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Abstract

We discuss Bayesian estimation of a logistic regression model with an
unknown threshold limiting value (TLV). In these models it is assumed
that there is no effect of a covariate on the response under a certain
unknown TLV. The estimation of these models with a focus on the TLV
in a Bayesian context by Markov chain Monte Carlo (MCMC) methods is
considered. We extend the model by accounting for measurement error
in the covariate. The Bayesian solution is compared with the likelihood
solution proposed by Kiichenhoff and Carroll (1997) using a data set
concerning the relationship between dust concentration in the working

place and the occurrence of chronic bronchitis.

Keywords: threshold limiting value (TLV), segmented regression, mea-

surement error, MCMC



1 Introduction

In toxicology, environmental and occupational epidemiology the assessment of
threshold limiting values (TLVs) is an important task. In a dose-response relati-
onship the TLV is the dose of the toxin or a substance under which there is no
influence on the response. In many applications there is a controversy about the
existence of such a TLV from a substantive point of view. In empirical studies
evidence for the existence of a TLV and its estimation is often difficult, since
distinguishing between no effect and a small effect can only be done by huge
data sets. There are different models and methods for assessing a TLV, see e.g.
Kiichenhoff and Ulm (1997). In this paper we concentrate on a fully parametric
logistic regression model proposed by Ulm (1991). In this model, which is a seg-
mented regression model, the TLV is treated as an unknown parameter, which
can be estimated assuming its existence. The interval estimates of the TLV give
some evidence about its existence, since a TLV which is smaller than the smallest
observed dose is equivalent to a non existing TLV. While the theoretical and prac-
tical problems in maximum likelihood estimation and the frequentist treatment
of this model has been discussed by Kiichenhoff and Wellisch (1997), we use a
Bayesian approach. In this context no differentiability assumptions are necessary
and it can be implemented with Markov chain Monte Carlo (MCMC) methods.
We apply our methods to a study concerning the relationship between dust con-
centration in the working place and the occurrence of chronic bronchitis. In this
study the exposure can only be measured with substantial measurement error.
Therefore we also show how to incorporate this measurement error in our model.
Since there are different approaches and possibilities concerning the MCMC al-
gorithm and the assumption of the distribution of the regressor variable, we give
a detailed discussion of the bronchitis example. The results are compared with

those of a frequentist approach.



The paper is organized as follows. In Section 2 we present the model and a
Bayesian solution of the problem of estimating the limiting value of a logistic
threshold model. We propose a way to calculate the estimates by means of
MCMC methods.

The modeling and the handling of measurement error in the dose covariate of our
model is treated in Section 3.

In Section 4 we apply our methods to analyze in detail an occupational study
regarding the assessing of a TLV for dust concentration in the working place.
Further, our methods are compared with the different approaches as investigated

by Kiichenhoff and Carroll (1997).

2 A Bayesian Approach to the Logistic Thres-
hold Model

In the following we focus our analysis on the logistic threshold model proposed

by Ulm (1991):

PY=1X=0,Z2=2) =G0+ Bi(x —7)1), (1)
where G(t) = (1 +exp(—t))7",

BeRF, B =(B,...,B1) and (z — 7); = max(0,2 — 7).

Here, Y denotes the response variable, X is the dose variable, Z refers to further
covariates. The unknown model parameters are 3 and the TLV 7. As can be seen
from (1) there is no influence of X on Y, if X is smaller than 7, which exactly

reflects the concept of a TLV.

In contrast to the classical frequentist inference, the parameters of a Bayesian
model are not supposed to be fix but at random. For each of them exists a
probability function, which reflects the prior knowledge of their value, the so-

called priors. Now it is possible, according to the theorem of Bayes, to determine
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in combination with the likelihood function of the data a so-called posterior of
the parameters. This posterior distribution includes all knowledge relating to the
parameters once from the prior and on the other hand from the likelihood.

The theorem of Bayes in its simplest form runs:

p(f|data) = pi;f;izj:;)'

Here, data denotes the observed and # the unknown parameters and latent va-
riables. The numerator is the product of the likelihood and the priors. Note
that in contrast to likelihood analysis, no further assumptions on p(0, data) like
differentiability in ¢ are needed for the analysis.

From this posterior the Bayesian point and interval estimates are derived. The
median or the mean of the partial densities are, depending on the used loss-
function, appropriate estimates for the parameters. In this paper, we use the

mean of the posterior as point estimate and probability intervals, which can be

regarded as Bayesian equivalents to the classical confidence-sets.

Thus, to derive the Bayesian posterior for our logistic threshold model, we have
to determine the conditional likelihood function and the prior distributions.
The conditional likelihood of the i.i.d. sample (y;, z;, x;) i = 1, ..., nis according

to (1) given by
Y|Z,X, 8, 7] = [[n"(1 = m)' ™" (2)
i=1
where mi = G(Br_zi + Br(x; — 7)y).
As usual “[]” refers to the density (or probability) of the corresponding random
variables. We assume that the threshold is in the range of our observed data X

and use a uniform prior in the range of the observed data for the threshold 7.

For ( a flat prior is assumed.



Now the posterior density of the parameters is

[Y[Z, X, 5, 7][A][7]
(Y2, X, 3, 7|[5][7]du(B. 7)

Based on this density the above mentioned estimates are to be calculated. Alt-

[6,7Y. 2, X] = 7 (3)

hough the determination of the numerator is easy, in most practical cases it is
not possible to evaluate the denominator in an analytic way. For the threshold
model, we solve this problem by means of MCMC methods. These methods allow
to take a sample from a density only known up to a normalizing constant, which
is in our particular problem the denominator. Then, on the basis of this sample
of the posterior, the Bayesian estimates can simply be calculated, see e.g. Gilks,

Richardson, and Spiegelhalter (1996).

For the logistic threshold model we use a two step Metropolis Hastings (MH)
algorithm with multivariate random walk proposals in each step. We sample the
parameter [, and the threshold 7 in one step and the parameter vector [,_ in
step two. The full conditionals are straightforward. Since the densities cannot
be analytically determined, it is not possible to apply the Gibbs-Sampler. We
take two steps because of the strong dependence between the threshold 7 and
Br. The covariance matrices of the proposals are tuned according to test runs to
acceptance rates from 0.3 to 0.4. The starting values are chosen over-dispersed at
random and the burn-in phase has to be determined by comparing several runs
and then discarded. Due to high autocorrelation and slow convergence in the
MH-output it is often necessary to thin out the simulated chain by taking only
every k-th observation into the sample. We choose £ such that the autocorrelation
decreases to a sufficiently low level. The total extend of the runs depends on the
convergence of the Markov chains and can be determined by comparing the point
estimates of several runs. Figure (1) shows a trajectory of such a run and the
belonging histogram with kernel density estimate for a simulated dataset. For

results on real data we refer to Section 4.

Figure 1.



3 Errors in Variables

In many practical regression problems the regressors can only be measured with
measurement error. Here, we want to propose a solution for incorporating mea-
surement error of the variable X in our Bayesian model. A general introduction
to the measurement error problem in threshold models is given by Kiichenhoff

and Carroll (1997), see also Carroll, Ruppert, Stefanski (1995).

We assume an additive measurement error model, i.e. instead of X the variable
W = X +U is observed, where U is the measurement error which is independent

of Y, X, Z and is normally distributed with E(U) =0 and V(U) = o2.

u

Now we split our model in three parts:

main model Y |X,Z (]
error model WX, n
covariable model (X | Z, Al

where (,7 and A are the model parameters.
Using the independence assumption of U and (Y, W, X) the likelihood of the

whole model can be written as

¥ WIZ8) = IT floke 5 s el (o), ()

where 0= ({,nN).

For our Bayesian approach the underlying model is the threshold model (1), as
measurement error model we define W |X ~ N(X, ¢2) and finally we assume
X to be independent from Z and to have a normal distribution. This approach
is extended in Section 4 to a finite mixture of normal distributions which is a

flexible model for X with few parameters.

With respect to the priors, we propose as in Section 2 that no additional informa-

tion is available and therefore define again noninformatives for 5 and 7. For the
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2

- of the covariable model we assume, similar to the nonin-

parameters u, and o
formatives, a normal distribution with mean 0 and a very large variance s? and a
highly dispersed inverse-gamma distribution with parameters 1 and 0.005 so that
its expectation equals infinity. The use of proper priors is here advisable as to
avoid improper posteriors, see e. g. Besag et al. (1995). We further assume that

the error variance o2 is known. For the posterior of the unknown parameters we

get by suitable conditional independence assumptions

x x

8.7.0% 1, 2|Y . 2, W] o [Y, WIZ, 3,7, 07, i, 02 [B][7)[02) [t 2],

As in the previous section, it is not possible to derive the posterior analytically.
Thus, we have again to apply the MH-algorithm. In addition we have to cope
with the fact that the integral of formula (4) is in general not evaluable. In this
paper, we want to solve the latter by means of MCMC methods, too. For another
way of getting analytically the integral, which works with an approximation of
the logit- by the probit-model, see Carroll, Ruppert, Stefanski (1995). For the
foundations of the following method we refer to Richardson (1996). The idea is
to add the unknown variable X to the parameters with a prior according to the
covariable model and sample it from its full conditional. The partial densities of
the other parameters will not be affected and the integration of formula (4) is

implicitly carried out by the algorithm.

Now we describe the problem more formally. As mentioned above we assume

X to be independent from Z and for simplicity distributed according to a single
2

x

normal distribution N(u,,07). We regard the latent variables X; as parameters

and decompose the likelihood as follows
[Y,WI|Z,X,3,7,02,]=[Y|Z,X, 3,7][W|X, ¢2]. (5)
With the above priors and X ~ N(u,,02), the posterior takes the form:

18,7, 00t 03, XY, 2, W] e [Y,W|Z, X, 3,7, 03)[X |12, 071 [B][7] 122, 03]

x x

o [Y|Z.X, 8, 7][WIX, 03] [X|tto. 3] B[] 11, 7]
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For the MH-algorithm, we use, as in Section 2, two Metropolis steps with random
walk proposals for the parameters  and 7. Furthermore, we add a Metropolis-

step for X. Thus, full conditionals are given by

[ﬁkf|Y7Z7W7X7 ﬁk?Tv 0-12”/’1’5870-5} X [Y|Z7X7677_]7

o TIY,Z, W, X, B, 02, 1y, 02| o [YI|Z,X, 5, 7][r

|:/87|77777u7/’67a: ) 42y [y )
[I¢|yiazi,wi7ﬁaﬂ C’Z:Mmﬂi] X [?Ji|zi,$i7ﬁa7'] [wi|xiaaz]

2 .
[%Wm%], i=1,...,n.

Due to our choice of normal and inverse-gamma distributions, respectively, for

the parameters u, and o2 we can derive their full conditionals as

s?yr;,  sPo? )
Y

s?n+ o2’ s?n + o2

(101X 02) ~ N(
1
(02X, pu) ~ IG (g +1, 5 > (i — pa)® + 0.005) :

Concerning the details of the implementation of the algorithm such as fixing the
starting values we refer to Section 2. An application of the algorithm is reported

in the following section.

4 Bronchitis Study

In several occupational studies conducted by the German research foundation
(DFG) the relationship between average dust concentration in the working place
and the occurrence of a chronic bronchitis reaction (Y') has been investigated.
The disease was measured based on medical examinations like a questionnaire

about symptoms, chest x-rays and lung function analysis.

Further covariates were smoking (SMK) and duration of exposure (DUR). We
use the data of 1.256 Munich workers which were also analyzed by Kiichenhoff
and Carroll (1997). It should be mentioned that, we use the quantity



X = log(1 + dust-concentration)in our calculations.
P(Y =1)=G(B1 + FSMK + 33DUR + (X — 7)4) (6)

Because of the concentration measurements were gained by averaging over se-
veral single measurements scattered over the period and raw estimates for earlier
periods, it seems to be appropriate not only to apply the simple threshold model

but also the model of Section 3.

For the simple model without measurement error the algorithm of Section 2 can
directly be used. Only the proposals of the Markov chain have to be modified in
the described manner. Apart from that we derived our estimates from one chain
with 50000 iterations, where we took due to the high autocorrelations every 50th
observation in our sample. With respect to the burn-in, we discarded the first
500 iterations. Table 1 shows the estimates and those of Kiichenhoff and Carroll
(1997) gained by the classical methods. While the estimators are nearly identical,
the estimators for the variance are higher for the classical methods. For example
the estimated variance for the threshold 7 was 0.41 compared to 0.28 in the Bayes

analysis.
Table 1 .

In order to take into account the measurement error more complex modifications
of the presented model have to be done. The first is, to regard the measured
dust-concentration as the error-exposed surrogate W. The true concentration X

is unknown.

Following Kiichenhoff and Carroll (1997), we model the distribution of the un-
known variable X by a mixture of two normal distributions. Assuming an additive
measurement error W = X + U where U ~ N(0, 02) then W is also a mixture of
normals with the same number of mixing distributions as X. So taking two mi-

xing distributions is justified by the empirical distribution of W. Consequently,



for A € [0; 1] we assume X to be distributed according to

X ~ MixN(figr, 02, fla2, 029, A),  with

_ T — Mg —
[‘ﬂ:umlv 092527 Haz2, 0§27 )‘] = )‘lel < o 1) + (1 - )‘)Uﬂl <
xl

T — Mm)
Oz2

The covariable model is given above, the underlying model, the logistic threshold

model, is straightforward and we suppose an additive measurement error model,

where W|X = z has a normal distribution, i.e. (W|X = z) ~ N(x,02). So, the

likelihood is complete and is given by (4).

Thus, the prior distributions are chosen like in the previous section, we only have
to take into account that the covariable model has more parameters than in the
last section. Again, we assume the case of no prior information. Accordingly
we define the priors for the additional parameters ji,, 0%, for which we use the

same dispersed normal and gamma distribution as for p,i,02,, and the prior

x>
for A where we use a uniform distribution on [0;1]. Because the integral of the
likelihood is not evaluable, we also have to consider the different prior of the
unknown variable X according to our covariable model.

With respect to a practical solution, we assume the variance of the measurement
error as known and take the value proposed in Kiichenhoff and Carroll (1997),

02 = 0.187%. Because of problems with model identification other assumptions,

like setting another prior distribution on ¢ did not work in our model.
Therefore the posterior is of the form:

3,1, 05, Lot s a2, ‘79251: a§2, A\ XY, Z, W] x

[Y|Z,X, 3, 7][WIX, 03][Xlptar, a2, 071, 0, N[BT [1a] 2] [031][072] [N

As far as the derivation of the above formula is quite simple, the adapting of the
MH-algorithm is a far more sophisticated task. The main problem results from
the determination of the original distribution of the mixture for the variable X,

which is necessary for defining the full conditionals of the according parameters.
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Here, we use a method which is given in detail in Robert (1996) and works in
principle by defining an indicator-variable m;, which for all observations of X
states from which distribution of the mixture it comes.

In general, suppose for X a mixture of m normal distributions is given, with para-
MELIS fi1, ..., fhm, 01y ooy Ty ALy o v oy At @3 ~ 252y AjN (15, 05). Then weights
Gij = )\jaj_1¢ (%) can be calculated that correspond to the contributions of
the several mixing distributions to the density of z;. Here ¢(x) denotes the stan-
dard normal density. Thus, defining a discrete random variable M; on the set of

distributions {1,...,m} with the standardized weights p;; = Zgii,.. as probabili-
j 9is

ties, yields a variable that allocates each element of the mixture a probability of
having generated the observation x;. Consequently, realizations of this distribu-
tion assign every observation one particular underlying distribution.

After having sampled an origin for every observation, the means, variances and
mixing parameters of these distributions can be updated in familiar Gibbs- or
MH-steps, according to the priors and the observations that come from this dis-
tribution. In our case, we use as above conjugate normal and inverse gamma
priors for the means and variances and a non-informative prior for the mixing

parameter so that two Gibbs- and one MH-step can be applied.

Thus, the full conditionals for our particular algorithm with the mixture of two

normal distributions are:
[/84— |Y7 Z7 W7 X7 /847 T, 057 Mz, 0517 M2, 0527 )\] X [Y|Z7 X7 ﬁ7 T]7
[547 T|Y7 Z7 W7 X7 54—7 057 Haz1, 0-;%17 Hz2, 0-;%27 /\:| X [Y|Z7 X7 ﬁ7 T] [T]7
|:)\|Y7 Z7 W7 X7 ﬂv T, 012” Ha1, 0517 Ha2, Ui2j| 8 I:X|:u$17 0;317 M2, 0;327 )\:| [)‘]7
I:xl|y7,7 Ziy Wy, ﬁv T, 0—37 Ha1, Uglv M2, 0527 )\]

X [yi|2ial'iaﬁu7—] [wi|$i7ag][x|ﬂxh‘7§1a Nwzaaiw )\]7
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for the MH-steps and for Gibbs-sampling we get

10y 27 1007

J )7

X, 02) ~ N
(11X 73) (10nj+a§’10nj+a§

. 1 .
(051X, p15) ~ IG(% +1L—3 > (2! = ;) +0.005), j=1,2,

(3| X, fats Haz, Oops Oogy ) = ( ) Di1 |
Plui=2) = 1-pa

where p;; is defined as above, n; denotes the number of observations x; coming

from distribution u; = j and a?f are their values themselves.

Again, we derived our estimates from one chain of the length of 50000 iterations
where we took every 50th observation into our sample. In contrast to the simple
model the autocorrelations then still had a value of about 0.6 to 0.7. But with re-
gard to the computation time we accepted this high level and the resulting biases.
The discarded burn-in extended again to 500 iterations. Table 2 shows the Bayes-
estimates. For comparison the estimate for the threshold derived by Kiichenhoff
and Carroll (1997) under the assumption of a mixture of normal distributions
for X, where X ~ MizN(0.52,0.144% 1.93,0.1062, 0.61), and a variance for the

error model of 02 = 0.1872, takes a value of 1.76.
Table 2 .

Further, the classical methods with the same assumptions give different estimates
for the parameter 7 depending on the method, see Kiichenhoff and Carroll (1997).
While the likelihood estimator is 1.76, the simex-estimator (Cook and Stefanksi,
1994) which does not use the information about the distribution of X gives a
result of 1.40, which is close to our result. An interesting point is that variance
estimation is higher for the Bayesian approach than it is for all classical methods
where the s.e. varies from 0.12 to 0.23. A reason could be that in the Bayesian
approach all sources of variability are modeled automatically, while in the classical

approach this is not the case.
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As mentioned above (3, and 7 are sampled in the same MH-step, because of their
high correlation. The estimate for this correlation in the simulated dataset of
Section 2 was 0.82, for the dust-dataset it was 0.71. In Figure 2 a scatter-plot
and a two-dimensional kernel density estimate of the posterior’s sample of 3, and

7 for the simple model in the bronchitis study also shows this high correlation.

Figure 2.

5 Discussion

We have shown that the Bayesian analysis for the complicated model of a seg-
mented regression with errors in the regressors can be done by MCMC methods.
We use a mixture of normals for the distribution of the regressor variable, which
is a flexible parametric model. In this setting a classical analysis is very difficult,
both theoretically and from a practical point of view. Another important argu-
ment for Bayesian analysis for finding threshold limiting values in epidemiology
is the possibility of including knowledge from other studies or from substantive

considerations by selecting a suitable prior distribution for the TLV.

A possible extension of our model would be to drop the assumption of an existing
threshold, but to find out whether there is a threshold by data analysis. Another
point is to treat the number of normals in the mixture distribution as a further
parameter. For these problems methods proposed by Green (1995) have to be
included into the MCMC-algorithm.
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Param. | ML-estim. | Bayes-estim. | Bayes-Var.
B -3.00 -3.01 0.24
B2 0.68 0.69 0.17
B3 0.039 0.040 0.62
By 0.85 0.91 0.35
T 1.27 1.27 0.28

Table 1: Likelihood- and Bayes-estimates of the simple model
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Param. B B2 33 B4 T M1 M2 o %1 o %2 A
Mean -3.031069|040 | 1.67|1.44 | 0.519 | 1.927 | 0.023 | 0.013 | 0.607
Var. 0.24 |1 0.18 | 0.59 | 1.00 | 0.37 | 0.012 | 0.008 | 0.006 | 0.007 | 0.014

Table 2: Bayes estimates for the dust-dataset for the threshold model with errors

in variables
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