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and Repeated Studies

H� Toutenburg � Shalabh ��
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Abstract

Pilot investigations and repeated studies often provide some useful

information which can be utilized for the estimation of coe�cients in a

linear regression model when some observations on the study variable are

missing� A suitable framework for this purpose is described and several

unbiased estimators for the coe�cient vectors are presented� Their e��

ciency properties are analyzed and a comparison is made�

� Introduction

Quite often some pilot investigations are carried out to gather some preliminary
information before launching the main study� Such pilot investigations may
not be required when the same or similar studies are conducted repeatedly and
regularly at various points of time� In both the cases� the statistical analyses
may provide some potential and useful information about the parameters which
can be fruitfully employed in the statistical analysis of current data� Use of
such prior information� it is well documented� yields generally more e�cient
inferences under Bayesian as well non�Bayesian frameworks�

In the context of regression analysis� the pilot investigations may provide
unbiased estimates of some or all the regression coe�cients along with their
standard errors� Same experiments conducted simultaneously at di�erent sta�
tions under the same protocol may also provide reliable information of this kind�
Similarly� estimates of some coe�cients and�or few ratios of some coe�cients
and�or some linear combinations of coe�cients may exhibit considerable sta�
bility in repeated studies� Similar investigations by other researchers and the
knowledge acquired through experience and long association may also serve as
a potential source for this kind of prior information in the form of a set of
stochastic linear constraints binding the regression coe�cients�

When the prior information speci�es unbiased estimates of some linear com�
binations of regression coe�cients� the technique of mixed regression estimation
introduced by Theil and Goldberger 	
��

 provides improved estimators of
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the regression coe�cients� see� e�g��Srivastava 	
���
 for annotated bibliogra�
phy of earlier work and Judge� Gri�ths� Hill� L�utkepohl and Lee 	
���
� Rao
and Toutenburg 	
���
 and Toutenburg 	
���
 for an interesting exposition�
extensions and other developments� If we screen the literature dealing with the
technique of mixed regression estimation for the utilization of linear stochastic
constraints� it may reveal that all the investigations are limited to the situations
where there are no missing values in the data� It may� however� be pertinent
to mention the reference of Toutenburg� Heumann� Fieger and Park 	
���
 who
have employed the mixed regression framework for the estimation of regression
parameters when some observations on an explanatory variable are missing but
no prior information related to coe�cients is available� This has motivated us
to study the role of prior information in the improved estimation of coe�cients
when some observations on the study variable are missing�

The plan of this paper is as follows� In Section �� we describe the model
and discuss the estimation of regression coe�cients� Their e�ciency properties
are analyzed in Section � while the e�ect of missing observations is studied in
Section �� Finally� some concluding remarks are placed in Section ��

� The Model and Estimators

Let us consider a linear regression model in which there are nc complete and
nm incomplete observations�

If yc is a nc�
 vector of nc observations on the study variable� Xc is a nc�K
full column rank matrix of nc observations on K explanatory variables� � is the
column vector of regression coe�cients and �c is a nc�
 vector of disturbances�
we can write

yc � Xc� � �c� 	��



Similarly� if ymis denotes a nm � 
 vector of missing observations on the
study variable� Xm is a nm �K matrix 	not necessarily of full column rank
 of
nm observations on the explanatory variables and �m is a nm � 
 vector of nm
disturbances� we have

ymis � Xm� � �m� 	���


It is assumed that the elements of �c and �m are independently and identically
distributed with mean zero and variance ���

In addition� we are given unbiased estimates of a set of linear combinations
of regression coe�cients� As these are assumed to have been obtained from pilot
studies and�or repeated studies� we can express the prior information as follows�

r � R� � � 	���


where the J � 
 vector r and J �K matrix R contain known elements and �

is a J � 
 random vector with null mean vector and ����� variance covariance
matrix in which the elements of � are known�

As prior information is independent of the sample observations� we assume
that � is stochastically independent of �c and �m�

�



When we ignore the prior information and use only the complete observa�
tions� the least squares estimator of � is given by

bc � 	X �

cXc

��X �

cyc� 	���


If we incorporate the prior information and discard the incomplete obser�
vations� the technique of mixed regression estimation provides the following
estimator of ��

bMR � 	X �

c
Xc �R��R
��	X �

c
yc �R��r
� 	���


On the other hand� if we ignore the prior information and utilize the entire
set of observations� the estimator of � is given by

��� � 	X �

c
Xc �X �

m
Xm


��	X �

c
yc �X �

m
ymis
� 	���


Such an estimator has no utility owing to lack of knowledge of ymis� A
popular practice is to replace the missing observations by their predicted values
such as Xmbc and XmbMR� see� e�g�� Toutenburg and Shalabh 	
���
 for the
predictive performance� This proposition yields the following two estimators of
��

b� � 	X �

cXc �X �

mXm

��	X �

cyc �X �

mXmbc
 	���


� bc

b� � 	X �

cXc �X �

mXm

��	X �

cyc �X �

mXmbMR
 	���


� 	X �

c
Xc �X �

m
Xm


��	X �

c
Xcbc �X �

m
XmbMR


We thus observe that b� is a matrix weighted average of the estimators bc
and bMR�

Finally� if we write 	��

� 	���
 and 	���
 compactly and apply the method
of generalized least squares� we �nd the following etimator of ��

��� � 	X �

cXc �X �

mXm �R��R
��	X �

cyc �X �

mymis �R��r
 	���


which again does not serve any useful purpose due to involvement of missing
observations�

Replacing the missing observations by their predicted values� we obtain the
following feasible versions of 	���
�

b� � 	X �

cXc �X �

mXm �R��R
��	X �

cyc �X �

mXmbc � R��r
 	��
�


� 	X �

c
Xc �X �

m
Xm �R��R
�� �X �

m
Xmbc � 	X �

c
Xc �R��R
bMR�

b� � 	X �

cXc �X �

mXm �R��R
��	X �

cyc �X �

mXmbMR �R��r
 	��




� 	X �

c
Xc �X �

m
Xm �R��R
�� �X �

m
XmbMR � 	X �

c
Xc �R��R
bc�

From the above expressions� we observe that both the estimators are matrix
weighted averages of bc and bMR� Further� the weighting matrices of bc and
bMR in one estimator are interchanged in the other estimator�

Thus we observe that the estimator bc utilizes neither the incomplete obser�
vations nor the prior information� When incomplete observations are used but
the prior information is not incorporated� no improvement is achieved and the

�



estimator remains bc� Such is� however� not the case when incomplete obser�
vations are discarded and prior information is incorporated� Then we get the
estimator bMR which is di�erent from bc� Finally� when both the incomplete
observations and the prior information are utilized simultaneously� we get three
estimators b�� b� and b� which are incidentally found to be matrix weighted
averages of bc and bMR�

� Comparison of Estimators

It is easy to see from 	��

 and 	���
 that all the �ve estimators� viz�� bc� bMR�
b�� b� and b� are unbiased for ��

The variance covariance matrices of bc and bMR are given by

V	bc
 � E	bc � �
	bc � �
� 	��



� ��	X �

c
Xc


��

V	bMR
 � E	bMR � �
	bMR � �
� 	���


� ��	X �

c
Xc �R��R
�� �

Using the result in Appendix and writing

� � 	X �

c
Xc


��
� 	X �

c
Xc �R��R
�� 	���


� 	X �

cXc

��R��R	X �

cXc �R��R
��

� 	X �

c
Xc �R��R
��R��R	X �

c
Xc


��

it can be easily seen that

V	b�
 � E	b� � �
	b� � �
� 	���


� ��	X �

cXc �R��R
�� � ��G�G�

V	b�
 � E	b� � �
	b� � �
� 	���


� ��	X �

cXc �R��R
�� � ��	IK �H
�	IK �H �


V	b�
 � E	b� � �
	b� � �
� 	���


� ��	X �

cXc �R��R
�� � ��H�H �

where

G � 	X �

cXc �X �

mXm

��X �

cXc 	���


H � 	X �

c
Xc �X �

m
Xm �R��R
��	X �

c
Xc �R��R
� 	���


Comparing bc with the remaining four estimators� we observe that

D	bc� bMR
 � V	bc
�V	bMR
 	���


� ���

D	bc� b�
 � V	bc
�V	b�
 	��
�


� ��	��G�G�


D	bc� b�
 � V	bc
�V	b�
 	��




� �� ��� 	IK �H
�	IK �H �
�

D	bc� b�
 � V	bc
�V	b�
 	��
�


� ��	��H�H �
�

�



As � is a nonnegative de�nite matrix and the characteristic roots of the
matrices G and H are nonnegative and cannot exceed 
� the matrix expressions
	���
 	��
�
 are nonnegative de�nite implying the superiority of bMR� b�� b� and
b� over bc�

Similarly� if we compare bMR with b�� b� and b�� it clearly follows from 	���
�
	���
� 	���
 and 	���
 that bMR is superior to all the three estimators b�� b� and
b��

Next� let us compare b� with b� and b��
From 	���
 and 	���
 we observe that

D	b�� b�
 � V	b�
�V	b�
 	��
�


� �� �	IK �H
�	IK �H �
�G�G�� �

Suppose that the minimum and maximum characteristic roots are gmin and
gmax for the matrix G and hmin and hmax for the matrix H � It is then seen that
the matrix expression on the right hand side of 	��
�
 is nonnegative de�nite as
long as

	gmax � hmax
 � 
 	��
�


which is a su�cient condition for the superiority of b� over b��
On the other hand� the estimator b� is better than b� so long as the following

condition is satis�ed

	gmin � hmin
 � 
 	��
�


Similarly� from 	���
 and 	���
� we have

D	b�� b�
 � V	b�
�V	b�
 	��
�


� ��	H�H �
�G�G�
�

	��
�


As 	G��
�H��
 � �X �

m
Xm and hence 	H�G
 are nonnegative de�nite� the

matrix expression 	��
�
 is also nonnegative de�nite implying the superiority of
b� over b��

Finally� comparing 	���
 and 	���
� we see that

D	b�� b�
 � V	b�
�V	b�
 	��
�


� �� �	IK �H
�	IK �H �
�H�H �� �

	��
�


which is nonnegative de�nite when all the characteristic roots of H are less than
���� This holds true so long as hmax is smaller than ��� which is a su�cient
condition for the superiority of b� over b��

The reverse is true� i�e�� the estimator b� is superior to b� when all the
characteristic roots of H are greater than ���� Such a condition is satis�ed as
long as hmin is larger than ����

�



� E�ect of Missing Observations

Let us now study the e�ect of the missing observations on the e�ciency of
estimating ��

Assuming for a moment that no observation is missing� we can interpret the
estimator bc as obtained from a sub�model 	��

� Similarly� bMR is the estimator
found from sub�model 	��

 by using the prior information while the estimator
��� given by 	���
 uses the whole model 	��

 and 	���
 but ignores the prior
information� Simultaneous utilization of whole model and prior information is
achieved in the estimator ��� de�ned by 	���
�

It is easy to see that ��� and ��� are unbiased with variance covariance ma�
trices as

V	���
 � ��	X �

c
Xc �X �

m
Xm


�� 	��



V	���
 � ��	X �

cXc �X �

mXm �R��R
�� 	���


Comparing 	��

 with 	��

 and 	���
 with 	���
� one can clearly appreciate
the loss of e�ciency in the estimation of �� These losses arise when we have to
discard the sub�model 	���
 due to missing observations�

The strategy of repairing the data set through substitution of imputed values
in place of missing observations yields the estimators b� � bc and b� from ���

and the estimators b� and b� from ����
Comparing 	��

 and 	���
 with 	��

 and 	���
 and 	���
 with 	���
� one can

get an idea of the losses in e�ciency due to repairing of data in order to take
into account the sub�model 	���
 whether the prior information is ignored or
incorporated�

These comparisons thus highlight the e�ect of some missing observations
and clearly reveal the reduction in the e�ciency� which could be substantial at
times� of estimating the regression coe�cients�

� Some Concluding Remarks

Assuming the missingness of some observations on the study variable and the
availability of some prior information in the form of unbiased estimates of a set
of linear combinations of regression coe�cients in a linear regression model� we
have discussed the estimation of the vector of regression coe�cients and have
presented six estimators� The �rst estimator is the traditional least squares
estimator bc that discards the incomplete observations as well as the prior in�
formation� The second estimator is the mixed regression estimator bMR which
incorporates the prior information but ignores the incomplete observations� In
order to take the incomplete observations into account� the data set is repaired
by substituting imputed values in place of missing observations� These imputed
values are nothing but the predicted values derived from an analysis of complete
observations using and not using the prior information� This proposition has
provided four estimators b�� b�� b� and b�� Incidentally� the estimator b� turns
out to be identically equal to bc while the remaining three are found to be the
matrix weighted averages of the least squares and mixed regression estimators�
Thus we have �ve distinct estimators in all�

Analyzing the e�ciency properties� it is seen that all the �ve estimators are
unbiased� Comparing them with respect to the criterion of variance covariance

�



matrix� it is observed that the least squares estimator is beaten by all the re�
maining four estimators while the mixed regression estimator beats all the other
estimators and emerges as the best choice� For the remaining three estimators�
conditions for the superiority of one estimator over the other are obtained� An
attractive feature of these conditions is that they are easy to verify in practice�

If we group the estimators as 	bc� bMR
 and 	b�� b�� b�
� then the �rst group
can be regarded as the outcome of discarding the incomplete observations out�
rightly while the second group can be treated as re!ecting the strategy of utiliz�
ing the entire set of available observation� From this viewpoint� the repairing of
data through the given imputation procedure and then estimating the regression
coe�cients in the given manner do not seem to bring any gain in e�ciency�

Examining the impact of missingness of some observations on the e�ciency
of estimating the regression coe�cients� it is observed that it always leads to
loss in e�ciency whether one discards the incomplete observations or employs
an imputation procedure for repairing the data set�

A general conclusion emerging from our investigations is thus that discard�
ing the incomplete observations and incorporating the prior information is the
most successful strategy so far as the estimation of regression coe�cients is con�
cerned� Further� our investigations supply the expressions which can be utilized
to evaluate the loss in e�ciency arising from the use of some alternative strategy
in any given application and to judge whether this loss is substantial or not�

Appendix

If � is estimated by

�� �Wbc � 	IK �W 
bMR

then the variance covariance matrix of �� is given by

V	��
 � ��	X �

c
Xc �R��R
�� � ��W

�
	X �

c
Xc


��
� 	X �

c
Xc �R��R
��

�
W �

where W denotes a K �K matrix with nonstochastic elements�

Proof� From 	��

 and 	���
� we observe that

	bc � �
 � 	X �

cXc

��X �

c�c

	bMR � �
 � 	X �

c
Xc �R��R
��	Xc�c �R���


whence we can write

	 �� � �
 �W 	bc � �
 � 	I �W 
	bMR � �


so that

V	��
 � E	�� � �
	 �� � �
�

� W E	bc � �
	bc � �
�W �

�W E	bc � �
	bMR � �
�	IK �W �


� 	IK �W 
 E	bMR � �
	bc � �
�W �

� 	IK �W 
 E	bMR � �
	bMR � �
�	IK �W �
�

�



Observing that

E	bc � �
	bMR � �
� � ��	X �

c
Xc �R��R
��

and using 	��

 and 	���
� we obtain the desired expression for the variance

covariance matrix of ���
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