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Abstract

Pilot investigations and repeated studies often provide some useful
information which can be utilized for the estimation of coefficients in a
linear regression model when some observations on the study variable are
missing. A suitable framework for this purpose is described and several
unbiased estimators for the coefficient vectors are presented. Their effi-
ciency properties are analyzed and a comparison is made.

1 Introduction

Quite often some pilot investigations are carried out to gather some preliminary
information before launching the main study. Such pilot investigations may
not be required when the same or similar studies are conducted repeatedly and
regularly at various points of time. In both the cases, the statistical analyses
may provide some potential and useful information about the parameters which
can be fruitfully employed in the statistical analysis of current data. Use of
such prior information, it is well documented, yields generally more efficient
inferences under Bayesian as well non-Bayesian frameworks.

In the context of regression analysis, the pilot investigations may provide
unbiased estimates of some or all the regression coefficients along with their
standard errors. Same experiments conducted simultaneously at different sta-
tions under the same protocol may also provide reliable information of this kind.
Similarly, estimates of some coefficients and/or few ratios of some coefficients
and/or some linear combinations of coefficients may exhibit considerable sta-
bility in repeated studies. Similar investigations by other researchers and the
knowledge acquired through experience and long association may also serve as
a potential source for this kind of prior information in the form of a set of
stochastic linear constraints binding the regression coefficients.

When the prior information specifies unbiased estimates of some linear com-
binations of regression coefficients, the technique of mixed regression estimation
introduced by Theil and Goldberger (1961) provides improved estimators of
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the regression coefficients; see, e.g.,Srivastava (1980) for annotated bibliogra-
phy of earlier work and Judge, Griffiths, Hill, Liitkepohl and Lee (1985), Rao
and Toutenburg (1995) and Toutenburg (1982) for an interesting exposition,
extensions and other developments. If we screen the literature dealing with the
technique of mixed regression estimation for the utilization of linear stochastic
constraints, it may reveal that all the investigations are limited to the situations
where there are no missing values in the data. It may, however, be pertinent
to mention the reference of Toutenburg, Heumann, Fieger and Park (1995) who
have employed the mixed regression framework for the estimation of regression
parameters when some observations on an explanatory variable are missing but
no prior information related to coefficients is available. This has motivated us
to study the role of prior information in the improved estimation of coefficients
when some observations on the study variable are missing.

The plan of this paper is as follows. In Section 2, we describe the model
and discuss the estimation of regression coefficients. Their efficiency properties
are analyzed in Section 3 while the effect of missing observations is studied in
Section 4. Finally, some concluding remarks are placed in Section 5.

2 The Model and Estimators

Let us consider a linear regression model in which there are n, complete and
N, incomplete observations.

If y. is a n. x 1 vector of n. observations on the study variable, X, is an.x K
full column rank matrix of n. observations on K explanatory variables, (3 is the
column vector of regression coefficients and €. is a n. x 1 vector of disturbances,
we can write

Ye :Xcﬁ'f'ec- (21)

Similarly, if ¥,,;s denotes a n,, X 1 vector of missing observations on the
study variable, X, is a n,,, x K matrix (not necessarily of full column rank) of
N, observations on the explanatory variables and €,, is a n,, x 1 vector of n,,
disturbances, we have

Ymis = Xmﬁ + €m- (22)

It is assumed that the elements of €, and €, are independently and identically
distributed with mean zero and variance o2,

In addition, we are given unbiased estimates of a set of linear combinations
of regression coefficients. As these are assumed to have been obtained from pilot

studies and/or repeated studies, we can express the prior information as follows:
r=Rf3+e (2.3)

where the J x 1 vector r and J x K matrix R contain known elements and €
is a J x 1 random vector with null mean vector and ¢2>¥ ! variance covariance
matrix in which the elements of ¥ are known.

As prior information is independent of the sample observations, we assume
that € is stochastically independent of ¢, and €,,.



When we ignore the prior information and use only the complete observa-
tions, the least squares estimator of g3 is given by

b, = (XéXc)ilXéyc- (2-4)

If we incorporate the prior information and discard the incomplete obser-
vations, the technique of mixed regression estimation provides the following
estimator of g:

bur = (X'X,+ RSR)"Y(X!y. + R'Sr). (2.5)

On the other hand, if we ignore the prior information and utilize the entire
set of observations, the estimator of 3 is given by

B = (X' Xe+ X! X)) " HX ye + X Yrmis)- (2.6)

Such an estimator has no utility owing to lack of knowledge of y,is. A
popular practice is to replace the missing observations by their predicted values
such as X,,b. and X,,,bypr; see, e.g., Toutenburg and Shalabh (1996) for the
predictive performance. This proposition yields the following two estimators of

3:

b = (X!X.+X X)) ' (X'y.+ X! X,ube) (2.7)
= bc
by X! X+ XD X)) N (X ye + X, Xbur) (2.8)

(
(X! X+ X! X)) HX! X b + X! Xonbarr)

We thus observe that by is a matrix weighted average of the estimators b,
and bMR-

Finally, if we write (2.1), (2.2) and (2.3) compactly and apply the method
of generalized least squares, we find the following etimator of 3:

B = (XX + X}, Xom + RER) ™ (Xlye + X} ymis + R'Sr)  (29)

which again does not serve any useful purpose due to involvement of missing
observations.

Replacing the missing observations by their predicted values, we obtain the
following feasible versions of (2.9):

by = (X!X.+ X, X+ RER) '(Xly. + X, Xnbe + R'Sr) (2.10)
(X!X.+ X! X, + RER) ' [ X, Xonbe + (XX + R'SR)byrr]

by = (XIX.+ X X+ RER) ' (Xly. + X, Xmbur + R'Yr)  (2.11)
= (X!X,+ X} Xpm+RYXR)™ X! Xpbur + (X.X. + R'SR)b,]

From the above expressions, we observe that both the estimators are matrix
weighted averages of b. and bp;p. Further, the weighting matrices of b. and
by g in one estimator are interchanged in the other estimator.

Thus we observe that the estimator b. utilizes neither the incomplete obser-
vations nor the prior information. When incomplete observations are used but
the prior information is not incorporated, no improvement is achieved and the



estimator remains b.. Such is, however, not the case when incomplete obser-
vations are discarded and prior information is incorporated. Then we get the
estimator by;p which is different from b.. Finally, when both the incomplete
observations and the prior information are utilized simultaneously, we get three
estimators b2, bs and by which are incidentally found to be matrix weighted

averages of b. and by .

3 Comparison of Estimators

It is easy to see from (2.1) and (2.3) that all the five estimators, viz., b., by g,
bo, b3 and by are unbiased for .
The variance covariance matrices of b. and bysg are given by

Vi(be)

V(byg)

E(be — 3)(b. — B)'
UQ(XéXC)_l

E(bymr — B8)(bur — B)’
o?(X'X. + R'SR) .

Using the result in Appendix and writing

A = (X(X)Th = (XX + R'SR)™
= (X!X)'RER(X!X.+ RER)™
= (X!X.+RIR)'RIR(X!X,)!

it can be easily seen that

V(b2) = E(by —B)(ba —3)

o?(X!X.+ RER)™ + 0’GAG’

V(bs) = E(bs —B)(bs—B)
= o*(X!X,+RYR)™ +0*(Ix — H)A(Ix — H')
V(bs) = E(bs—B)(bs = B)
= o*(X!X.+ R'SR)"' +c*HAH'
where
G = (X!X.+ X X)) ' XX,
H = (X!X.+ X Xn+RYR)™(X.X,+ R'YR).

Comparing b. with the remaining four estimators, we observe that

D(be;bmr) =

D(bc§ b2) =

D(b.;b3) =

D(b;;bs) =

V(b)) — V(bmr)

oZA
V(be) = V(b2)
o?(A - GAG")

V(be) — V(bs)

0?[A - (Ix — H)A(Ix — H")]
V(be) = V(bs)

o?(A - HAH').

(3.1)

(3.2)

(3.3)



As A is a nonnegative definite matrix and the characteristic roots of the
matrices G and H are nonnegative and cannot exceed 1, the matrix expressions
(3.9)—(3.12) are nonnegative definite implying the superiority of bys g, b2, bs and
by over b..

Similarly, if we compare by g with bs, b3 and by, it clearly follows from (3.2),
(3.4), (3.5) and (3.6) that bysr is superior to all the three estimators b, bs and
by.

Next, let us compare b, with b3 and by.

From (3.4) and (3.5) we observe that

= o?[(Ix — H)A(Ix — H') — GAG'].

Suppose that the minimum and maximum characteristic roots are g,,;, and
Imae for the matrix G and h;;, and hp,q, for the matrix H. It is then seen that
the matrix expression on the right hand side of (3.13) is nonnegative definite as
long as

(gmaz + hmaz) <1 (3.14)

which is a sufficient condition for the superiority of by over bs.
On the other hand, the estimator b3 is better than b, so long as the following
condition is satisfied

(gmm + hmin) >1 (3.15)
Similarly, from (3.4) and (3.6), we have

D(ba;b2) = V(ba) — V(b2) (3.16)
= o?(HAH' — GAG").
(3.17)

As (G'—H™') = AX],X,, and hence (H —G) are nonnegative definite, the
matrix expression (3.16) is also nonnegative definite implying the superiority of
by over by.

Finally, comparing (3.5) and (3.6), we see that

D(bs;bs) = V(bs) — V(bs) (3.18)
— o?[(Ix — H)A(Ix — H') — HAH').
(3.19)

which is nonnegative definite when all the characteristic roots of H are less than
0.5. This holds true so long as h,e, is smaller than 0.5 which is a sufficient
condition for the superiority of by over bs.

The reverse is true, i.e., the estimator bs is superior to by when all the
characteristic roots of H are greater than 0.5. Such a condition is satisfied as
long as hy,;y is larger than 0.5.



4 Effect of Missing Observations

Let us now study the effect of the missing observations on the efficiency of
estimating .

Assuming for a moment that no observation is missing, we can interpret the
estimator b, as obtained from a sub-model (2.1). Similarly, by is the estimator
found from sub-model (2.1) by using the prior information while the estimator
B* given by (2.6) uses the whole model (2.1) and (2.2) but ignores the prior
information. Simultaneous utilization of whole model and prior information is
achieved in the estimator 3* defined by (2.9).

It is easy to see that B* and B* are unbiased with variance covariance ma-
trices as

V(B = o (X! X+ X! X))t (4.1)
V(3 = o*(X!X.+ X, X +RIR)™!

Comparing (4.1) with (3.1) and (4.2) with (3.2), one can clearly appreciate
the loss of efficiency in the estimation of 3. These losses arise when we have to
discard the sub-model (2.2) due to missing observations.

The strategy of repairing the data set through substitution of imputed values
in place of missing observations yields the estimators by = b, and by from G*
and the estimators b3 and by from (3*.

Comparing (3.1) and (3.4) with (4.1) and (3.5) and (3.6) with (4.2), one can
get an idea of the losses in efficiency due to repairing of data in order to take
into account the sub-model (2.2) whether the prior information is ignored or
incorporated.

These comparisons thus highlight the effect of some missing observations
and clearly reveal the reduction in the efficiency, which could be substantial at
times, of estimating the regression coefficients.

5 Some Concluding Remarks

Assuming the missingness of some observations on the study variable and the
availability of some prior information in the form of unbiased estimates of a set
of linear combinations of regression coefficients in a linear regression model, we
have discussed the estimation of the vector of regression coefficients and have
presented six estimators. The first estimator is the traditional least squares
estimator b. that discards the incomplete observations as well as the prior in-
formation. The second estimator is the mixed regression estimator by, g which
incorporates the prior information but ignores the incomplete observations. In
order to take the incomplete observations into account, the data set is repaired
by substituting imputed values in place of missing observations. These imputed
values are nothing but the predicted values derived from an analysis of complete
observations using and not using the prior information. This proposition has
provided four estimators by, by, b3 and by. Incidentally, the estimator b; turns
out to be identically equal to b, while the remaining three are found to be the
matrix weighted averages of the least squares and mixed regression estimators.
Thus we have five distinct estimators in all.

Analyzing the efficiency properties, it is seen that all the five estimators are
unbiased. Comparing them with respect to the criterion of variance covariance



matrix, it is observed that the least squares estimator is beaten by all the re-
maining four estimators while the mixed regression estimator beats all the other
estimators and emerges as the best choice. For the remaining three estimators,
conditions for the superiority of one estimator over the other are obtained. An
attractive feature of these conditions is that they are easy to verify in practice.

If we group the estimators as (b., by r) and (bs, bs, bs), then the first group
can be regarded as the outcome of discarding the incomplete observations out-
rightly while the second group can be treated as reflecting the strategy of utiliz-
ing the entire set of available observation. From this viewpoint, the repairing of
data through the given imputation procedure and then estimating the regression
coefficients in the given manner do not seem to bring any gain in efficiency.

Examining the impact of missingness of some observations on the efficiency
of estimating the regression coefficients, it is observed that it always leads to
loss in efficiency whether one discards the incomplete observations or employs
an imputation procedure for repairing the data set.

A general conclusion emerging from our investigations is thus that discard-
ing the incomplete observations and incorporating the prior information is the
most successful strategy so far as the estimation of regression coefficients is con-
cerned. Further, our investigations supply the expressions which can be utilized
to evaluate the loss in efficiency arising from the use of some alternative strategy
in any given application and to judge whether this loss is substantial or not.

Appendix
If 3 is estimated by

B=Wbe+ (Ix — W)bur
then the variance covariance matrix of /3’ is given by

V(3) = 0*(X.X.+ RER) " + o*W [(X/X.) ' — (X!X. + RER) '] W'

where W denotes a K x K matrix with nonstochastic elements.

Proof: From (2.1) and (2.3), we observe that
(bc - /3) = (XéXc)ilXéec
(byr—B) = (X!X.+ R'YSR) '(X.e. + R'Se)
whence we can write
(B—B8)=W(be = B)+ (I = W)(bar — B)
so that
V(B) = E@B-BB-p)
= WE(b.—B)(b. - B)W'
+ W E(be — 8)(bur — B) (Ig — W')
+ (Ix —W)E(byr — B)(be — B)'W'
+ (Ix —W)E(byr — 8)(bur — B) (Ixg = W').



Observing that
E(b. — 8)(bmr — B)' = 0* (XX, + R'ER)™!

and using (3.1) and (3.2), we obtain the desired expression for the variance
covariance matrix of 3.

References

Judge, G. G., Griffiths, W. E., Hill, R. C., Liitkepohl, H. and Lee, T.-C. (1985).
The theory and practice of econometrics, 2 edn, Wiley, New York.

Rao, C. R. and Toutenburg, H. (1995). Linear Models: Least Squares and
Alternatives (corrected second printing, 1997), Springer, New York.

Srivastava, V. K. (1980). Estimation of linear single-equation and simultaneous-
equation models under stochastic linear constraints: An annotated bibli-
ography, International Statistical Review 48: 79-82.

Theil, H. and Goldberger, A. S. (1961). On pure and mixed estimation in
econometrics, International Economic Review 2: 65-78.

Toutenburg, H. (1982). Prior Information in Linear Models, Wiley, New York.

Toutenburg, H., Heumann, C., Fieger, A. and Park, S. H. (1995). Missing values
in regression: Mixed and weighted mixed estimation, in V. Mammitzsch
and H. Schneeweifl (eds), Gauss Symposium, de Gruyter, Berlin, pp. 289—
301.

Toutenburg, H. and Shalabh (1996). Predictive performance of the methods of
restricted and mixed regression estimators, Biometrical Journal 38: 951—
959.



