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Abstract

We discuss Bayesian estimation of a logistic regression model with an

unknown threshold limiting value �TLV�� In these models it is assumed

that there is no e�ect of a covariate on the response under a certain

unknown TLV� The estimation of these models with a focus on the TLV

in a Bayesian context by Markov chain Monte Carlo �MCMC� methods is

considered� We extend the model by accounting for measurement error

in the covariate� The Bayesian solution is compared with the likelihood

solution proposed by K�uchenho� and Carroll ����	� using a data set

concerning the relationship between dust concentration in the working

place and the occurrence of chronic bronchitis�

Keywords
 threshold limiting value �TLV�� segmented regression� mea�

surement error� MCMC
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� Introduction

In toxicology� environmental and occupational epidemiology the assessment of

threshold limiting values �TLVs is an important task� In a dose�response relati�

onship the TLV is the dose of the toxin or a substance under which there is no

in�uence on the response� In many applications there is a controversy about the

existence of such a TLV from a substantive point of view� In empirical studies

evidence for the existence of a TLV and its estimation is often di�cult� since

distinguishing between no e�ect and a small e�ect can only be done by huge

data sets� There are di�erent models and methods for assessing a TLV� see e�g�

K�uchenho� and Ulm ����
� In this paper we concentrate on a fully parametric

logistic regression model proposed by Ulm ������ In this model� which is a seg�

mented regression model� the TLV is treated as an unknown parameter� which

can be estimated assuming its existence� The interval estimates of the TLV give

some evidence about its existence� since a TLV which is smaller than the smallest

observed dose is equivalent to a non existing TLV� While the theoretical and prac�

tical problems in maximum likelihood estimation and the frequentist treatment

of this model has been discussed by K�uchenho� and Wellisch ����
� we use a

Bayesian approach� In this context no di�erentiability assumptions are necessary

and it can be implemented with Markov chain Monte Carlo �MCMC methods�

We apply our methods to a study concerning the relationship between dust con�

centration in the working place and the occurrence of chronic bronchitis� In this

study the exposure can only be measured with substantial measurement error�

Therefore we also show how to incorporate this measurement error in our model�

Since there are di�erent approaches and possibilities concerning the MCMC al�

gorithm and the assumption of the distribution of the regressor variable� we give

a detailed discussion of the bronchitis example� The results are compared with

those of a frequentist approach�
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The paper is organized as follows� In Section � we present the model and a

Bayesian solution of the problem of estimating the limiting value of a logistic

threshold model� We propose a way to calculate the estimates by means of

MCMC methods�

The modeling and the handling of measurement error in the dose covariate of our

model is treated in Section ��

In Section � we apply our methods to analyze in detail an occupational study

regarding the assessing of a TLV for dust concentration in the working place�

Further� our methods are compared with the di�erent approaches as investigated

by K�uchenho� and Carroll ����
�

� A Bayesian Approach to the Logistic Thres�

hold Model

In the following we focus our analysis on the logistic threshold model proposed

by Ulm ������

P �Y � �jX � x� Z � z � G�z��k� � �k�x� ��� ��

where G�t � �� � exp��t���

� � IRk� �k� � ���� � � � � �k��
� and �x� �� � max�	� x� ��

Here� Y denotes the response variable� X is the dose variable� Z refers to further

covariates� The unknown model parameters are � and the TLV � � As can be seen

from �� there is no in�uence of X on Y � if X is smaller than � � which exactly

re�ects the concept of a TLV�

In contrast to the classical frequentist inference� the parameters of a Bayesian

model are not supposed to be �x but at random� For each of them exists a

probability function� which re�ects the prior knowledge of their value� the so�

called priors� Now it is possible� according to the theorem of Bayes� to determine
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in combination with the likelihood function of the data a so�called posterior of

the parameters� This posterior distribution includes all knowledge relating to the

parameters once from the prior and on the other hand from the likelihood�

The theorem of Bayes in its simplest form runs�

p��jdata �
p��� data

p�data
�

Here� data denotes the observed and � the unknown parameters and latent va�

riables� The numerator is the product of the likelihood and the priors� Note

that in contrast to likelihood analysis� no further assumptions on p��� data like

di�erentiability in � are needed for the analysis�

From this posterior the Bayesian point and interval estimates are derived� The

median or the mean of the partial densities are� depending on the used loss�

function� appropriate estimates for the parameters� In this paper� we use the

mean of the posterior as point estimate and probability intervals� which can be

regarded as Bayesian equivalents to the classical con�dence�sets�

Thus� to derive the Bayesian posterior for our logistic threshold model� we have

to determine the conditional likelihood function and the prior distributions�

The conditional likelihood of the i�i�d� sample �yi� zi� xi i � �� � � � � n is according

to �� given by

�YjZ�X� �� � � �
nY
i��

�
yi
i ��� �i

��yi ��

where �i � G��k�zi � �k�xi � ���

As usual ���� refers to the density �or probability of the corresponding random

variables� We assume that the threshold is in the range of our observed data X

and use a uniform prior in the range of the observed data for the threshold � �

For � a �at prior is assumed�
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Now the posterior density of the parameters is

��� � jY�Z�X� �
�YjZ�X� �� � ������ �R

�YjZ�X� �� � ������ �d���� �
� ��

Based on this density the above mentioned estimates are to be calculated� Alt�

hough the determination of the numerator is easy� in most practical cases it is

not possible to evaluate the denominator in an analytic way� For the threshold

model� we solve this problem by means of MCMC methods� These methods allow

to take a sample from a density only known up to a normalizing constant� which

is in our particular problem the denominator� Then� on the basis of this sample

of the posterior� the Bayesian estimates can simply be calculated� see e�g� Gilks�

Richardson� and Spiegelhalter ������

For the logistic threshold model we use a two step Metropolis Hastings �MH

algorithm with multivariate random walk proposals in each step� We sample the

parameter �k and the threshold � in one step and the parameter vector �k� in

step two� The full conditionals are straightforward� Since the densities cannot

be analytically determined� it is not possible to apply the Gibbs�Sampler� We

take two steps because of the strong dependence between the threshold � and

�k� The covariance matrices of the proposals are tuned according to test runs to

acceptance rates from 	�� to 	��� The starting values are chosen over�dispersed at

random and the burn�in phase has to be determined by comparing several runs

and then discarded� Due to high autocorrelation and slow convergence in the

MH�output it is often necessary to thin out the simulated chain by taking only

every k�th observation into the sample� We choose k such that the autocorrelation

decreases to a su�ciently low level� The total extend of the runs depends on the

convergence of the Markov chains and can be determined by comparing the point

estimates of several runs� Figure �� shows a trajectory of such a run and the

belonging histogram with kernel density estimate for a simulated dataset� For

results on real data we refer to Section ��

Figure ��
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� Errors in Variables

In many practical regression problems the regressors can only be measured with

measurement error� Here� we want to propose a solution for incorporating mea�

surement error of the variable X in our Bayesian model� A general introduction

to the measurement error problem in threshold models is given by K�uchenho�

and Carroll ����
� see also Carroll� Ruppert� Stefanski ������

We assume an additive measurement error model� i�e� instead of X the variable

W � X �U is observed� where U is the measurement error which is independent

of Y� X� Z and is normally distributed with E�U � 	 and V �U � 	�u�

Now we split our model in three parts�

main model �Y jX�Z� 
�

error model �W jX� ��

covariable model �X jZ� ���

where 
� � and � are the model parameters�

Using the independence assumption of U and �Y� W� X the likelihood of the

whole model can be written as

�Y�WjZ� �� �
nY
i��

Z
�yijx� zi� 
��wijx� ���xjzi� ��d��x� ��

where � � �
� �� ��

For our Bayesian approach the underlying model is the threshold model ��� as

measurement error model we de�ne W jX � N�X� 	�u and �nally we assume

X to be independent from Z and to have a normal distribution� This approach

is extended in Section � to a �nite mixture of normal distributions which is a

�exible model for X with few parameters�

With respect to the priors� we propose as in Section � that no additional informa�

tion is available and therefore de�ne again noninformatives for � and � � For the
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parameters �x and 	�x of the covariable model we assume� similar to the nonin�

formatives� a normal distribution with mean 	 and a very large variance s� and a

highly dispersed inverse�gamma distribution with parameters � and 	�		� so that

its expectation equals in�nity� The use of proper priors is here advisable as to

avoid improper posteriors� see e� g� Besag et al� ������ We further assume that

the error variance 	�u is known� For the posterior of the unknown parameters we

get by suitable conditional independence assumptions

h
�� �� 	�u� �x� 	

�

xjY�Z�W
i
�
h
Y�WjZ� �� �� 	�u� �x� 	

�

x

i
����� ��	�u���x� 	

�

x��

As in the previous section� it is not possible to derive the posterior analytically�

Thus� we have again to apply the MH�algorithm� In addition we have to cope

with the fact that the integral of formula �� is in general not evaluable� In this

paper� we want to solve the latter by means of MCMC methods� too� For another

way of getting analytically the integral� which works with an approximation of

the logit� by the probit�model� see Carroll� Ruppert� Stefanski ������ For the

foundations of the following method we refer to Richardson ������ The idea is

to add the unknown variable X to the parameters with a prior according to the

covariable model and sample it from its full conditional� The partial densities of

the other parameters will not be a�ected and the integration of formula �� is

implicitly carried out by the algorithm�

Now we describe the problem more formally� As mentioned above we assume

X to be independent from Z and for simplicity distributed according to a single

normal distribution N��x� 	
�
x� We regard the latent variables Xi as parameters

and decompose the likelihood as follows

�Y�WjZ�X� �� �� 	�u� � � �YjZ�X� �� � ��WjX� 	�u�� ��

With the above priors and X � N��x� 	
�
x� the posterior takes the form�

��� �� 	�u� �x� 	
�

x�XjY�Z�W� � �Y�WjZ�X� �� �� 	�u��Xj�x� 	
�

x������ ���x� 	
�

x��

� �YjZ�X� �� � ��WjX� 	�u��Xj�x� 	
�

x������ ���x� 	
�

x��






For the MH�algorithm� we use� as in Section �� two Metropolis steps with random

walk proposals for the parameters � and � � Furthermore� we add a Metropolis�

step for X� Thus� full conditionals are given by

h
�k�jY�Z�W�X� �k� �� 	

�

u� �x� 	
�

x

i
� �YjZ�X� �� � ��h

�k� � jY�Z�W�X� �k�� 	
�

u� �x� 	
�

x

i
� �YjZ�X� �� � ��� ��h

xijyi� zi� wi� �� �� 	
�

u� �x� 	
�

x

i
� �yijzi� xi� �� � �

h
wijxi� 	

�

u

i
h
xij�x� 	

�

x

i
� i � �� � � � � n�

Due to our choice of normal and inverse�gamma distributions� respectively� for

the parameters �x and 	�x we can derive their full conditionals as

��xjX� 	
�

x � N

�
s�
P
xi

s�n � 	�x
�

s�	�x
s�n � 	�x

�
�

�	�xjX� � � IG

�
n

�
� ��

�

�

X
�xi � �x� � 	�		�

�
�

Concerning the details of the implementation of the algorithm such as �xing the

starting values we refer to Section �� An application of the algorithm is reported

in the following section�

� Bronchitis Study

In several occupational studies conducted by the German research foundation

�DFG the relationship between average dust concentration in the working place

and the occurrence of a chronic bronchitis reaction �Y  has been investigated�

The disease was measured based on medical examinations like a questionnaire

about symptoms� chest x�rays and lung function analysis�

Further covariates were smoking �SMK and duration of exposure �DUR� We

use the data of ����� Munich workers which were also analyzed by K�uchenho�

and Carroll ����
� It should be mentioned that� we use the quantity
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X � log�� � dust�concentrationin our calculations�

P �Y � � � G��� � ��SMK � ��DUR � ���X � �� ��

Because of the concentration measurements were gained by averaging over se�

veral single measurements scattered over the period and raw estimates for earlier

periods� it seems to be appropriate not only to apply the simple threshold model

but also the model of Section ��

For the simple model without measurement error the algorithm of Section � can

directly be used� Only the proposals of the Markov chain have to be modi�ed in

the described manner� Apart from that we derived our estimates from one chain

with �				 iterations� where we took due to the high autocorrelations every �	th

observation in our sample� With respect to the burn�in� we discarded the �rst

�		 iterations� Table � shows the estimates and those of K�uchenho� and Carroll

����
 gained by the classical methods� While the estimators are nearly identical�

the estimators for the variance are higher for the classical methods� For example

the estimated variance for the threshold � was 	��� compared to 	��� in the Bayes

analysis�

Table � �

In order to take into account the measurement error more complex modi�cations

of the presented model have to be done� The �rst is� to regard the measured

dust�concentration as the error�exposed surrogate W � The true concentration X

is unknown�

Following K�uchenho� and Carroll ����
� we model the distribution of the un�

known variable X by a mixture of two normal distributions� Assuming an additive

measurement error W � X �U where U � N�	� 	�u then W is also a mixture of

normals with the same number of mixing distributions as X� So taking two mi�

xing distributions is justi�ed by the empirical distribution of W � Consequently�
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for � � �	� �� we assume X to be distributed according to

X �MixN��x�� 	
�

x�� �x�� 	
�

x�� �� with

�xj�x�� 	
�

x�� �x�� 	
�

x�� �� � �	��x� 

�
x� �x�

	x�

�
� ��� �	��x� 

�
x� �x�

	x�

�
�

The covariable model is given above� the underlying model� the logistic threshold

model� is straightforward and we suppose an additive measurement error model�

where W jX � x has a normal distribution� i�e� �W jX � x � N�x� 	�u� So� the

likelihood is complete and is given by ���

Thus� the prior distributions are chosen like in the previous section� we only have

to take into account that the covariable model has more parameters than in the

last section� Again� we assume the case of no prior information� Accordingly

we de�ne the priors for the additional parameters �x�� 	
�
x� for which we use the

same dispersed normal and gamma distribution as for �x�� 	
�
x�� and the prior

for � where we use a uniform distribution on �	� ��� Because the integral of the

likelihood is not evaluable� we also have to consider the di�erent prior of the

unknown variable X according to our covariable model�

With respect to a practical solution� we assume the variance of the measurement

error as known and take the value proposed in K�uchenho� and Carroll ����
�

	�u � 	���
�� Because of problems with model identi�cation other assumptions�

like setting another prior distribution on 	�u did not work in our model�

Therefore the posterior is of the form�

��� �� 	�u� �x�� �x�� 	
�

x�� 	
�

x�� ��XjY�Z�W� �

�YjZ�X� �� � ��WjX� 	�u��Xj�x�� �x�� 	
�

x�� 	
�

x�� ������� ���x����x���	
�

x���	
�

x������

As far as the derivation of the above formula is quite simple� the adapting of the

MH�algorithm is a far more sophisticated task� The main problem results from

the determination of the original distribution of the mixture for the variable X�

which is necessary for de�ning the full conditionals of the according parameters�
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Here� we use a method which is given in detail in Robert ����� and works in

principle by de�ning an indicator�variable mi� which for all observations of X

states from which distribution of the mixture it comes�

In general� suppose for X a mixture of m normal distributions is given� with para�

meters ��� � � � � �m� 	
�
�� � � � � 	

�
m� ��� � � � � �m� xi �

Pm
j�� �jN��j� 	

�
j � Then weights

gij � �j	
��

j 
�
xi��j

�j

�
can be calculated that correspond to the contributions of

the several mixing distributions to the density of xi� Here �x denotes the stan�

dard normal density� Thus� de�ning a discrete random variable Mi on the set of

distributions f�� � � � � mg with the standardized weights pij � gijP
j
gij

as probabili�

ties� yields a variable that allocates each element of the mixture a probability of

having generated the observation xi� Consequently� realizations of this distribu�

tion assign every observation one particular underlying distribution�

After having sampled an origin for every observation� the means� variances and

mixing parameters of these distributions can be updated in familiar Gibbs� or

MH�steps� according to the priors and the observations that come from this dis�

tribution� In our case� we use as above conjugate normal and inverse gamma

priors for the means and variances and a non�informative prior for the mixing

parameter so that two Gibbs� and one MH�step can be applied�

Thus� the full conditionals for our particular algorithm with the mixture of two

normal distributions are�

����jY�Z�W�X� ��� �� 	
�

u� �x�� 	
�

x�� �x�� 	
�

x�� �� � �YjZ�X� �� � ��h
��� � jY�Z�W�X� ���� 	

�

u� �x�� 	
�

x�� �x�� 	
�

x�� �
i
� �YjZ�X� �� � � �� ��h

�jY�Z�W�X� �� �� 	�u� �x�� 	
�

x�� �x�� 	
�

x�

i
�
h
Xj�x�� 	

�

x�� �x�� 	
�

x�� �
i

����h
xijyi� zi� wi� �� �� 	

�

u� �x�� 	
�

x�� �x�� 	
�

x�� �
i

� �yijzi� xi� �� � � �wijxi� 	
�

u��Xj�x�� 	
�

x�� �x�� 	
�

x�� ���

��



for the MH�steps and for Gibbs�sampling we get

��jjX� 	
�

j  � N�
�	
P
x
j
i

�	nj � 	�j
�

�		�j
�	nj � 	�j

�

�	�j jX� �j � IG�
nj

�
� ���

�

�

X
�xji � �j

� � 	�		�� j � �� ��

�uijX� �x�� �x�� 	
�

x�� 	
�

x�� � �

�	

	�

P �ui � � � pi�

P �ui � � � � � pi�
�

where pi� is de�ned as above� nj denotes the number of observations xi coming

from distribution ui � j and x
j
i are their values themselves�

Again� we derived our estimates from one chain of the length of �				 iterations

where we took every �	th observation into our sample� In contrast to the simple

model the autocorrelations then still had a value of about 	�� to 	�
� But with re�

gard to the computation time we accepted this high level and the resulting biases�

The discarded burn�in extended again to �		 iterations� Table � shows the Bayes�

estimates� For comparison the estimate for the threshold derived by K�uchenho�

and Carroll ����
 under the assumption of a mixture of normal distributions

for X� where X � MixN�	���� 	������ ����� 	��	��� 	���� and a variance for the

error model of 	�u � 	���
�� takes a value of ��
��

Table � �

Further� the classical methods with the same assumptions give di�erent estimates

for the parameter � depending on the method� see K�uchenho� and Carroll ����
�

While the likelihood estimator is ��
�� the simex�estimator �Cook and Stefanksi�

���� which does not use the information about the distribution of X gives a

result of ���	� which is close to our result� An interesting point is that variance

estimation is higher for the Bayesian approach than it is for all classical methods

where the s�e� varies from 	��� to 	���� A reason could be that in the Bayesian

approach all sources of variability are modeled automatically� while in the classical

approach this is not the case�
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As mentioned above �� and � are sampled in the same MH�step� because of their

high correlation� The estimate for this correlation in the simulated dataset of

Section � was 	���� for the dust�dataset it was 	�
�� In Figure � a scatter�plot

and a two�dimensional kernel density estimate of the posterior s sample of �� and

� for the simple model in the bronchitis study also shows this high correlation�

Figure ��

� Discussion

We have shown that the Bayesian analysis for the complicated model of a seg�

mented regression with errors in the regressors can be done by MCMC methods�

We use a mixture of normals for the distribution of the regressor variable� which

is a �exible parametric model� In this setting a classical analysis is very di�cult�

both theoretically and from a practical point of view� Another important argu�

ment for Bayesian analysis for �nding threshold limiting values in epidemiology

is the possibility of including knowledge from other studies or from substantive

considerations by selecting a suitable prior distribution for the TLV�

A possible extension of our model would be to drop the assumption of an existing

threshold� but to �nd out whether there is a threshold by data analysis� Another

point is to treat the number of normals in the mixture distribution as a further

parameter� For these problems methods proposed by Green ����� have to be

included into the MCMC�algorithm�
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 	�	�� 	�		� 	�		� 	�		
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Table �� Bayes estimates for the dust�dataset for the threshold model with errors

in variables
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Figure �� Scatter�Plot and two�dimensional kernel density estimation of the pa�

rameters �� and � of the simple model of the Bronchitis study
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