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Summary

Varying coefficient models with discrete values of the effect modifier may be estimated
by maximum likelihood or weighted least square techniques. We compare bias reduction
methods for both estimates as well as the performance of the estimates as compared to

each other.

1 Introduction

In varying-coefficient models the coefficients may vary across the so-called effect modifier.
Models of this type which are based on the rather wide class of generalized linear models
have been considered by Hastie & Tibshirani (1993).

In the following the focus is on categorial regression models where the response is multi-
nomially distributed. With response variable y taking values from {1,..., k} the model to

be considered has the form

m(z,u) = MZ(x)5(u)) (1)

where 7(z,u) = (P(y = 1|z, u),... ,P(y = q|lz,u)), ¢ = k — 1, is the vector of response
probabilities, Z(z) is a design matrix composed from covariates z and ((u) is a parameter
vector which may vary across the effect modifier u. That means the predictor n = Z(z)3(u)
is linear for fixed u but the dependence on x and u is nonlinear. The objective of this
paper is to investigate small sample properties of two types of estimates and compare
their performance. The first estimate is based on the local likelihood principle (Tibshirani
& Hastie, 1987), the second estimate is a weighted least squares estimate which is less
time consuming than the local likelihood estimator. For both estimates some form of bias
correction seems advisable. In particular for the weighted least squares estimate alternative

variants are investigated.



2 The estimates

Both estimates that are considered here are local estimates. The estimate of §(u) is
based on observations which are obtained in the neighbourhood of u, but the influence of
observations is weighted down with increasing distance from u.

Let the observations be given in a grouped form by (py, Ty, ug), t=1,... T, i=1,... ,my,
where pj; = (pu1,- - - , Prig) 1S the vector of relative frequencies observed at (xy;,u;). Here,

x4 is a discrete vector of covariates and u; is the effect modifier which may be discrete or

continuous. Let ny denote the number of observations at fixed (x;,u;) and Z ny denote

the number of observations taken at the value u; of the effect modifier. The model is given
by

Tty — h(Zmﬂt) or 9(7th') = Zyuy, (2)

t=1,...,T7, i =1,...,m; with the response vector 7}, = (P(y = 1|xy,w),... , Py =
q| Ty, uy)), design matrices Z;; = Z(xy;) and parameter vector 3; = (3(u;). The link function
g=1(91,...,9,) is the inverse of the response function h = (hq,... ,h,), i.e. g=h"'.

For the estimation of 3; the weights which determine the influence of observations y,; are

given by

Uy — U
v

w,(ur,u,) = K ) /K (0).
(")

where K is a unimodal, symmetric kernel function and v > 0 is a smoothing parameter.
Observations at u; will obtain the weight w., (u;, u;) = 1 whereas observations at u; # u,
will get weight w. (u, us) < 1.

2.1 Local likelihood estimator
The basic idea is to maximize the local likelihood instead of the full likelihood. For the
estimation of §; = (3(u;) the kernel of the local likelihood is given by

T

(ﬁt) Z uta Ug Z Ng; Z{pszr log szﬁt))

s=1
+(1— Zpsij) log(1 —
7=1

That means [, is considered to be the underlying parameter and all observations are used,

hi(Zsif)}- (3)

‘M@

J=1

but observations which are close to u; are emphasized. Maximization of (3) implies to solve
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the local score equation

Zw'y U, Ug Z ﬁ) (psz - h(Zszﬁt)) =0

where Dg(3,) = 0h(ZyfB)/On stands for the derivative and Xgu(f) =
{Diag(my;) — msimh; } /Nsi is the covariance matrix of py; if 7y = h(Zgf;) is the under-
lying probability.
Under weak conditions the local likelihood estimate is consistent and asymptotically nor-
mally distributed

By — By ~ N(0,V))

T
with V; = >~ w,(u, us) F5(6;) where Fj is the local Fisher matrix

s=1

Z sz ﬁt st (ﬁt)DSZ(ﬁt)IZ

The local likelihood maximum (Iml) estimate with bias correction which is to be preferred

is given by
B =B+ Vi s, (By).

For a derivation of the bias correction and the asymptotic behaviour see Tutz & Kauermann
(1995).

2.2 Locally weighted least squares estimator

The common least squares estimate for f; (e.g. Grizzle, Starmer & Koch, 1969) is based
on minimization of the criterion

me

Z(Q(pn) — Ziy) Cui(pis) " (9(pui) — ZuilBy) (4)
i=1
with Cy(p) = [0g(my;) /07| (Diag my — mymy;) [09(7i) /O] /ny; representing an approxima-
tion of cov(g(py)). In (4) only observations at fixed measurement points u; are used. The

locally weighted least squares estimate minimizes

Z w'y(uta us) i(g(psz) - Zsiﬁt)lcsi(ﬂ-si)_l(g(psi) - Zsiﬁt)

i=1



where all observations are used but with varying weights. The estimate is given by

T ms -1
tLS - {Z wa(ut; Us)ZéiCsi(psi)lzsi}
s=1 1=1
T mg

Zwa(ut,us)Z;Csi(psi)’lg(psi) (5)
s=1 i=1
where Cj;(7y;) is replaced by the empirical covariance matrix Cy;(ps;).
The asymptotic behaviour of Bth is the same as for the local likelihood estimator g%
(see Tutz & Kauermann, 1996). However, asymptotic properties suggest differing bias
correction schemes. The first correction scheme may be seen directly from (5). By the
approximation Eg(ps;) &~ Z /s one obtains

T mg -1
EBtLS ~ {Z Z ’U)(’l,bt, us)Z;ZCsz(psz)IZsz}
s=1 i=1
T mg

Z Z w(ut7 US)Z;iCsi(psi)_IZsiﬁs.

s=1 i=1

If 3, is replaced by the estimate ﬁs, the corresponding bias is given by

T ms -1
bt,l — {Z Zw(uta us)ZéZCsz(psz)lzsz}
s=1 1=1
T ms

Z Z w(ut, Us)ZéiCsi(psi)ilzsi(Bs - Bt)

s=1 i=1

T ms -1
:{zzwwt,us>z;icsi<psi>—lzsi}
s=1 =1

T mg

ZZw(ut7uS)Z;iCsi(psi)il(ZsiBs - g(psz)) (6)

s=1 1=1

Thus one obtains the bias corrected estimate
ﬂtcg =0 — bt,l-

The second method of bias reduction is based on the asymptotic expansion of ﬁfs (see Tutz

& Kauermann, 1996). It reduces the bias by the order O(n~*) by using the approximation
Z;t,Q == A;lBt - At_IAtAt_lBt
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with

—ni - A Ng Ng; ~—
A= nt E w(ug, ug) Z;Ct Z, A, = E w(ut’us)n_E :n_Z;iCsiIZsia
Ly t s
1 s#t i
—nti =1 D Ng Nsi oy ~-1
By =— > wlug, w) Z;,C ' g(pi), B, = Zw(ut,us)—n ) 2,03 ()
Ly t s
1 s#t i

Using Bt,2 directly yields very high variance of the estimate. Thus we consider a limited
influence bias correction by using a tuning constant fs which depends on a threshold § > 0.

The corresponding bias corrected estimate is given by
ﬁtc,z =0 — f&bt,2-

where

fs = S it N Beall/ N8 <6
5||5t||/||5t,2|| otherwise.

That means if the correction is comparatively small, it is actually used, but if the correction
is above threshold § a downweighted version is used. One obtains for § — oo fs = 1. The
disadvantage of this procedure is that an additional threshold § which determines the

tuning constant f; has to be chosen.

3 Comparison between estimators

For the evaluation of the estimators the criterion in the following is the expected squared

error loss. Focusing on the probability one considers

T my k
L= 23 L3S o — )’
P= ) Tiij — Tij
T my < . J I
t=1 =1 j=1
where 7}, = (71, ..., k) and 7y, = (@1, ... , k) are the true and the estimated re-

sponse probabilities for covariates (x4, u;), respectively. Estimators will be compared by
the expectation EL. For the dichotomous case EL is the mean squared error (multiplied
with the factor 2).

When the focus is on the varying coefficients one considers the integrated mean squared
error (IMSE)

R .
L,H = T ZZ(ﬁtz - ﬁti)2-

t=1 i=1

Estimators to be compared are



local likelihood (LL)

local likelihood with bias correction (LLB)

locally weighted least squares (LS)

locally weighted least squares with bias correction b1, b2 (LSB1, LSB2)

In simulation study A the underlying model is the dichotomous logit model

_ exp(Bo + i)
1+ exp(Bw + zifn)’

i
with dichotomous = € {0, 1} and varying coefficients

B = 0.75sin(2m(t — 1)/20)
B = —0.75 + (0.075 + exp(—(t — 10)?/10)).

For the 100 simulated data sets at each point (¢,7), t = 1,...,21, 7 = 1,2, n;; = N
observations are drawn.
Since in application, the smoothing parameter is not known it has to be chosen data

adaptively. The cross validation criterion to be minimized is

T my k
Mg ~—(ti)\2
OV =33t D (m — ™)
t=1 =1 7=1
where ﬂ;](ti) stands for the estimate where the observation (p;, x4, u;) has been omitted.

In simulation study B the same model is used but with

Bo = 0.4((t —11)/3)?
By = —0.75+ (0.075t + exp(—(t — 10)*/2)).
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Figure 1: Variation of By, 81 (left) and the corresponding probabilities (right) for simula-
tion study A

Figure 2: Variation of By, 51 (left) and the corresponding probabilities (right) for simula-
tion study B

Figure 1 and 2 show the variation of [, 3;; and the corresponding probability for simu-
lation study A and B. The essential difference between the simulation studies is that in
study B the probabilities are chosen to be above 0.5 for both populations whereas in study
A the probabilities vary around 0.5.

ML estimate and bias correction



Figure 3 and 4 show the mean squared error (averaged over all t) for local sample sizes
ny; = 4 and ny = 10 as well as the bias for various values of the smoothing parameter. For
v — oo all the observations are used for estimating (3; with the consequence that bias and
IMSE are quite high. For v — 0 the bias is rather low since neighbourhoods are small.

However, with smaller values of v the variance increases yielding an increase in IMSE.
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Figure 3: Bias (left) and mean squared error (right) for the estimation of §, with local
sample size ny; = 4, study A (solid line is the ML estimate and dashed line the
bias corrected estimate)
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Figure 4: Bias (left) and mean squared error (right) for the estimation of 3, with local
sample size n;; = 10, study A (solid line is the ML estimate and dashed line the
bias corrected estimate)



The proposed bias reduction of ML estimates seems to work well for all smoothing pa-
rameters. However, it has the side effect that the variance of the estimates is increased
yielding a mean squared error that is not always superior. It is seen that the bias corrected
estimates yield better performance in terms of the mean squared error for larger smoothing
parameters. However, if smoothing is very low the variance is strongly increased with the
effect that the mean squared error is higher for the estimate with bias correction. The
turning point is quite close to the optimal smoothing parameter. Since the construction of
confidence bands is based on nearly unbiased estimates the bias reduction is often to be
considered as more important than the loss of variance.

It is seen that additive bias reduction works quite well. The bias is strongly reduced. The
advantages of additive bias reduction as compared to polynomial fitting are investigated in
citeNKau-etal:98. The loss in variance is low if instead of the optimal smoothing parameter

slight oversmoothing is applied.

WLS estimate and bias correction

Bias correction for the WLS estimate shows the same effects as correction for the ML
estimates. The bias is decreased but variability is increased. Figure 5 and 6 show the bias
and mean squared error for n; = 4 and ny; = 10 of study A. The corresponding pictures
of study B are quite similar. It is seen that for the second method of bias correction the
turning constant is very important. For large values of ¢ the bias is strongly reduced but
IMSE gets quite large for low smoothing. With sensible choice of the tuning constant,
e .g . 0 = 0.125 in this case, the performance in particular for low smoothing is distinctly

superior to the first method of bias correction.



Figure 5: Bias (above) and mean squared error (below) for estimation of §; with ny; = 4,

study A

|Bias| (B)

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

) LSB2, &
E—_— LSB2,
_ LsB2,

[Cron i

0 0.5 1 1.5 2
log ()

2.5 3 3.5 4 4.5

LSB2, &
L LSB2,
_ LsB2,

1 1 1

[Cron i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

log ()

10




Figure 6:

0.5 T T T T T T T T T T
0.45
0.4 r
0.35

0.25
0.2 r
0.15
0.1 r
0.05

|Bias| (B)

LSB2, &
LSB2,
_ LsB2,

[Cron i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
log ()

0.5 —
0.45 t .
0.4 :
0.35 F ™, :

5 0.25 -

0.15 o J

0.1 LSB2, & =
0.05 LSB2, &
_ LsB2, § =

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
log ()

Bias (above) and mean squared error (below) for estimation of ; with n, = 10,
study A

Comparison between ML and WLS

ML and WLS estimates have differing individual smoothing parameters. Thus for com-

parison their performance is measured at their individual optimal smoothing parameters.

Tables 1 to 4 give the corresponding IMSEs for the estimation of 3; andnry;, where LSB2

uses tuning constant 6 = 0.125 .
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Ny LL LLB LS LSB1 LSB2
ng =2 | 0.0343 | 0.0360 | 0.0240 | 0.0243 | 0.0242
n; =4 |0.0207 | 0.0211 | 0.0174 | 0.0172 | 0.0177
ng = 10 | 0.0108 | 0.0104 | 0.0105 | 0.0100 | 0.0103

Table 1: Mean squared error for the estimates of the underlying probability, study A

Ny LL LLB LS LSB1 LSB2

ng =2 | 0.3500 | 0.34936 | 0.2348 | 0.2391 | 0.2392

ng =4 | 0.2079 | 0.21848 | 0.1694 | 0.1716 0.1723

ng = 10| 0.1113 | 0.11640 | 0.1050 | 0.1058 | 0.1062

Table 2: Mean squared error for the estimates of the parameter 3, study A

Ny LL LLB LS LSB1 LSB2
ng =2 | 0.0255 | 0.0237 | 0.0423 | 0.0403 | 0.0391
ng =4 |0.0174 | 0.0167 | 0.0257 | 0.0238 | 0.0236
ng = 10 | 0.0050 | 0.0042 | 0.0119 | 0.0107 | 0.0108

Table 3: Mean squared error for the estimates of the underlying probability, study B

Ny LL LLB LS LSB1 LSB2
ny =2 | 0.8441 | 0.8447 | 1.2680 | 1.2197 | 1.2170
ng =4 |0.7298 | 0.6394 | 0.9308 | 0.8793 | 0.8812
ng = 10 | 0.3624 | 0.3070 | 0.5605 | 0.5174 | 0.5188

Table 4: Mean squared error for the estimates of the parameter 3, study B

Table 1 and 2 shows that the performance of the weighted least square estimates is distinctly
superior to the performance of the ML estimations variants. This holds especially for low
sample sizes. This is surprising since the ML estimate is an iteratively reweighted WLS
estimator which for small sizes often is expected to yield better performance. The WLS

estimator actually is smoothed in two ways: smoothing by neighbourhood information and
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smoothing in the case of relative frequencies one or zero. Since for py; € {0, 1} the inverse
logistic function g(ps;) does not exist, relative frequencies in these cases are computed by
Psir = (Ngir +1)/(ng + k). The effect is shrinkage of p,; towards 0.5. Estimators which
shrink towards 0.5, e.g. kernel estimators and Bayes estimators, often have advantages
over unshrinked estimates. In particular if the underlying probabilities vary around 0.5
shrinkage seems to be helpful. Although there is bias at some peaks which are away
from 0.5, the variation of the estimates is reduced resulting in much lower variance of the
estimator. This is demonstrated in Figure 7 where the variances for ml and weighted least

squares estimates are compared for the extreme case ny; = 2.
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Figure 7: Variance of ML and WLS estimates with n; = 2, study A

In most data sets we considered, there was some variation of probabilities around 0.5.
Nevertheless this will not be the case in all data sets. Thus simulation study B has
been deliberately constructed in a way that all probabilities are above 0.5 with the effect
that shrinkage always means stronger bias. From Table 3 and 4 it is seen that then the
performance of the ML estimator is superior to that of the WLS estimator. A comparison of
the mean squared error functions where bias and variance come together is given in Figure
8. It is obvious from Figure 8 that for study B the ML estimator has lower MSE than the
WLS estimators. However, the ML estimator is very unstable in the neighbourhood of the
minimum, meaning that often it does not exist. In study A where the probabilities are
varying around 0.5 the WLS estimator clearly outperforms the ML estimate.

A further issue is stability of the estimators for data-based smoothing parameters.
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Figure 8: Integrated mean squared error, study A (left) and study B (right), n; = 2

WLS estimators with correction for the relative frequencies zero or one always exist whereas
ML estimators often do not exist if neighbourhood smoothing is low. Figure 9 shows the
number of successful estimators from 100 simulations. It is seen that the ML estimator is
very unstable if the smoothing parameter is close to log(y) = 1. This is noteworthy since
log(y) ~ 1 indicates the range of smoothing parameters where the loss is minimal (see
Figure 3). Thus ML estimates are unstable close to the optimal smoothing parameter.

In Figure 10 the mean squared error is given after selection of the smoothing parameter
by cross validation. The x-axis gives the cross-validation criteria, the y-axis shows the
resulting IMSE. It is seen that the ML estimate has stronger variation in terms of IMSE.
This is also seen from Figure 12 which gives the distribution of the IMSE estimated from
the simulation results by a kernel density estimate. For study B where the ML estimate
dominates the effect is turned around. Now the ML estimate show weaker variation than

the WLS estimators. Thus the estimator that performs best has also lower variation.
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Figure 9: Number of successful ML estimators from 100 simulations, n; = 2, study B
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Figure 10: Actual Integrated mean squared error against smoothing parameter resulting
from cross validation for ML estimate (left) and WLS estimate (right), study
A, Ny = 2
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Figure 11: Integrated mean squarred error after cross validation for ML estimate (left) and
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WLS estimate(right), study A, ny; = 2
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Figure 12: Actual mean squared error against smoothing parameter resulting from cross

validation for ML estimate (left) and WLS estimate (right), study B, ny = 2
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Figure 13: Integrated mean squarred error after cross validation for ML estimate (left) and
WLS estimate(right), study B, ny = 2

4 Concluding remarks

Additive bias correction is a strong device to reduce the bias for ML estimates as well
as WLS estimates. With respect to the quadratic loss undersmoothing has to be avoided
whereas oversmoothing in combination with bias reduction yields good results.

Comparison of MLL and WLS estimates has several aspects. A disadvantage of ML estimates
is that estimates often do not exist in a range that is close to the optimal smoothing
parameter whereas WLS approaches always yield estimates. Which one is better, ML of
WLS, depends on the underlying structure. If all of the probabilities are below or above
0.5 the shrinkage towards 0.5 makes the ML estimate inferior whereas in cases where the

probabilities vary around 0.5 the WLS estimate performs superior to the ML estimate.
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