € RE! where 0k(0)/09), = 7. The

resulting K — 1 dimensional estimating equation for 1 is then

n K-1

95(0,9) := Y > miép(wix — ), (7)

i=1 k=1

where é;, is a vector of dimension K — 1 that consists of zeros except of a 1 at the

k-th position. Moreover, as in Section 2.1 we have the p+ K dimensional estimating



equation for 6

= Zn: > wiksik (8)

i=1 k=1

where the weights wy, = w(6,9) now depend on both parameters, whereas s;, =
sir(0) solely depends on #. The EM estimates are defined through g(6,9) = 0 with
() = {g6(-)", g9(-)'}'. A linear expansion about the true parameter (, 1)) fulfilling

Ex{g(0,9)} = 0 gives in first order approximation
0gs(0,9)  0ge(6,9) \

6—0 o0t ot 90(0, )
00! ot

The derivative dgg(6,1)/06 is found as in (5). Differentiation of the weights gives
[) =1 for k =1 and 0 otherwise. This

awik/ﬁﬁl = wiké(k = l) — WirWi1 with (S(k' ==

in turn provides the derivatives of (7) and (8) by

Oan (0.0 n K—1 n K K-1 9at (0.9
% - Z Z wlkslkek Z Z wzkwils,-kéf = %
i=1 k=1 i=1 k=1 [=1
dgy(0,9 n K-1 n K—1K-1
% - Z Z Wik — Tk nzekek Z (wikwi — Wk?rl)mékéf.
i=1 k=1 i=1 k=1 I=1

Let Fk(0,9) = —Ex{0g(6,9)/0(0,9)} denote the entire Fisher matrix which con-
sists of the submatrices F gg(+), Fi,g0(-) and F g9(-). As before, one gets with (6)

the entries for Fi go(-) and using Ex (w;;) = 7 we find for the remaining components

Fioo(0,9) = Ex (—%) — By <_M>

n

= Ex(g0(0,0)g5(0,0)) = 5

i=1k=1

00
K—1
Z Ex (wzszlszk)ela

0gy(0,0
FK,ﬁﬁ(07ﬁ) = Eg <_%> - EK(gg(H,ﬁ)gfg(H,ﬁ))
n K-1K-1
== Z nzékéfEK((wzk — Wk)(wil — 7Tl)). (9)
i=1 k=1 I=1

The inverse of Fi () provides a first order approximation for the variance of (6, 9).

The variance for B, the parameter of interest, is obtained by extracting the corre-
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sponding submatrix of Fj'(+). It should be noted that this automatically takes the

variability stemming from the estimation of CA and 7 into account.

Though Fk(-) in both settings above has a simple structure, analytic calculation
is not directed. This is because the weights w;; depend on y; which makes analytic
integration complicated. To overcome this point one can use Monte Carlo integration
by drawing n random effects z; from the discrete distribution with masspoints é
and masses 7, where CA = ( and 7 = m are fixed for Gaussian random effects.
Given z* we draw y* from f(y;]z;0) and calculate the simulated Fisher matrix by
replacing the expectations in Fk(-) by the simulated empirical moments. Taking
average about several simulations provides the Monte Carlo estimate Fi, say. It is
moreover advisable to correct the variance for a degree of freedom of the estimates, in
particular if NPML estimation is used. In simulations we found that the correction
factor n/(n—df) appears as appropriate choice, where df is the number of estimated

parameters, i.e. the dimension of Fi/(+).

3 Example and Simulation

3.1 Example

We demonstrate the variance approximation with a data example taken from the
literature. Thall & Vail (1990) analyze data observed at 59 epileptic patients (see
also Breslow & Clayton, 1993, or Diggle et al, 1994). The response y;; gives the
number of epileptic seizures of patient ¢ during the observation period j where
j = 1,...,5. The first period has length 8 weeks denoted by I; = 8 while the
remaining periods have length 2 weeks, i.e. [; = 2 for j = 2,...,5. Between the first
and the remaining periods the patients received a therapy ¢, which was randomized

to treatment (¢ = 1) or placebo (¢ = 0). The focus of interest is on inference about



the treatment effect. A detailed description and analysis of the data is found in

Diggle et al. (1994, pages 13-16, 183-185). They suggest the mixed effect model
E(yijlzi,ti) = lexp{zi+6(j > 1)1 + B +t:6(j > 1)Bu} (10)

where §(j > 1) is an indicator for the period, i.e. 6(j > 1) =1 for j > 1 and zero
otherwise. In (10) 3;; gives the therapy effect, 5, adjusts for a placebo effect while
B, copes for a possible randomization effect. We fit model (10) by NPML estimation
which suggests K = 9 distinct masspoints. If a model with K > 9 masspoints is
fitted, the resulting additional masspoints either do not differ from these 9 or have
negligible masses. The resulting distribution function from CA and 7 is plotted in
Figure 1 and shows a uniform shape. Table 1 gives the estimates for the regression
coefficients with variances calculated by Monte Carlo integration. We also used
a GauB Hermite quadrature (K=12) to fit the data where the corresponding fitted
random effect distribution is also shown in Figure 1. The GH estimates hardly differ
from the NPML estimates. Also the inference allows for similar interpretations. The
estimated variances resemble those given in Diggle et al. which are based on a normal

approximation of the likelihood as suggested by Breslow & Clayton (1993).

(Table 1 and Figure 1 about here)

3.2 Simulation

We run a simulation study to investigate the small sample behavior of the suggested
variance approximation. We consider the model y;;|2; ~ Poisson{p; = 1+ 2;+x;; 5},
i=1,...,nand y=1,...,n; with 8 =1, n = 40 and n; = 2. The covariate z;; is

taken as binary factor, i.e. x;; € {0,1}, with balanced design in the sense x;; = x;o



and z;; = 1 for half of the data. The z;’s are drawn from the three settings:

¢) contaminated: z; ~

a) normal: z; ~ N(0,0.5%),
N(0,0.3%)  with probability 0.5
b) mixed: z; ~ <
N(1,0.3%) with probability 0.5,
N(0,0.3%)  with probability 0.9
( 1

1.5,0.1%)  with probability 0.1.

We fit the model by NPML estimation starting with K = 8 masspoints and reducing
K until all masspoints are different. We also use a GH quadrature with K =
16 masspoints. Table 2 shows the mean and standard deviation of 2-0 simulated
estimates. Both quadrature formulae provide unbiased estimates and for settings a)
and b) they show the same variability. In setting ¢) however the NPML estimate is
clearly less variable than a GH estimate. In general, NPML estimation shows to be
not less efficient than GH estimation, even if random effects are normally distributed
where the GH procedure gives the right quadrature. Moreover the NPML approach

can cope for non-normality of the random effect distribution.

In Table 2 we also report the coverage probability of confidence intervals based
on the suggested standard errors. The variance approximations show to work rea-
sonably well with a slightly liberal character though. In the contaminated case on
the other hand, the NPML confidence bands are conservative. In general, confidence

bands based on NPML estimates behave rather promissing in all three settings.

(Table 2 about here)

4 Results and Conclusions

The above results suggest a variance approximation of EM estimates in random

effect models based on quadrature formulae. Assuming the differences between the

10



density f(-) of the random effect and its approximation fx(-) to be negligible, we can
use Fisher type matrices for variance estimation. The same arguments used above
also allows to examine differences between masspoints (; and (, or the relevance
of the masses 7. This indirectly gives an exploratory procedure to evaluate the

number K of masspoints used and comply with the proposals in Laird (1978).
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Distribution of random effects
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Figure 1: Estimated random effect distribution for epileptic seizure data

NPMLE Fit | GauB-Hermite Fit

effect | B | /var( 31| B Jvar( 3)
By | -.126 194 | .048 070
g | 121 084 | .122 052
Bu | -295 -.079 | -.298 .083

Table 1: Estimates and standard errors for epileptic seizure data

random coverage

effect mean(J3) | s.e.(3) | 90 % ‘ 95 %
NPMLE
normal 0.98 21 87.1 | 92.6
mixed 1.02 22 83.3 | 87.9
contaminated 1.00 .07 93.8 | 98.1
GH

normal .99 22 87.0 | 91.5
mixed .98 .20 84.8 | 91.4
contaminated 1.00 23 84.5 | 91.0

Table 2: Mean and standard error of EM estimates and the resulting coverage

probability of confidence intervals based on 200 simulations.



