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Abstract

Tauopathies are widespread neurodegenerative disorders characterised by the intracellular accumulation of hyperpho-
sphorylated tau. Especially in Alzheimer’s disease, pathological alterations in the retina are discussed as potential
biomarkers to improve early diagnosis of the disease. Using mice expressing human mutant P301S tau, we demonstrate for
the first time a straightforward optical approach for the in vivo detection of fibrillar tau in the retina. Longitudinal
examinations of individual animals revealed the fate of single cells containing fibrillar tau and the progression of tau
pathology over several months. This technique is most suitable to monitor therapeutic interventions aimed at reducing the
accumulation of fibrillar tau. In order to evaluate if this approach can be translated to human diagnosis, we tried to detect
fibrillar protein aggregates in the post-mortem retinas of patients that had suffered from Alzheimer’s disease or Progressive
Supranuclear Palsy. Even though we could detect hyperphosphorylated tau, we did not observe any fibrillar tau or Aß
aggregates. In contradiction to previous studies, our observations do not support the notion that Ab or tau in the retina are
of diagnostic value in Alzheimer’s disease.
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Introduction

Intracellular inclusions of hyperphosphorylated tau protein are

the defining pathological hallmark of neurodegenerative disorders

called tauopathies [1]. In normal brain, tau is localized in axons

and plays an important role in the assembly and stabilization of

microtubules [2,3]. Under pathological conditions, tau is also

found in the somatodendritic compartment in a hyperphosphory-

lated state, promoting the aggregation of tau to form neurofibril-

lary tangles (NFTs). The identification of disease-causing muta-

tions in the microtubule associated protein tau (MAPT) has

established that tau dysfunction is sufficient to cause neurodegen-

eration and dementia [4].

Among tauopathies, Alzheimer’s disease (AD) is the most

prominent form: In 2010, AD affected more than 50% of the

estimated 35.6 million people worldwide suffering from dementia.

Currently used diagnostic tools include cognitive tests, neuroima-

ging and measurement of Amyloid-beta (Ab) or tau levels in the

cerebrospinal fluid [5]. While modern imaging techniques like

MRI or PET evolve to be the new hope for the diagnosis of AD,

biomedical science focuses on the design of new molecular probes

for the specific labelling of biomarkers like Ab and tau in vivo

[6,7,8]. However, imaging techniques like PET are restricted to

specialised clinics with cost-intensive equipment and the definitive

diagnosis of AD still depends on the post mortem analysis of the

brain. This fact imposes severe restrictions on an early in-

tervention, which is widely acknowledged to be necessary for

a positive outcome of therapeutic treatments. Therefore, novel

techniques and reliable biomarkers are needed for early diagnosis

prior to the onset of cognitive decline [5].

The retina as part of the central nervous system is easily

accessible for widely-used imaging techniques like scanning laser

ophthalmoscopy (SLO) and optical coherence tomography (OCT).

Therefore, pathological alterations in the retina are discussed as

potential biomarkers for the diagnosis of AD. Prominent examples

are the reduced retinal nerve fibre layer thickness or the decrease

in retinal blood flow rate and venous diameter of AD patients

[9,10,11,12]. Another important biomarker could be the accumu-

lation of Ab-plaques within the retina like proposed by recent

publications [13,14,15,16].

In this study, we focused on the tau pathology in the retina. We

chose the human P301S tau transgenic mouse line, a well

established model of frontotemporal dementia with parkinsonism

linked to chromosome 17 (FTDP-17). This model develops severe

tau-pathology throughout the nervous system including the retina

[17,18,19,20]. Using SLO, we were able to monitor the
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progressing accumulation of fibrillar tau aggregates in the P301S

retina over several months. We further show that hyperpho-

sphorylated tau accumulates in the retina of patients with AD and

Progressive Supranuclear Palsy (PSP). Since the examined retinas

showed no fibrillar tau aggregates or Ab-plaques, these biomarkers

are of limited value for an ophthalmic diagnosis of human

tauopathies.

Materials and Methods

Ethics Statement
The mouse studies were carried out in accordance with an

animal protocol approved by the Ludwig-Maximilians-University

Munich and the government of Upper Bavaria (Az. 55.2-1-54-

2531-188-09). In vivo imaging was performed under anesthesia,

and all efforts were made to minimize suffering of the animals.

The use of human tissue samples was approved by the institutional

review board of the Ludwig-Maximilians-University Munich

(Brain-Net: Brain Banking Centre Munich – Project 068/00).

Patients provided written informed consent before the tissue

samples were collected and used for investigational purposes.

Animals
We used homozygous mice expressing human mutant P301S

tau [17] that were backcrossed for at least 7 generations to obtain

animals on a pure C57Bl/6 background. Age-matched C57Bl/6

wild-type mice served as controls. P301S mice were further crossed

with animals expressing yellow fluorescent protein (YFP) in a subset

of retinal ganglion cells (RGCs) (strain B6.Cg-Tg(Thy1-

YFPH)2Jrs/J, The Jackson Laboratory, Bar Harbor, USA). These

mice were backcrossed to obtain animals homozygous for P301S

tau x Thy1-YFPH. All groups used in this study were of mixed

gender.

Human subjects
Retina specimens from subjects with a neuropathologically

confirmed diagnosis of AD (n= 6) or PSP (n= 2) and of healthy

controls (n = 4) were collected (Table 1). The staging of AD

specimens was performed in routine analysis of post mortem tissue by

a experienced team of neuropathologists according to the Braak &

Braak and CERAD staging [21,22].

In vivo scanning of the mouse retina
The ophthalmic examinations of the mouse retinas were

performed using a modified Spectralis HRA + OCT system

(Heidelberg Engineering, Dossenheim, Germany) with two differ-

ent laser wavelengths for the excitation of fluorophores (450 and

488 nm) and an integrated set of emission filters (LP 458 nm, BP

550/49 nm and BP 617/73 nm). Mice were anesthetized with an

intraperitoneal injection of ketamin (0.14 mg/g) and xylazin

(0.01 mg/g), followed by the dilation of their pupils with

Tropicamid eye drops (Mydriadicum Stulln, Pharma Stulln

GmbH, Stulln, Germany). During the scanning procedure,

a custom-made contact lens in combination with hydroxylpropyl

methylcellulose (Methocel 2%; OmniVision, Puchheim, Germany)

kept the eye moist and negated the refractive power of the

interface between air and cornea [23]. A custom-made mouse

holder allowed the realignment of the animal and retina for long-

term examinations and the suppression of moving artefacts.

Images were recorded in high resolution mode with the scanner set

to 30u field of view.

In vivo examination of FSB- and YFP-positive cells
Cells containing fibrillar tau were labelled in vivo by the

fluorophore FSB ((E, E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hy-

droxy)styrylbenzene; Merck; product # 344101) [24]. 24–

48 hours before each scanning session, mice received an i.p.

injection of 10 mg/kg FSB dissolved in 10% DMSO and 90%

PBS containing 2% mouse albumin (Merck; product # 126674).

FSB-positive cells were excited at 450 nm (detection LP 458 nm),

YFP-positive cells at 488 nm (detection BP 550/49) and spots of

increased autofluorescence at 488 nm (detection BP 617/73).

Immunohistochemistry of murine tissue
Mice were transcardially perfused with PBS and 4% PFA before

the preparation of the retinal whole mounts and the post-fixation

in 4% PFA for 30 min. The retinas were permeabilized in PBS

containing 2% Triton-X over night and non-specific epitopes were

blocked by incubating the sections with Casein I-Block for 1 h

(Applied Biosystems, product # T2015). For immunohistochem-

ical stainings, the retinal whole mounts were treated over night

with the primary antibodies AT8 (1:200; Thermo Scientific,

product # MN1020), AT100 (1:200; Thermo Scientific, product

# MN1060) or anti-NeuN (1:300; Millipore, product #
MAB377). After washing 3610 min with PBS, a secondary anti-

mouse antibody conjugated with Alexa647 (1:200; Invitrogen,

product # A-21236) was applied for 4 h, followed by washing

3610 min in PBS, the co-staining with FSB (0.001% in 50%

ethanol) for 30 min and a last washing step 3610 min in PBS.

Immunohistochemistry of human tissue
Human eyes were obtained at autopsy and fixed in 4% formalin

in PBS for 3–5 days. Afterwards, the tissue was embedded in

paraffin and 2–4 mm thick sections were cut. Sections were

deparaffinised and boiled for 30 min in 10 mM citrate buffer

(pH 6.0) (AT8 staining) or incubated 2 min in formic acid (4G8

staining) for antigen retrieval. After blocking 30 min with Casein-I,

probes were stained with antibodies against hyperphosphorylated

tau (AT8, 1:200; AT100, 1:200; AT180, 1:50, Thermo Scientific,

product #MN1040; AT270, 1:200, Thermo Scientific, product #
MN1050 or PHF-1, 1:1000 [25]) and Ab (4G8, 1:1000;

Table 1. Examined human cases.

Case Disease
Staging (Braak&
Braak, CERAD)

Age,
yr/Sex PI

AT8
Retina

1 AD VI, C 39/M 7 h +

2 AD VI, C 73/F 20 h +

3 AD VI, C 85/M 27 h +

4 AD VI, C 56/F 22 h +

5 AD VI, C 37/M 24 h +

6 AD V, C 79/M 72 h 2

7 PSP - 67/M 40 h ++

8 PSP - 84/F 8 h ++

9 Control 0 53/M 24 h 2

10 Control 0 56/M 72 h 2

11 Control I 60/W 18 h 2

12 Control I 57/M 16 h 2

AD, Alzheimer’s disease; F, female; M, male; PI, post mortem interval; PSP,
Progressive supranuclear palsy; 2, no AT8-positive cells; +, occasional AT8-
positive cells; ++, many AT8-positive cells.
doi:10.1371/journal.pone.0053547.t001

Imaging of Fibrillar Tau Aggregates in the Retina
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Calbiochem, product # NE1002). Further, sections were treated

with biotin-conjugated anti-mouse immunoglobulins and the

staining was visualized by a horseradish peroxidase-diaminoben-

zidine reaction using the Multilink-detection kit HRP/DAB

(BioGenex, product # QD-200 OX).

For the immunofluorescence staining, sections were deparaffi-

nised and boiled like described. Sections were blocked with the

endogenous biotin blocking kit (Invitrogen, product #E21390)

and 30 min in Casein-I. Afterwards, the probes were treated with

biotin-labelled AT8 (1:200, Thermo Scientific, product

#MN1020B) over night. After washing 3610 min in PBS the

staining was completed using the TSA-KIT with HRP-Streptavi-

din and Tyramid Alexa 647 (Invitrogen, product #T20936)

according to the manufacturer’s recommendation. After a further

washing step, sections were co-staining with FSB (0.001% in 50%

ethanol) for 30 min and washed 3610 min in PBS. Alternatively,

sections were co-stained with Thioflavin-S (1% in PBS) for 10 min

and washed in 100% EtOH, 70% EtOH, 50% EtOH (5 min each

wash) and PBS (3610 min). Adjacent Sections were silver-

impregnated using the method of Gallyas to visualize fibrillar

tau pathology.

Microscopy
Fluorescence images were acquired with a confocal laserscan-

ning microscope (LSM 510, Carl Zeiss MicroImaging GmbH,

Jena, Germany). The fluorophores were separated according to

their excitation and emission properties: FSB was excited at

458 nm (detection LP 475 nm), YFP at 514 nm (detection LP

530 nm) and Alexa647 at 633 nm (detection LP 650 nm). FSB-

positive cells within the retinal whole mounts were imaged with

a completely opened pinhole, to ensure the detection of all cells on

different levels of the retinal ganglion cell layer (GCL).

Quantification and statistical analysis
During the long-term in vivo examinations, images were

realigned and all observed FSB-positive cells within the scanning

field of 30u were counted. Areas not present at all time points were

excluded from the analysis. Curves display the mean values of all

analyzed retinas at specific time points. For the ex vivo analysis,

RGCs co-stained with AT8 and FSB were counted and

normalized to the area of the retinal tissue. Each data point in

the quantifications represents one retina. The statistical analysis

was performed with GraphPad Prism 5.0b (GraphPad Software,

San Diego, CA). To confirm statistical significance, we conducted

repeated measures ANOVA test on in vivo data and ANOVA on ex

vivo data. Results are shown as mean values +/2 SD.

Results

In vivo detection of fibrillar tau aggregates in the retina
of P301S mice
Mice transgenic for the human P301S tau mutation develop

fibrillar inclusions of hyperphosphorylated tau protein within cells

of the GCL [18]. Using a modified SLO in combination with

a custom-made mouse holder (Fig. 1A), we were able to detect

these fibrillar tau aggregates in the retinas of living P301S mice.

Fluorescent signals could be imaged 24–48 hours after the

systemic administration of the fluorophore FSB in aged P301S

animals (Fig. 1D). In comparison, no FSB-positive signal could be

observed in the retina of age-matched wild-type mice (C57Bl/6,

n = 3) (Fig. 1E). A major drawback for the examination of

fluorescent dyes within the retina are dots of increased autofluor-

escence which are very prominent in the mouse retina when

excited at 488 nm [26,27]. To exclude false-positive signals

emanating from autofluorescence, we examined the eyes prior to

the injection of FSB (Fig. 1B, C). Furthermore, the FSB signal can

be differentiated from autofluorescence by its spectral properties;

FSB is limited to efficient excitation at 450 nm, whereas spots of

autofluorescence became apparent upon excitation at 450 or

488 nm (Fig. 1 H, I).

To further confirm the in vivo observed FSB-positive spots as

cells containing fibrillar tau aggregates, we crossed P301S with

Thy1-YFPH mice that express YFP in RGCs. In retinal whole

mounts, FSB-positive cells were counterstained with antibodies

against hyperphosphorylated tau and localized in the cell layer

containing the YFP-positive RGCs (Fig. S1 A–A’’’’). 1.9% of the

RGCs labelled with FSB were also YFP-positive. No pathological

alterations could be observed in their dendritic arbors. In vivo,

Thy1-YFPH mice show a sparse labelling of YFP-expressing

ganglion cells with a unique pattern for the identification of

discrete RGCs [28,29]. After the administration of FSB, the SLO

imaging revealed FSB-positive cells adjacent to YFP-positive cells

(Fig. 2A, B). The two fluorophores can be separated based on their

spectral properties: YFP can be excited at 450 and 488 nm, while

FSB can only be detected at 450 nm. In addition, retinal whole

mounts of the same mice were prepared for the relocation of the in

vivo observed FSB-positive cells based on the unique pattern of the

ganglion cells containing YFP. A consecutive counterstaining with

the antibody AT8 definitely identified the in vivo observed FSB-

positive spots (Fig. 2B) as cells within the GCL containing

hyperphosphorylated tau (Fig. 2C, D). An intensive AT8-positive

staining was also detected in the axons of RGCs.

Binding kinetics of FSB in vivo
To monitor the binding kinetics of FSB to fibrillar tau within the

P301S retina in more detail in vivo images were obtained after

a single FSB injection at 450 nm excitation. No signal could be

observed in the retina 10 min after the injection (Fig. 3A), whereas

bright fluorescence was prominent within the retinal blood vessels

1 hour and 12 hours post injection (h.p.i.) (Fig. 3B, C). 24 h.p.i.

the fluorophore was almost completely cleared from the blood-

stream and distinct FSB-positive cells could be distinguished from

the background fluorescence (Fig. 3D). The observed FSB-positive

cells were still fluorescent 48 h.p.i., 72 h.p.i. and even 1 month

after the first injection without any sign of bleaching (Fig. 3E–G).

New FSB-positive cells did not appear until a second injection of

the fluorophore (Fig. 3H).

In vivo long-term imaging of the formation of fibrillar tau
aggregates
The capability to detect fibrillar tau in vivo allowed us to follow

up the progression of the tau pathology in the P301S retina over

a long period of time. Homozygous P301S mice were scanned

between 2 and 5 months of age in an interval of 1 month (n= 5)

(Fig. 4 A–D). In a second experiment, P301S mice were imaged

between 5 and 6.5 months of age in an interval of 2 weeks (n = 4)

(Fig. 4 F–I). 24–48 hours before each image acquisition at 450 nm

excitation, FSB was administered systemically. The precise

repositioning of the animal in front of the optical lens was enabled

by the custom-made mouse head holder (Fig. 1A). Thus, the same

retinal region could be imaged repeatedly and new appearing

FSB-positive cells were detected over the whole period of time

(Fig. 4 A’–I’). For quantification, FSB-positive cells were discrim-

inated from points of increased autofluorescence according to their

spectral properties (Fig. 1 H, I). The quantification revealed

a constant increase in the number of FSB-positive cells from

2 months (3.561.3, mean 6 SD) to 5 months (12.362.1) of age

(Fig. 4E). This steady growth in number of FSB-positive cells was

Imaging of Fibrillar Tau Aggregates in the Retina
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still present in a second imaged cohort of aged mice from 5

(13.564.2) to 6.5 months (15.564.4) of age (Fig. 4J). Interestingly,

no loss of cells after the formation of fibrillar tau was noticed. At

the most advanced state of the tangle-formation in this mouse

model (6.5 months) all FSB–positive cells could be counterstained

in retinal whole mounts with the neuronal marker NeuN,

confirming the viability of neurons containing fibrillar tau (Fig. S1

B–B’’).

Ex vivo analysis of the formation of fibrillar tau
aggregates
FSB-positive cells were counted in retinal whole mounts of

P301S-mice (Fig. 5A) in order to validate the in vivo detected

constant increase of fibrillar tau aggregates. The ex vivo observed

FSB-positive cells could all be counterstained with the antibodies

AT8 (Fig. 5B) or AT100 (data not shown). Consistent with the in

vivo data, a constant growth in the number of FSB-positive cells

was found in homozygous animals (n = 5–6) between 2 months

(1.160.1, mean 6 SD), 4 months (2.760.6) and 5 months

(3.160.6) of age (Fig. 5C). This increase in the number of FSB-

positive cells was also detected in further aged animals

(6.5 months; 3.560.6). In comparison, the retinas of heterozygous

P301S mice at 14 months of age (n = 5) showed a far less

developed tau pathology (1.060.2). Remarkably, the retinal

pathology preceded the cortical pathology. Only weak immuno-

reactivity against hyperphosphorylated tau (antibody AT8) was

detected in the cerebral cortex of 2-month-old animals (Fig. 5D),

while numerous AT8-positive neurons and strong neuropil

labelling could be found by the age of 5 months (Fig. 5E).

Pathological alterations of tau and Ab in the retinas of
AD and PSP patients
To clarify whether the in vivo detection of fibrillar tau in the

mouse retina can be translated to the diagnostic question

concerning human tauopathies, we performed immunohistochem-

ical stainings on paraffin-embedded retinas of patients, which had

suffered from different tauopathies (Table 1). In this study, 5 out of

6 AD- and 2 examined PSP-cases showed AT8-positive inclusions

of hyperphosphorylated tau in the retinas. Besides the plexiform

layers and the GCL, cells in the inner nuclear layer (INL) were

intensively stained by the antibody (Fig. 6 A–C). Remarkably,

already very young patients with forms of familial Alzheimer’s

disease (Cases #1 and#5) revealed AT8-positive inclusions (Fig. 6

B, B’). In contrast, the retinas of control patients did not show any

comparable staining (Fig. 6 D).

The observed inclusions of hyperphosphorylated tau could not

be co-stained with the fluorophore FSB (Fig. 6 E–E’’). Further

attempts to confirm the presence of fibrillar tau aggregates using

Thioflavin-S, Gallyas-Silver or the antibodies AT100, AT180,

AT270 or PHF-1 did not result in any positive staining of the

human retinas (data not shown). In addition, we performed

histological stainings against Ab, the second neuropathological

hallmark of AD. No evidence was found for fibrillar accumulations

of Ab in the retinas from AD patients with the antibody 4G8 (Fig. 6

F) nor by using the fluorophores FSB and Thioflavin-S (data not

shown). Brain slices of human AD patients were used to confirm

the staining results.

Figure 1. In vivo imaging of fibrillar tau aggregates in the retina
of P301Smice. A SLO examination of the mouse retina using a custom
made mouse holder. B, C Pre-examination revealing spots of increased
autofluorescence in the retinas of 5-month-old P301S and C57Bl/6 mice.
D 24–48 hours after the injection of FSB, fluorescent cells were
detected in the retinas of P301S mice but not of C57Bl/6 mice at
450 nm excitation (E). F, G No FSB-positive signals could be detected in
the same imaging session when excited at 488 nm. H, I Example for the
spectral discrimination of FSB-positive cells from spots of increased
autofluorescence in the retina of a P301S mouse. H In vivo image
obtained at 488 nm excitation showing dots of increased autofluores-

cence (AF, red arrows). I FSB-positive cells can only be excited at
450 nm (green arrows).
doi:10.1371/journal.pone.0053547.g001
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Discussion

In this study, we have monitored the development of retinal tau

pathology on single cell level for the first time in vivo. Longitudinal

laser scanning ophthalmoscopy in the P301S mouse model

revealed an increase over several months in the number of RGCs

that contain fibrillar, FSB-positive tau aggregates. Furthermore,

we were able to demonstrate hyperphosphorylated but not fibrillar

tau in the retinas of different human tauopathies.

Previous studies addressing the potential diagnostic value of

AD-related pathology in the retina have mainly focused on Ab-

pathology in transgenic mouse models [14,15,16]. Koronyo-

Hamaoui et al. first described retinal Ab-plaques in human AD

patients and showed that these aggregates can be imaged in vivo in

the APPswe/PS1DE9 mouse model by the application of curcumin

[13,30]. In contrast, we could not detect any Ab-plaques in the

retinas of neuropathologically confirmed cases of AD. We cannot

completely exclude that this discrepancy between our results and

the study of Koronyo-Hamaoui et al. is based on technical

differences in the immunohistochemical stainings. Whereas the

previous study was performed on cryosections respectively retina

whole mounts and used the primary 4G8 antibody in a 10 times

Figure 2. FSB labels cells containing hyperphosphorylated tau in the GCL of P301S mice. A, B In vivo SLO-examination of a P301S mouse
crossed with Thy1-YFPH. A Scanning at 488 nm excitation revealed only YFP-positive cells in a unique pattern (Striking cells are numbered 1–4). B In
the same retinal area, FSB-positive cells (arrows) adjacent to YFP-positive cells became apparent when excited at 450 nm. C Whole mount
preparation of the in vivo examined retina (A, B). D Magnification of the boxed area in B and C. The in vivo observed FSB-positive cells (B) could be
counterstained with AT8 (arrows). Axons from RGCs containing hyperphosphorylated tau appear as red background. red, AT8; white, FSB; green, YFP.
Scale bars: 50 mm.
doi:10.1371/journal.pone.0053547.g002

Figure 3. Binding kinetics of FSB. A 10 minutes after the systemic administration, no fluorescence of FSB was observed in SLO images obtained
with 450 nm excitation. B Within retinal blood vessels, bright fluorescence appeared 60 min post-injection and was still present 12 hours post-
injection (C). D 24 hours post-injection most of the fluorophore was cleared from the blood stream and distinct FSB-positive cells could be observed.
E–G These FSB-positive cells were still present 48, 72 hours and even 1 month after the first injection of FSB. H New FSB-positive cells did not appear
until a second FSB injection (arrow). p.i. post-injection.
doi:10.1371/journal.pone.0053547.g003

Imaging of Fibrillar Tau Aggregates in the Retina
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Figure 4. In vivo long term imaging of FSB-positive cells displays the disease progression in P301S mice. A–D Representative retina
imaged between 2 and 5 months of age in an interval of 1 month. F–I Second retina imaged between 5 and 6.5 months of age in an interval of
2 weeks. A’–I’ Enlarged images of the boxed areas in A and F demonstrating the appearance of new FSB-positive cells over the time (arrows). FSB
was administrated systemically before each imaging session and images were acquired at 450 nm excitation. E, J Quantification of the increasing
number of FSB-positive cells in the age from 2 to 5 months and 5 to 6.5 months. The curve displays the mean from 10 different retinas (n = 5 mice).
Error bars show SD. **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0053547.g004

Imaging of Fibrillar Tau Aggregates in the Retina
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Figure 5. Ex vivo analysis of FSB-positive cells. A, B FSB-positive cells were counted in retinal whole mounts of P301S mice (red, AT8; white, FSB;
green, YFP). C Quantification of FSB-positive cells of homozygous and heterozygous P301S mice in cohorts of different ages (n = 5–6). Each data point
represents the number of FSB-positive cells in one retina normalized to the area. Shown are mean values 6 SD. **P,0.01; ***P,0.001. D, E AT8-
staining in the cortex of homozygous P301S mice at the age of 2 and 5 months. Scale bars: 1 mm (A), 100 mm (B, D, E).
doi:10.1371/journal.pone.0053547.g005

Figure 6. Pathological alterations of tau and Ab in the retinas of human AD and PSP patients. A–C Post mortem retinas of AD and PSP
patients showing AT8-positive cells in the INL (arrows) and stainings of the plexiform layers and GCL. B, B’ Higher magnification image of individual
AT8-positive cells in the INL. D Control retinas were not immunopositive for AT8. E–E’’ AT8-positive cells could not be co-stained with FSB in AD and
PSP retinas. F No 4G8-positive staining against Ab was found in the retinas of AD patients. G In comparison, control brain slices of AD patients
showed severe 4G8-positive Ab-plaques. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,
ganglion cell layer. AD, Alzheimer’s disease; PSP, progressive supranuclear palsy. Scale bars: 10 mm.
doi:10.1371/journal.pone.0053547.g006
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higher concentration, we applied conventional immunohistochem-

ical procedures on paraffin embedded material as used in the

routine neuropathological diagnosis of AD. However, our findings

are in accordance with previous studies that failed to detect Ab-
plaques within the retinas of neuropathologically confirmed AD

cases [31,32] and patients with a clinical presentation of AD [33].

Furthermore, we could not detect retinal Ab-plaques in vivo in

APPswe/PS1DE9 (n = 7, 16–24 months) and Tg2576 (n = 5, 16–

22 months) mice by using the fluorophores FSB and BSc4090,

both shown to bind to Ab-plaques in the brain of these mice

[34,35]. As demonstrated in this paper as well as in a previous

retina imaging study defining the nature of spots of increased

autofluorescence in the mouse retina [27], any fluorescent signal in

the retina has to be analysed in depth for specificity. Therefore, we

always examined the retinas before the application of fluorophores

like FSB or BSc4090, in order to be able to subtract unspecific

signals. Ex vivo immunohistochemical studies using various Ab-
antibodies (4G8, 6E10, NAB228) on retinal serial sections of these

mice and other AD mouse models (3xTg-AD [36], APPPS1 [37],

TgCRND8 [38]) confirmed our in vivo observation that Ab-
plaques cannot be detected in the retina of these transgenic models

even at very old age (unpublished observations). These negative

findings are in accordance to similar attempts at the University of

Pittsburgh (Dr. C.M. Mathis, personal communication).

In comparison, hyperphosphorylated tau could clearly be

detected in the retinas of AD and PSP cases. Therefore, we

focused our in vivo study on the detection of tau pathology in the

mouse retina. We chose a transgenic mouse model expressing

human tau with the P301S mutation, which develops abundant

FSB-positive tau inclusions in the brain, spinal cord, and the retina

[17,18,24].

We monitored the formation of fibrillar tau aggregates in vivo for

the first time by non-invasive means. In future studies, this

technique will be useful for the screening of drugs aimed at

reducing the formation of fibrillar tau aggregates. Since individual

animals can be studied longitudinally over several months, errors

due to variations in the strength of the pathology between single

mice can be reduced. Interestingly, RGCs harbouring FSB-

positive inclusions survived over several months fitting to the

observation that the overall ganglion cell number in the retina of

P301S mice was not found to be reduced [18]. This indicates,

similar to observations obtained in the cerebral cortex of other tau

transgenic mouse lines [39,40], that the formation of fibrillar tau

alone may not be sufficient to cause neuronal death. On the other

hand, tau hyperphosphorylation and aggregation result in reduced

axonal transport in the optic nerve and an increased loss of RGCs

after mild excitotoxic injury in P301S mice [20]. Observing the

formation of fibrillar tau aggregates in the retina could be useful to

further investigate the kinetic of RGCs loss after similar injuries in

vivo. Furthermore, the herein described long-term binding stability

of FSB could allow an additional, high-resolution analysis of

fibrillar tau formation and its effect on cellular environment by

time-stamp technology as already shown for cerebral Ab-plaques
in transgenic mice [41].

Despite the limited number of human cases in our study, we

provide for the first time evidence of the presence of hyperpho-

sphorylated tau in the retinas of AD and PSP patients. The used

antibody AT8 is a well-accepted marker in routine diagnosis of

AD and recognizes tau doubly phosphorylated at Ser202 and

Thr205 [21]. Remarkably, other tau epitopes were not found to be

phosphorylated as confirmed by the use of different antibodies

(AT100: Ser212/Thr214; AT180: Thr231/Thr235; AT270:

Thr181; PHF1: Ser396/404). This might explain why to date no

other study has described hyperphosphorylated tau in the retina of

different tauopathies. Only one out of 6 examined AD cases with

the most prolonged post mortem interval (72 h) showed no AT8-

positive staining. Therefore, we speculate that the post mortem

interval may affect the stability of hyperphosphorylated tau, as has

already been shown for other phosphoproteins [42]. It remains to

be seen, if hyperphosphorylated tau occurs in the retina of other

types of tauopathies (e.g. frontotemporal dementia) and whether

this pathological alteration can be observed at a presymptomatic

stage of the diseases. Moreover, retinal pathogenesis in different

types of dementias could be influenced by the aggregation of other

proteins like indicated by changes in the distribution pattern of

synucleins in AD or dementia with Lewy bodies [43,44].

Interestingly, accumulations of hyperphosphorylated tau were

also found in the retina of glaucoma patients [45]. These findings

tend to support a possible link between glaucoma and AD like

discussed in the literature [46].

The presence of AT8-positive, hyperphosphorylated tau in the

human retina led us to the hypothesis that our approach could be

applicable in the diagnosis of human tauopathies. Histological

examinations of the human retinas however revealed no evidence

for fibrillar tau aggregates or Ab-plaques. Molecular probes like

FSB or Thioflavin-S bind to tau and Ab in their fibrillar

conformation only. Therefore, an ophthalmic detection of

hyperphosphorylated tau based on the currently available

fluorophores won’t be applicable to human diagnosis. Our findings

challenge the results of an earlier study that described the potential

diagnostic value of Ab-plaques in the retina of human AD cases

[13,30].

In conclusion, we developed a method which potentially could

be used for the monitoring of compounds inhibiting the formation

of fibrillar tau. We present hyperphosphorylated tau in the retinas

of human tauopathies, but found no evidence for Ab-plaques or
fibrillar tau aggregates. According to these findings, Ab and tau in

the retina are of limited value for the proposed ophthalmic

diagnosis of AD. A feasible diagnostic system based on the retinal

tau-pathology would depend on the development of novel

fluorescent probes against soluble, hyperphosphorylated tau.

Supporting Information

Figure S1 FSB-positive cells are vital. A–A’’’’ In P301S

mice crossed with Thy1-YFPH, 1.9% of FSB-positive cells also

contained YFP. No pathological alterations in the dendritic arbors

of these cells could be observed. Shown is one co-labelled cell

(FSB, AT8, and YFP) next to cells containing either YFP only or

FSB and AT8 only. A x–y projection, A’’’’ x–z projection. B–B’’
Cells containing fibrillar tau in the retina of aged P301S mice

(6.5 months) are positive for NeuN (green, NeuN; white, FSB).

Scale bars: 20 mm.

(TIF)
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