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Summary

Varying coe�cient models with discrete values of the e�ect modi�er may be estimated

by maximum likelihood or weighted least square techniques� We compare bias reduction

methods for both estimates as well as the performance of the estimates as compared to

each other�

� Introduction

In varying�coe�cient models the coe�cients may vary across the so�called e�ect modi�er�

Models of this type which are based on the rather wide class of generalized linear models

have been considered by Hastie � Tibshirani 	
���
�

In the following the focus is on categorial regression models where the response is multi�

nomially distributed� With response variable y taking values from f
� � � � � kg the model to

be considered has the form

�	x� u
 � h	Z	x
�	u

 	



where �	x� u
� � 	P 	y � 
jx� u
� � � � � P 	y � qjx� u

� q � k � 
� is the vector of response

probabilities� Z	x
 is a design matrix composed from covariates x and �	u
 is a parameter

vector which may vary across the e�ect modi�er u� That means the predictor � � Z	x
�	u


is linear for �xed u but the dependence on x and u is nonlinear� The objective of this

paper is to investigate small sample properties of two types of estimates and compare

their performance� The �rst estimate is based on the local likelihood principle 	Tibshirani

� Hastie� 
���
� the second estimate is a weighted least squares estimate which is less

time consuming than the local likelihood estimator� For both estimates some form of bias

correction seems advisable� In particular for the weighted least squares estimate alternative

variants are investigated�






� The estimates

Both estimates that are considered here are local estimates� The estimate of �	u
 is

based on observations which are obtained in the neighbourhood of u� but the in�uence of

observations is weighted down with increasing distance from u�

Let the observations be given in a grouped form by 	pti� xti� ut
� t � 
� � � � � T� i � 
� � � � � mt�

where p�ti � 	pti�� � � � � ptiq
 is the vector of relative frequencies observed at 	xti� ut
� Here�

xti is a discrete vector of covariates and ut is the e�ect modi�er which may be discrete or

continuous� Let nti denote the number of observations at �xed 	xti� ut
 and
mtP
i��

nti denote

the number of observations taken at the value ut of the e�ect modi�er� The model is given

by

�ti � h	Zti�t
 or g	�ti
 � Zti�t� 	�


t � 
� � � � � T� i � 
� � � � � mt with the response vector ��ti � 	P 	y � 
jxti� ut
� � � � � P 	y �

qjxti� ut

� design matrices Zti � Z	xti
 and parameter vector �t � �	ut
� The link function

g � 	g�� � � � � gq
 is the inverse of the response function h � 	h�� � � � � hq
� i�e� g � h���

For the estimation of �t the weights which determine the in�uence of observations ysi are

given by

w�	ut� us
 � K

�
ut � us

�

�
�K	�
�

where K is a unimodal� symmetric kernel function and � 	 � is a smoothing parameter�

Observations at ut will obtain the weight w�	ut� ut
 � 
 whereas observations at ut �� us

will get weight w�	ut� us
 
 
�

��� Local likelihood estimator

The basic idea is to maximize the local likelihood instead of the full likelihood� For the

estimation of �t � �	ut
 the kernel of the local likelihood is given by

l�	�t
 �
TX
s��

w�	ut� us

msX
i��

nsi

qX
r��

fpsir log	hr	Zsi�t



� 	
�

qX
j��

psij
 log	
�

qX
j��

hj	Zsi�t

g� 	�


That means �t is considered to be the underlying parameter and all observations are used�

but observations which are close to ut are emphasized� Maximization of 	�
 implies to solve

�



the local score equation

s�	�t
 �
TX
s��

w�	ut� us

msX
i��

Z �
siDsi	�
�

��
si 	�
	psi � h	Zsi�t

 � ��

where Dsi	�t
 � �h	Zsi�t
��� stands for the derivative and �si	�t
 �

fDiag	�si
� �si�
�
sig �nsi is the covariance matrix of psi if �si � h	Zsi�t
 is the under�

lying probability�

Under weak conditions the local likelihood estimate is consistent and asymptotically nor�

mally distributed

��t � �t � N	�� Vt


with Vt �
TP
s��

w�	ut� us
Fs	�t
 where Fs is the local Fisher matrix

Fs	�t
 �
msX
i��

Z �
siDsi	�t
�

��
si 	�t
Dsi	�t


�Zsi�

The local likelihood maximum 	lml
 estimate with bias correction which is to be preferred

is given by

��ct �
��t � V ��

t s�	 ��t
�

For a derivation of the bias correction and the asymptotic behaviour see Tutz � Kauermann

	
���
�

��� Locally weighted least squares estimator

The common least squares estimate for �t 	e�g� Grizzle� Starmer � Koch� 
���
 is based

on minimization of the criterion

mtX
i��

	g	pti
� Zti�t

�Cti	pti


��	g	pti
� Zti�t
 	�


with Cti	�p
 � ��g	�ti
���
�� 	Diag�ti � �ti�

�
ti
 ��g	�ti
���� �nti representing an approxima�

tion of cov	g	pti

� In 	�
 only observations at �xed measurement points ut are used� The

locally weighted least squares estimate minimizes

TX
s��

w�	ut� us

msX
i��

	g	psi
� Zsi�t

�Csi	�si


��	g	psi
� Zsi�t


�



where all observations are used but with varying weights� The estimate is given by

��LSt �

�
TX
s��

msX
i��

w�	ut� us
Z
�
siCsi	psi


��Zsi

���

TX
s��

msX
i��

w�	ut� us
Z
�
siCsi	psi


��g	psi
 	�


where Csi	�si
 is replaced by the empirical covariance matrix Csi	psi
�

The asymptotic behaviour of ��LSt is the same as for the local likelihood estimator �ML
t

	see Tutz � Kauermann� 
���
� However� asymptotic properties suggest di�ering bias

correction schemes� The �rst correction scheme may be seen directly from 	�
� By the

approximation Eg	psi
 � Zsi�s one obtains

E ��LSt �

�
TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��Zsi

���

TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��Zsi�s�

If �s is replaced by the estimate ��s� the corresponding bias is given by

�bt�� �

�
TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��Zsi

���

TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��Zsi	 ��s � ��t


�

�
TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��Zsi

���

TX
s��

msX
i��

w	ut� us
Z
�
siCsi	psi


��	Zsi
��s � g	psi

� 	�


Thus one obtains the bias corrected estimate

��ct�� �
��t � �bt���

The second method of bias reduction is based on the asymptotic expansion of ��LSt 	see Tutz

� Kauermann� 
���
� It reduces the bias by the order O	n��
 by using the approximation

�bt�� � A��
t

�Bt � A��
t

�AtA
��
t Bt

�



with

At �
nti
nt

X
i

w	ut� ut
Z
�
ti
�C��
ti Zti� �At �

X
s��t

w	ut� us

ns
nt

X
i

nsi
ns

Z �
si
�C��
si Zsi�

Bt �
nti
nt

X
i

w	ut� ut
Z
�
ti
�C��
ti g	pti
� �Bt �

X
s��t

w	ut� us

ns
nt

X
i

nsi
ns

Z �
si
�C��
si g	psi
�

Using ��t�� directly yields very high variance of the estimate� Thus we consider a limited

in�uence bias correction by using a tuning constant f� which depends on a threshold � 	 ��

The corresponding bias corrected estimate is given by

��ct�� �
��t � f��bt���

where

f� �

�

 if k��t��k�k��tk 
 �

�k��tk�k��t��k otherwise�

That means if the correction is comparatively small� it is actually used� but if the correction

is above threshold � a downweighted version is used� One obtains for � �� f� � 
� The

disadvantage of this procedure is that an additional threshold � which determines the

tuning constant f� has to be chosen�

� Comparison between estimators

For the evaluation of the estimators the criterion in the following is the expected squared

error loss� Focusing on the probability one considers

L� �



T

TX
t��




mt

mtX
i��

kX
j��

	�tij � ��tij

��

where ��ti � 	�ti�� � � � � �tik
 and ���ti � 	��ti�� � � � � ��tik
 are the true and the estimated re�

sponse probabilities for covariates 	xti� ut
� respectively� Estimators will be compared by

the expectation EL� For the dichotomous case EL is the mean squared error 	multiplied

with the factor �
�

When the focus is on the varying coe�cients one considers the integrated mean squared

error 	IMSE


L� �



T

TX
t��

pX
i��

	�ti � ��ti

��

Estimators to be compared are

�



� local likelihood 	LL


� local likelihood with bias correction 	LLB


� locally weighted least squares 	LS


� locally weighted least squares with bias correction bt��� bt�� 	LSB
� LSB�


In simulation study A the underlying model is the dichotomous logit model

�ti �
exp	�t� � xi�t�



 � exp	�t� � xi�t�

� t � 
� � � � � �
� i � 
� �

with dichotomous x � f�� 
g and varying coe�cients

�t� � ���� sin	��	t� 

���


�t� � ����� � 	����� � exp	�	t� 
�
��
�

�

For the 
�� simulated data sets at each point 	t� i
� t � 
� � � � � �
� i � 
� �� nti � N

observations are drawn�

Since in application� the smoothing parameter is not known it has to be chosen data

adaptively� The cross validation criterion to be minimized is

CV	�
 �
TX
t��

mtX
i��

nti
n

kX
j��

	�tij � ��
��ti�
tij 
�

where �
��ti�
tij stands for the estimate where the observation 	pti� xti� ut
 has been omitted�

In simulation study B the same model is used but with

�t� � ���		t� 


��
�

�t� � ����� � 	�����t� exp	�	t� 
�
���

�

�
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Figure 
 and � show the variation of �t�� �t� and the corresponding probability for simu�

lation study A and B� The essential di�erence between the simulation studies is that in

study B the probabilities are chosen to be above ��� for both populations whereas in study

A the probabilities vary around ����

ML estimate and bias correction

�



Figure � and � show the mean squared error 	averaged over all t
 for local sample sizes

nti � � and nti � 
� as well as the bias for various values of the smoothing parameter� For

� �� all the observations are used for estimating �t with the consequence that bias and

IMSE are quite high� For � � � the bias is rather low since neighbourhoods are small�

However� with smaller values of � the variance increases yielding an increase in IMSE�
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�



The proposed bias reduction of ML estimates seems to work well for all smoothing pa�

rameters� However� it has the side e�ect that the variance of the estimates is increased

yielding a mean squared error that is not always superior� It is seen that the bias corrected

estimates yield better performance in terms of the mean squared error for larger smoothing

parameters� However� if smoothing is very low the variance is strongly increased with the

e�ect that the mean squared error is higher for the estimate with bias correction� The

turning point is quite close to the optimal smoothing parameter� Since the construction of

con�dence bands is based on nearly unbiased estimates the bias reduction is often to be

considered as more important than the loss of variance�

It is seen that additive bias reduction works quite well� The bias is strongly reduced� The

advantages of additive bias reduction as compared to polynomial �tting are investigated in

citeNKau�etal���� The loss in variance is low if instead of the optimal smoothing parameter

slight oversmoothing is applied�

WLS estimate and bias correction

Bias correction for the WLS estimate shows the same e�ects as correction for the ML

estimates� The bias is decreased but variability is increased� Figure � and � show the bias

and mean squared error for nti � � and nti � 
� of study A� The corresponding pictures

of study B are quite similar� It is seen that for the second method of bias correction the

turning constant is very important� For large values of � the bias is strongly reduced but

IMSE gets quite large for low smoothing� With sensible choice of the tuning constant�

e �g � � � ��
�� in this case� the performance in particular for low smoothing is distinctly

superior to the �rst method of bias correction�

�
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Comparison between ML and WLS

ML and WLS estimates have di�ering individual smoothing parameters� Thus for com�

parison their performance is measured at their individual optimal smoothing parameters�

Tables 
 to � give the corresponding IMSEs for the estimation of �t and�ti� where LSB�

uses tuning constant � � ��
�� �







nti LL LLB LS LSB
 LSB�

nti � � ������ ������ ������ ������ ������

nti � � ������ ����

 ���
�� ���
�� ���
��

nti � 
� ���
�� ���
�� ���
�� ���
�� ���
��

Table 
� Mean squared error for the estimates of the underlying probability� study A

nti LL LLB LS LSB
 LSB�

nti � � ������ ������� ������ �����
 ������

nti � � ������ ���
��� ��
��� ��
�
� ��
���

nti � 
� ��


� ��

��� ��
��� ��
��� ��
���

Table �� Mean squared error for the estimates of the parameter �� study A

nti LL LLB LS LSB
 LSB�

nti � � ������ ������ ������ ������ �����


nti � � ���
�� ���
�� ������ ������ ������

nti � 
� ������ ������ ���

� ���
�� ���
��

Table �� Mean squared error for the estimates of the underlying probability� study B

nti LL LLB LS LSB
 LSB�

nti � � �����
 ������ 
����� 
��
�� 
��
��

nti � � ������ ������ ������ ������ ����
�

nti � 
� ������ ������ ������ ���
�� ���
��

Table �� Mean squared error for the estimates of the parameter �� study B

Table 
 and � shows that the performance of the weighted least square estimates is distinctly

superior to the performance of the ML estimations variants� This holds especially for low

sample sizes� This is surprising since the ML estimate is an iteratively reweighted WLS

estimator which for small sizes often is expected to yield better performance� The WLS

estimator actually is smoothed in two ways� smoothing by neighbourhood information and


�



smoothing in the case of relative frequencies one or zero� Since for psi � f�� 
g the inverse

logistic function g	psi
 does not exist� relative frequencies in these cases are computed by

�psir � 	nsir � 

�	nsi � k
� The e�ect is shrinkage of psi towards ���� Estimators which

shrink towards ���� e�g� kernel estimators and Bayes estimators� often have advantages

over unshrinked estimates� In particular if the underlying probabilities vary around ���

shrinkage seems to be helpful� Although there is bias at some peaks which are away

from ���� the variation of the estimates is reduced resulting in much lower variance of the

estimator� This is demonstrated in Figure � where the variances for ml and weighted least

squares estimates are compared for the extreme case nti � ��
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Figure �� Variance of ML and WLS estimates with nti � �� study A

In most data sets we considered� there was some variation of probabilities around ����

Nevertheless this will not be the case in all data sets� Thus simulation study B has

been deliberately constructed in a way that all probabilities are above ��� with the e�ect

that shrinkage always means stronger bias� From Table � and � it is seen that then the

performance of the ML estimator is superior to that of the WLS estimator� A comparison of

the mean squared error functions where bias and variance come together is given in Figure

�� It is obvious from Figure � that for study B the ML estimator has lower MSE than the

WLS estimators� However� the ML estimator is very unstable in the neighbourhood of the

minimum� meaning that often it does not exist� In study A where the probabilities are

varying around ��� the WLS estimator clearly outperforms the ML estimate�

A further issue is stability of the estimators for data�based smoothing parameters�


�
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Figure �� Integrated mean squared error� study A 	left
 and study B 	right
� nti � �

WLS estimators with correction for the relative frequencies zero or one always exist whereas

ML estimators often do not exist if neighbourhood smoothing is low� Figure � shows the

number of successful estimators from 
�� simulations� It is seen that the ML estimator is

very unstable if the smoothing parameter is close to log	�
 � 
� This is noteworthy since

log	�
 � 
 indicates the range of smoothing parameters where the loss is minimal 	see

Figure �
� Thus ML estimates are unstable close to the optimal smoothing parameter�

In Figure 
� the mean squared error is given after selection of the smoothing parameter

by cross validation� The x�axis gives the cross�validation criteria� the y�axis shows the

resulting IMSE� It is seen that the ML estimate has stronger variation in terms of IMSE�

This is also seen from Figure 
� which gives the distribution of the IMSE estimated from

the simulation results by a kernel density estimate� For study B where the ML estimate

dominates the e�ect is turned around� Now the ML estimate show weaker variation than

the WLS estimators� Thus the estimator that performs best has also lower variation�
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Figure 
�� Actual mean squared error against smoothing parameter resulting from cross

validation for ML estimate 	left
 and WLS estimate 	right
� study B� nti � �
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� Concluding remarks

Additive bias correction is a strong device to reduce the bias for ML estimates as well

as WLS estimates� With respect to the quadratic loss undersmoothing has to be avoided

whereas oversmoothing in combination with bias reduction yields good results�

Comparison of ML andWLS estimates has several aspects� A disadvantage of ML estimates

is that estimates often do not exist in a range that is close to the optimal smoothing

parameter whereas WLS approaches always yield estimates� Which one is better� ML of

WLS� depends on the underlying structure� If all of the probabilities are below or above

��� the shrinkage towards ��� makes the ML estimate inferior whereas in cases where the

probabilities vary around ��� the WLS estimate performs superior to the ML estimate�
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