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Abstract�

The concept of local independence is used to de�ne local independence
graphs representing the dynamic dependence structure of several continuous
time processes which jointly form a so�called composable Markov process

Speci�c properties of this new class of graphs are discussed such as the
role of separating sets
 Further insight is gained by considering possible
extensions to the discrete time situation
 It is shown that the latter case
can be reduced to classical graphical interaction models


� Introduction

This paper proposes a modelling technique for multistate Markov processes which uses
graphs to visualize the underlying dependence structure
 In order to speak of depen�
dences the notion of composability is introduced by formalizing the assumption that
the whole process consists of di
erent components
 This has �rst been de�ned by
Schweder ������ and applied to event history analysis for example by Aalen et al

������
 In general terms� local independence means that a component of the process is
independent of the past of another component given its own past and possibly the past
of the remaining components
 In the context of event history analysis this is exactly
what is meant by saying that an event does not depend on the prior occurrence of
another event� i
e
 the intensity is not altered by the past event
 A graphical repre�
sentation should capture all such independences and possibly further properties of the
underlying statistical model


Classical graphical models as treated for instance by Lauritzen ������ are based on con�
ditional stochastical independence relations among the involved variables and it is the
conditional independence structure that is represented by the graph
 In contrast� local
independence graphs are based on local independence relations among the components
of a composable stochastic process� i
e
 the vertices represent no random variables but
stochastic processes or events which are registered by suitable processes
 The emphasis
of the present paper lies on the discussion of the graphical Markov properties for such
local independence graphs and on possible extensions to the discrete time situation
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The outline of the paper is as follows
 First� the concept of local independence for com�
posable Markov processes is de�ned and discussed following Schweder ������
 Based
on this� local independence graphs are de�ned in Section �
 In this context� we present
the implications of separation and give conditions for the equivalence of di
erent in�
dependence properties suggested by the graph in analogy to the pairwise� local� and
global Markov properties in classical graphs
 In Section � we treat the discrete time
situation and indicate two possible approaches which are derived from the concept of
local independence for the continuous time situation
 As will be seen� the �rst ap�
proach appears somewhat unsuited for practical purposes but instead indicates the
generalization of the concept of local independence graphs to non�Markov processes

The second approach assumes that a continuous time Markov process underlies the
discrete one and derives its properties for a given local independence structure of the
underlying process
 Finally� we discuss the concept of local independence graphs with
respect to estimation� inclusion of covariate information� and causality aspects


� Local independence in Markov processes

In this and the following section we consider Markov processes Y � fY �t�jt � T g with
�nite state space S and continuous time scale� i
e
 T � ��� ��
 The transition intensities
are given by

�t�y� y
�� � lim

h��

�

h
P �Y �t� h� � y�jY �t� � y� � y �� y� � S�

We assume that the transition intensities exist� i
e


�t�y� y
�� �� � y �� y�� ���

and that they are continuous and bounded functions of t on any closed interval in T 

If the process is regarded as consisting of di
erent components it will be denoted by
bold face letters as in the following de�nition


De�nition ��� Composable �nite Markov process� CFMP �Schweder� ����	
Let Y � fY�t�jt � T g be a Markov process with �nite state space S and transition
intensities that hold ���
 Let further V � f�� � � � � Kg� K � �� and assume that there
are K spaces Sj� j � V � with jSjj � �� and that there exists a one�to�one mapping f of
S onto

N
j�V Sj so that elements y � S can be identi�ed with elements �y�� � � � � yK� �N

j�V Sj
 Then� Y is a composable �nite Markov process �CFMP	 with components
Y�� � � � � YK such that f�Y�t�� � �Y��t�� � � � � YK�t�� if � A � V � jAj � ��

lim
h��

�

h
P

�
��
j�A

fYj�t� h� �� yjgj
�
j�A

fYj�t� � yjg

�
A � � ���

� yj � Sj� j � V � and t � T 
 Composability is denoted by Y � �Y�� � � � � YK�
 



�



The de�nition states that for a composable process the probability that more than one
component changes in a short period of length h is of magnitude o�h�
 This formal�
izes the intuitive claim that the di
erent components should not describe the same or
similar phenomenons or events
 Consequently� in continuous time they should have
probability zero of changing states at the same time
 Note that the compositioning is
not necessarily unique
 If for example Y � �Y�� � � � � YK� then Y � �YA�YV nA�
 In the
following we treat f�y� � �y�� � � � � yK� as if y � �y�� � � � � yK�


De�nition �
� implies that the transition intensities of a CFMP have the following
properties


Corollary ��� Transition intensities for CFMP
Let Y � �Y�� � � � � YK� be a CFMP


�
 The intensity �t�y�y
��� t � T � for any y �� y� is given by

�t�y�y
�� �

�
�jt �y� y

�
j�� yj �� y�j 	 y�j � y��j� j � V

�� otherwise

with y�j � �y�� � � � � yj��� yj��� � � � � yK�� i
e
 the intensity equals � if y and y
� di
er

on more than one component� where

�jt �y� y
�
j� � lim

h��

�

h
P
�
Yj�t� h� � y�jjY�t� � y

�
�

�
 The total intensity ��t�y�� t � T � is given as a continuous and bounded function
of t with

��t�y� � lim
h��

�

h
��
 P �Y�t� h� � yjY�t� � y�� � 


X
j�V

X
y�

j
��yj

�jt �y� y
�
j��

��

The dependence structure of the components Y�� � � � � YK is thus determined by the
quantities �jt �y� y

�
j�� y � S� y

�
j � Sj� j � V 
 Since

h � �jt �y� y
�
j� � P

�
Yj�t� h� � y�jjY�t� � y

�
we can say� that if �jt �y� y

�
j� is independent of some components of the �rst argument

y this also holds for the probability P
�
Yj�t� h� � y�jjY�t� � y

�
of an instantaneous

change in Yj� and one would intuitively speak of local independence
 This is formalized
in the following de�nition


De�nition ��� Local independence in a CFMP �Schweder� ����	
Let Y � �Y�� � � � � YK� be a CFMP
 Then� Yj is locally independent of Yk� k �� j� if
� y�k � S�k and y�j � Sj� y

�
j �� yj� �

j
t �y� y

�
j� is a constant function of yk
 This is

denoted by Yj

l Yk
 Otherwise� Yj is locally dependent on Yk and we write Yjn


lYk

For A � V we have that Y � �YA�YV nA� so that the vector�valued local independence
YA


lYB is de�ned by �
A
t �y�y

�
A� being a constant function of yB in the �rst argument

� y�B � S�B and y�A � SA� y
�
A �� yA� B � V nA
 ��

�



A more general de�nition which is not restricted to Markov processes would postulate
that the presence of Yj is independent of the past of Yk given past of Y�k
 Similar
concepts can be found in time series analysis �Granger� ����� or in the framework of
general stochastic processes considered in Mykland ������


Remark ��� Local independence� not marginal
Note that the property Yj
l Yk is not a marginal property of the two involved compo�
nents since it may depend on the other components y�k in �jt �y� y

�
j�
 If for example

the information contained in y�k is altered by discarding some of these components
then local independence of Yj on Yk might not be preserved
 In general� the reduced
process Y��t� � �Yj�t�� Yk�t�� is neither a Markov process nor does Yj
l Yk have to hold
with respect to Y�
 ��

As can easily be checked� local independence is neither necessarily symmetric nor re�
�exive nor transitive
 Thus� we make the following assumption


Assumption ��� Re�exivity
Since in most practical situations a process depends at least on its own past we only
consider stochastic processes where local dependence is re�exive
 ��

Let us present two short examples within the framework of event history analysis where
local independence could be of special interest
 The �rst one describes the situation of
several non�recurrent events
 Aalen et al
 ������ consider a data example where the
interesting events are menopause� subdivided into induced and natural menopause� and
occurrence of a certain skin disease �pustulosis palmo�plantaris�
 This is modelled as a
Markov process with states �� i
e
 no event has occurred so far� states �M�� �I�� or �D�
i
e
 menopause� induced menopause� or disease� respectively� has occurred but none of
the other events� and states �MD� or �ID� if both� menopause and disease have oc�
curred
 It seems reasonable to assume that the indicator processes YI�t�� YM�t�� YD�t�
form a CFMP �one could of course doubt the Markov assumption�
 It is clear that
YMn
lYI and YIn
lYM since if one of the events M or I has occurred then the inten�
sity for the other one equals zero
 Interestingly the analysis of the author shows that
YM


l YD whereas YDn

lYM and a corresponding result for induced menopause
 More

generally� consider events A�� � � � � AK then Yk�t� � ��Ak has occurred before or at time
t� form the components of a CFMP if no two or more events may occurr systematically
at the same time
 The state space is given by all combinations f�� �gK of the events
having occurred or not
 The local independence structure indicates those events the
occurrences of which can be discarded when assessing the intensity for a speci�c event�
i
e
 the dependence structure between past and present events


A special case of event history analysis is survival analysis
 Here� the occurrence of a
speci�c event marks the transition into an absorbing state
 As discussed for instance by
Andersen ������� survival analysis with time dependent covariates may appropriately
be modelled using multistate Markov processes
 Assume that the process Y �t� � ��
survival at least until time t� describes the survival status and the covariate processes
X�� � � � � XK the occurrence of intermediate events� as for instance onset of a side e
ect

�



of a medicamentation
 If it can be ruled out that any of the corresponding counting
processes jump at the same time we again have that �Y�X�� � � � � XK� form a CFMP

Trivially we have that Xkn


lY holds for k � �� � � � � K� since after death no further
transitions are possible� i
e
 every intensity for a change from state �y � �� x�� � � � � xK�
into any other is zero
 Schweder ������ proposes in this case to condition on being
alife in order to assess the interaction between the covariates
 A statistical test of the
hypothesis that a speci�c covariate Xk has no in�uence on the survival is in this setting
equivalent to assessing that Y
lXk
 The presented approach additionally allows for
the modelling of intermediate events
 It is for example possible that Y
lXk but Y n


lXj

and Xjn
lXk which implies that Xk has an indirect e
ect on survival


� Local independence graphs

Local independence graphs are de�ned to represent the local independence structure
of a CFMP
 This calls for a new kind of graph which allows for cycles and bidirected
edges since reciprocal local dependence is possible


De�nition ��� Directed reciprocal graph 
 subgraph
A directed reciprocal graph is a pair G � �V�E�� where V � f�� � � � � Kg is a �nite set
of vertices and E is a set of directed edges� i
e
 E � E��V � � f�j� k�jj� k � V� j �� kg

If A � V the induced subgraph GA is de�ned as �A�EA� with EA � E � E��A�
 ��

In the visualization of the graph directed edges �j� k� are represented by arrows� j 
� k�
In contrast to the convention� the case �j� k� � E and �k� j� � E is shown as double
headed arrow� j �� k� Two vertices j and k are elements of a cycle if there exists a
�directed� path from j to k as well as from k to j
 Note that the usual graph termi�
nology �cf
 Koster� ����� who also considers non�recursive graphs� can still be applied
to directed reciprocal graphs


The following de�nition provides the link between the above de�ned graphs and local
independence structures


De�nition ��� Local independence graph
Let Y � �Y�� � � � � YK� be a CFMP and G � �V�E� a directed reciprocal graph
 The
distribution of Y is graphical with respect to G if

Yj

l Yk � �k� j� �� E� k �� j� ���

The graph G is then called local independence graph of Y
 ��

Property ��� is the analogue of the pairwise Markov property of a conditional indepen�
dence graph
 It is therefore called pairwise dynamic Markov property �DP	
 As stated
in Assumption �
�� Yin
lYi � i � V � but this is not shown by a special symbol in the
graph


Example	 Consider a CFMP Y � �Y�� Y�� Y��
 The graph in Figure � is the local
independence graph of Y if Y�


l Y�� Y�

l Y�� Y�


l Y�
 The only cycle component is
given by f�� �g
 ��

�



��
��

��
��

��
��

Y� Y� Y��� �

Figure �

The visualization of the local independence structure is all the more of interest as addi�
tional properties can be read o
 the graph
 These could be further Markov properties
as addressed in the following


Theorem ��� Local dynamic Markov property
Let Y � �Y�� � � � � YK� be a CFMP and G � �V�E� a directed reciprocal graph
 Then�
property �DP� is equivalent to

Yj

l YV n�pa�j��fjg��

which is called the local dynamic Markov property �DL	
 ��

Proof	

First� we show that �DL� implies �DP�
 From De�nition �
� it follows with �DL� that
�jt �y� y

�
j� is a constant function of any yk with k � V nfpa�j��fjgg so that �jt �y� y

�
j� �

�jt �ypa�j��fjg� y
�
j� � ypa�j��fjg � Spa�j��fjg and y�j � Sj with y�j �� yj� j � V 
 Since

V nfpa�j� � fjgg � fk � V j�k� j� �� E� k �� jg� it follows immediately that �DP� holds

Now we show that �DP� implies �DL�
 By �DP� we have for any j � V � �jt �y� y

�
j� �

�jt �y�k� y
�
j� � k � V with �k� j� �� E
 Assume that pa�j� � fk� lg then �jt �y� y

�
j� �

�jt �y�k� y
�
j� � �jt �y�l� y

�
j�
 The case that �

j
t �y�l�k� y

�
j� �� �jt �y� y

�
j� can only occurr if Yl

and Yk carry the same information� but this contradicts the assumption of composabil�
ity
 The same argument can be applied to the general situation of pa�j� � V 
 �

The above proof of �DP� implying �DL� relies on the composability of the process and
on the fact that Y is a Markov process
 Therefore� Theorem �
� does not necessar�
ily hold for more general processes
 However� for the transition intensities of Markov
processes we may now write �jt �y� yj� � �jt �ycl�j�� yj�� where cl�j� �pa�j� � fjg is the
closure of j


The analogue of the global Markov property in conditional independence graphs is
concerned with the role of separating sets and subprocesses of the original process

Since we restrict our considerations to Markov processes we use a result of Schweder
������ stating which subprocesses of a CFMP Y are still Markov processes in order to
show the following lemma


Lemma ��� Local independence graph for subprocess
Let YA� A � V � be a subprocess of a CFMP Y � �Y�� � � � YK� with local independence
graph G and assume pa�A� � �� i
e
 A is an anterior set
 The local independence graph
of YA is given as the subgraph GA � �A�EA� of G
 ��

�



Proof	

It follows from Schweder ������ Theorem �� that for pa�A� � � YA is a Markov process
with transition intensities

�At �yA� y
�� �

�
�jt �yA� y

�
j�� yj �� y�j 	 yAnfjg � y�Anfjg� j � A

�� else
� t � T �

This immediately yields the proof
 �

From Lemma �
� it follows that within the class of CFMP any set A � V with pa�A� �
� is collapsible� i
e
 the marginal distribution has the same local dependence structure
as the corresponding subgraph
 In contrast� an arbitrary subprocess YA with pa�A� ��
� is not necessarily a Markov process� i
e
 the class of CFMPs is not closed under
marginalization �see Remark �
�� and the dependence structure may di
er from the
corresponding subgraph
 The following de�nition of separating sets takes that into
account


De�nition ��� ���separation
Let G � �V�E� be a directed reciprocal graph
 For three disjoint subsets A�B�C � V
we say that C ���separates A from B if

�a� each path from B to A has elements in C�

�b� and pa�A �B � C� � �
 ��

Thus� ���sparation guarantees that the subprocess given by ignoring the components
in V n�A � B � C�� i
e
 YA�B�C � is a Markov process
 Note that the de�nition is not
symmetric in A and B
 For general CFMPs we get the following result


Theorem ��
 ���global dynamic Markov property
Let Y � �Y�� � � � � YK� be a CFMP and G � �V�E� a directed reciprocal graph
 Then
property �DP� is equivalent to the ���global dynamic Markov property �DG�	 which is
de�ned as follows� � disjoint sets A�B�C � V with C ���separating A from B it holds
that

YA

l YB with respect to the local independence graph of YA�B�C � ���

��

Proof	

The implication �DP� � �DG�� is an immediate consequence of Lemma ��
��

The fact that �DG�� implies �DP� can be seen by showing that �DG�� � �DL�
 For
any j � V we have that pa�j� ���separates fjg from V ncl�j� with D � � and �DL� �
�DP� follows from Theorem �
�
 �

Theorems �
� and �
� thus yield the equivalence of properties �DP�� �DL� and �DG��

However� the ���separation is not as exhaustive as one would wish because of condition
�b� which is mainly due to the fact that the class of CFMPs is not closed under

�



marginalization
 Results for more general separations can be obtained by generalizing
the concept of local independence to non�Markov processes
 For the continuous time
situation this requires some deeper results on the behaviour of subprocesses of CFMPs
which are not considered here
 The discrete time situation is addressed in the following
section


� Discrete time models

Until now we have restricted our considerations to continuous time Markov processes

There are di
erent possible approaches to the general discrete time situation in event
history analysis
 If several processes with �nite state spaces are considered� there is
at �rst the possibility to model the dependence structure via classical graphical chain
models for discrete variables where each discrete time point represents a chain com�
ponent
 In case that there are many time points� many processes� and�or a high
dimensional state space� this would result in high dimensional loglinear models with
the eventual problem of non identi�ability or the need of a very large sample size

Thus� some restrictive assumptions such as the one of p�th order Markov processes or
a repetition of the same dependence structure between any p chain components are
called for
 Classical chain graphs have for instance been applied by Klein et al
 ������
or in a more general framework not restricted to discrete variables by Lynggaard �
Walther ������
 Statistical software packages such as DIGRAM �described for instance
in Klein et al
� ����� provide the necessary computational support


In this section we discuss two extensions to the discrete time situation that are more
closely related to the ideas of the foregoing sections
 On the one hand� the assumptions
of a composable Markov process may be maintained where the condition of no more
than one jump at a time translates to the discrete time case as stochastically indepen�
dent innovations
 This seems to be a sensible assumption only if the space between
two sequential points in time is not too large in relation to the considered events
 We
deal with this case in the �rst subsection
 On the other hand� one may assume that a
continuous time Markov process with a local independence structure modelled as above
underlies the discrete process
 Then� the innovations may no longer be independent

In the second subsection we present a proposition that deals with this situation


��� Composable �nite Markov chains

Let Y � fY �t�jt � T g be a Markov chain with state space S and discrete time scale�
i
e
 T � ft�� t�� t�� � � �g� where � � t� � t� � t� � � � �
 The single�step transition
probabilities are given by

�i�y� y
�� � P �Y �ti� � y�jY �ti��� � y� � y� y� � S� i � �� �� � � � �

Like in the preceding section we assume that the process consists of di
erent compo�
nents


�



De�nition ��� Composable �nite Markov chain� CFMC
Let Y � fY�t�jt � T g be a Markov chain with Y � �Y�� � � � � YK� as in De�nition �
��
where condition ��� is modi�ed to

�i�y�y
�� �

KY
j��

�ji �y� y
�
j�� �y�y� � S� i � �� �� � � � � ���

where �ji �y� y
�
j� � P

�
Yj�ti� � y�jjY�ti��� � y

�

 The process Y is then called compos�

able �nite state Markov chain� CFMC
 ��

Remark ��� Independent innovations
The above de�nition implies by ��� that for any i � �� �� � � � all components Yj�ti��
j � �� � � � � K� are stochastically independent of one another given Y�ti���
 To put it
di
erently� any dependences in the marginal distribution of Y��ti�� � � � � YK�ti� should
vanish by conditioning on the preceding time point
 This is in analogy to ��� because
of the underlying idea that the di
erent processes should not be fed by the same
innovations
 If there were dependences within the vector Y�ti� given Y�ti��� this
would mean that the latter is not the �only cause� of the former� but that there is
a �common development� during the time period ti�� to ti
 Consider the example of
di
erent measures concerning the physical status of a person
 If these are measured
daily one could under certain circumstances say that the development of the di
erent
measures is independent from one day to another given the preceding day
 But if
they are observed weekly it should reasonably be assumed that there is a common
development during a week
 Obviously� assumption ��� will not be appropriate in
many practical situations� since it is often sensible to assume that there are common
causes during ti�� and ti
 ��

In complete analogy to the preceding section we de�ne for a CFMC Y � �Y�� � � � � YK�
that

Yj

l Yk � �ji �y� y

�
j� constant function of yk �y�k � S�k� y

�
j � Sj�

If G � �V�E� is the corresponding local independence graph of Y as in De�nition �
�
it is straightforward from ��� that

�i�y�y
�� �

KY
j��

�ji �ycl�j�� y
�
j�� �y�y� � S� i � �� �� � � � � ���

where cl�j� � pa�j��fjg is the closure of j
 It follows from ��� that the independence
structure of Y can equivalently be described by a classical DAG �G with directed edges
from Yj�ti��� to Yk�ti�� i � �� �� � � �� if �j� k� � E or j � k� j� k � V �for the de�nition
of a DAG cf
 Lauritzen� �����
 All independence properties of the distribution can be
read o
 this DAG
 An exception is the starting distribution� i
e
 the distribution of
Y�t�� which is not necessarily the independence distribution� so that one possibly has
to condition on Y�t��


�



It is obvious that a result analogous to Lemma �
� and to Theorems �
�� �
� holds for
CFMCs� too
 In contrast to Theorem �
� we now consider the behaviour of subpro�
cesses YA� where pa�A� �� �� when marginalizing over YV nA
 As noted above� such a
subprocess is not necessarily a Markov process but we will see that the notion of local
independence can still be applied
 Instead of the single step transition probabilities�
one has to consider the transition probabilities conditional on the whole past of the
process
 The following proposition shows that the subprocess YA depends on this past
via pa�A� because this is a subset of the set V nA with respect to which we marginalize
and via pa�V nA�� i
e
 the parents of the set with respect to which we marginalize
 Only
for subsets A� � A with pa�A�� � V nA � �� YA� is still a Markov process


Proposition ��� Subprocess of a CFMC
Let Y � �Y�� � � � � YK� be a CFMC with local independence graph G and consider a
subprocess YA� A � V 
 Let further A � A��A� for disjoint sets A�� A�� where pa�A���
�A � �� and A� � pa� �A� � A with �A � V nA
 Assume for the starting distribution that
it factorizes according to P �Y�t��� � P �YA��t���P �YA��t���P �Y 	A�t���
 Then it holds
for the transition probabilities of the subprocess YA that

P �YA�ti� � yiAjYA�ti��� � yi��A � � � � �YA�t�� � y�A�

� P �YA��ti� � yiA� jYcl�A���ti��� � yi��
cl�A��

�

� P �YA��ti� � yiA� jYA�ti��� � yi��A � � � � �YA�t�� � y�A� ���

with

P �YA��ti� � yiA� jYA�ti��� � yi��A � � � � �YA�t�� � y�A� �P
�y �A

hQi
j�� P �YA��tj� � y

j

A� jYcl�A���tj��� � y
j��

cl�A��
��j�y

j��
	A

�y
j��

cl� 	A�
�
i

P
�y �A

hQi��
j�� P �YA��tj� � y

j

A� jYcl�A���tj��� � y
j��

cl�A��
��j�y

j��
	A

�y
j��

cl� 	A�
�
i ���

with �j�y
j��
	A

�y
j��

cl� 	A�
� �

�
P �Y 	A�t�� � y�	A�� j � �

P �Y 	A�tj��� � y
j��
	A

jYcl� 	A��tj��� � y
j��

cl� 	A�
�� j � �

�

where
P

�y �A
means summarizing over all �y�	A� � � � �y

i
	A� �

Ni
j�� S 	A
 ��

Since the proof is technical and of no substantial interest it is referred to the appendix


Plausibly� the subprocess YA� still has the Markov property since it is not touched
by Y 	A whereas the remaining YA� depends through pa�A�� � �A on the whole past
of the subprocess
 The second factor of ��� may even depend on the past of YA� if
pa� �A� � A� �� � as can be seen from the weights in ���


Example	 In order to illustrate the Proposition �
� consider again the �rst example
of a local independence graph with vertices f��� ��� ��� ��� ��� ��g �Figure ��
 The sub�
process Y�� is still a Markov process since � �� pa��� ��
 In contrast� this is not the
case if the vertices are given by f��� ��� ��� ��� ��� ��g �Figure � �a��
 Here we have for
A � f�� �g that A� � f�g� A� � f�g� and A� � f�g
 It follows from Proposition �
�

��



that the local independence Y�

l Y� which holds with respect to Y��� is not preserved

when marginalizing over Y� because of the vertices ��� �� and ��� ��
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If the edge ��� �� was absent as in Figure � �b� Y�� would be a Markov process and
Y�
l Y� with respect to the reduced subprocess Y��
 If� in contrast� the edge ��� �� was
absent �Figure � �c��� Y�� would be no Markov process but P �Y��ti� � y��ti�j history of
Y��� � P �Y��ti� � y��ti�j history of Y��� i
e
 the transition probability is independent
of Y��ti���� � � � � Y��t��
 ��

The latter consideration gives rise to the following more general de�nition of local
independence


Remark ��� General local independence for CFMC
In the situation of Proposition �
� we speak of local independence within YA in the
following sense� Any Yj� j � A�� is locally independent of Yk� k � A� if the second
factor in ���� i
e
 ���� is independent of Yk�ti�� � � � � Yk���
 ��

Lemma ��� General local independence within a subprocess of a CFMC
With the assumptions as in Proposition �
� and with Remark �
� we have

�a� � j � A��

Yj

l Yk � k � An�cl�A�� � A��� ���

�b� � j � A�� Yj

l Yk � k � Ancl�j�
 ��

Proof	

To see �a� consider ���� if k �� cl�A�� then P �YA��tj�jYcl�A���tj���� is independent of

k and if additionally k �� A� then 	j�y
j��
	A �yj��cl� 	A�� is also independent of k
 Thus the

second factor of ��� is independent of k

Part �b� is obvious from the �rst factor in ��� which gives the probability for a change
in YA�
 �

��



The above lemma is not exhaustive since Yj in ��� may in special cases be locally
independent on even more components
 Consequently� the local independence graph
of a general subprocess cannot be given explicitly as in Lemma �
� since it depends
on the structure of ���
 However� we can see that a su cient condition for YA�
lYB�
B � A�� is that pa�A�� � B � � and B � A� � � hold


The foregoing considerations lead to a more general de�nition of separation in local
independence graphs and to restate the global Markov property as well as Theorem
�
� for CFMCs


De�nition ��
 ��separation
Let G � �V�E� be a directed reciprocal graph
 For three disjoint subsets A�B�C � V
and D � V n�A � B � C� we say that C ��separates A from B if

�a� each path from B to A has elements in C�

�b� and either pa�A� �D � � or pa�B� �D � �� ��

The ��global dynamic Markov property �DG	 is de�nied in analogy to ��� by replacing
the ���separation by the ��separation
 The necessity of condition �b� in the above
de�nition can be understood by the following argument� If the subset A as well as the
subset B have parents in D then the marginalization with respect to D could induce
dependences between the former which are not captured by C
 This phenomenon is
very similar to classical graphical models

With De�nition �
� we now have the following result


Theorem ��� Equivalence of Markov properties for CFMC
Let Y � �Y�� � � � � YK� be a CFMC and G a directed reciprocal graph
 Then it holds
that �DP� � �DL� ��DG�
 ��

Proof	

The �rst equivalence can be shown as in Theorem �
� and �DG�� �DP� as in Theorem
�
�

To see �DP� � �DG� consider �rst the situation that pa�A� � D � �
 Then A takes
the role of A� in Proposition �
�
 Since B � cl�A� � � because of C separating A from
B Lemma �
� �b� yields the proof

If pa�A� �D �� � we have pa�B� �D � � and pa�D� �B � � because of the de�nition
of ��separation
 Thus� the set A takes the role of A� in Proposition �
� and since B�
cl�A� � � as well as pa�D� � B � � Lemma �
� �a� yields the proof
 �

We have seen for the case of CFMCs that De�nition �
� can be generalized
 Aalen
������ proposes an even more general de�nition with respect to counting processes

Within that framework more general results concerning the global Markov property as
in Theorem �
� can be obtained
 This� however� requires some deeper results on the
behaviour of subprocesses of CFMPs� which are not considered here


��



��� Discretizing a CFMP

In this section we relax assumption ��� which is crucial to the results of the foregoing
section
 Instead� we consider discrete time processes that result from CFMPs which are
only observed in discrete time� i
e
 we have to cope with the fact that the CFMP !con�
tinues� between the points in time where it can be observed
 The following proposition
indicates the conditional independences within such a discretized process
 The aim is
to �translate� the local independence graph into an appropriate chain graph similar to
the independence structure of a CFMC being represented by a DAG �cf
 equation ����


Proposition ��� Generated chain model
Let Y � �Y�� � � � � YK� be a CFMP with local independence graph G� and let ti � T
with t� � �� ti � ti��� i � �� �� �� � � �� be discrete points in time
 We will describe the
distribution of the discretized process Y� � fY��i�ji � �� �� � � �g with Y��i� � Y�ti�
 It
holds for all i � �� �� � � � that

�a� P �Y��i� � yijY
��i� k� � yi�k� � � � �Y

���� � y�� � P �Y��i� � yijY
��i� k� � yi�k�� for

k � �� � � � � i
 ��

�b� for all j � V �

Y �
j �i�
Y

�
V nan�j��i
 k�jY�

an�j��i
 k� � k � �� � � � � i
 �� ����

�c� the distribution of Y��i�jY��i 
 k� is G��Markov �in the classical sense� � k �
�� � � � � i 
 �� where G� � �V�E �� is the classical chain graph with edges E � �
f�j� k� � V �V j� directed path from j to k in G or anG�j��anG�k� �� �� j �� kg
��

Proof	

Part �a� follows from the Markov property of the underlying CFMP

Part �b� follows from Y � �YV nanG�j��YanG�j�� � j � V � where YanG�j�


lYV nanG�j� so
that Yj
lYV nanG�j� � j � V � and by application of Theorem � of Schweder ������

To see �c� we have to show that Y�

A�i�
Y
�
B�i�jY

�
C�i�Y

��i
k� whenever C separates A
and B in the moral graph of the smallest anterior subgraph of G� containing A� B� and
C
 By the construction of the graph G� we have that it holds for the separating set with
respect to G that �i� no element in C has ancestors in A as well as in B� �ii� neither A
has ancestors in B nor vice versa� �iii� A and B have no common ancestors
 Thus� C
can be partitioned into sets CA and CB with anG�CA� �B � � and anG�B� � CA � ��
anG�CB� � A � � and anG�A� � CB � �� and YCA


lYCB 
 It follows that YA�CA and
YB�CB are stochastically independent processes
 This yields the proposition
 �

The second part of the above theorem states that Yj�t � h�� h 
 �� is conditionally
independent of those Yk�t� where there is no directed path from k to j in the local in�
dependence graph G given the components where there is such a path
 In ���� anG�j�
cannot be replaced by clG�j�� i
e
 by those components of which Yj is locally dependent�
since YclG�j�n


lYV nclG�j� if there exists l � clG�j� and k � V nclG�j� with �k� l� � E
 It
follows that independences are preserved only if they are not conveyed by intermediates
when marginalizing over the time between t and t� h


��



The proof of the third part makes clear that the conditional independences within the
distribution of Y��i�jY��i
 k� are at the same time marginal independences
 This can
be explained by the fact that marginalization over the time between ti�k and ti implies
marginalzing over all �common causes� during this time which are given by common
ancestors
 Independences are only preserved between those processes who have no
common ancestors and these are already marginally independent
 It can be supposed
that in practical situations there will usually be more �conditional� independences since
local independence is restrictively de�ned by assuming that the independence holds for
all t � T 
 The property of the transition intensities described in De�nition �
� may
hold for a subset T � T yielding more independences than those which can be read o

the local independence graph


Example	 To illustrate the above theorem consider a CFMP Y � �Y�� Y�� Y�� Y
� with
local independence graph G � �V�E�� E � f��� ��� ��� ��� ��� ��� ��� ��g �Figure ��
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By Lemma �
� we know that each of the subprocesses Y�� Y�
� and Y��
 are Markov
processes
 By part �b� of the above theorem we further have that for two discrete
points in time t and t� h� h 
 �� Y��t� h�
Y��
�t�jY��t�� Y��t� h�
Y���t�jY�
�t�� and
Y
�t� h�
Y���t�jY�
�t�
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From part �c� it follows that the conditional distribution of Y�t � h�jY�t� holds the
classical Markov properties of the graph given in Figure �� above
 This illustrates for
example that Y��t � h�
Y��t � h�jY
�t � h�Y�t� as well as Y��t � h�
Y��t � h�jY�t�

Combining Theorems � and � from Schweder ������ we additionally get that Y� and
Y�
 are marginally independent Markov processes so that Y�
Y� and Y�
Y

 ��

� Discussion

A further important question related to the proposed local independence graphs con�
cerns estimation and test procedures
 Since we restrict our considerations to Markov
processes� standard results on estimating and testing within this class can be applied
�cf
 Andersen et al
� �����
 The restrictions given by the graphical structure have
to be taken into account by modelling the transition intensities �jt �ycl�j�� y

j� as func�
tions only of ycl�j�
 Two general approaches are available� the nonparametric and the
�semi��parametric
 The former mainly relies on the Nelson�Aalen estimator for the
integrated transition intensities
 Within the nonparametric framework k�sample tests
of equality of transition intensities are available if no a priori assumptions on the local
dependence structure are possible
 In the �semi��parametric approach �jt �ycl�j�� y

j� is
modelled as a speci�c function of ycl�j� but we would like to restrict ourselves from
going into details here


The modelling and analyzing of local independence structures can be useful in several
�elds of application
 In survival analysis� for instance� typically not only the survival
status but also di
erent time varying covariates describing health status or onset of side
e
ects are observed �cf
 Klein et al
 �����
 It should be pointed out that time�constant
as well as time�varying covariates can be included in local independence graphs
 Firstly�
the former are equivalent to processes that do not change in time� i
e
 they are a priori
locally independent of all varying processes
 Secondly� if a time constant covariate
has a signi�cant in�uence on one of the processes� say the one describing the survival
status� then the latter is obviously locally dependent on this covariate
 To put it
di
erently� Time constant covariates can be represented in the local independence
graphs by special symbols� where directed edges from processes to constant covariates
are forbidden
 Additionally� one could analyze the dependence structure among the
time�constant covariates using classical graphical modelling techniques

Time varying covariates can be included in the analysis by assuming appropriate mul�
tistate Markov processes
 The composability is then given in a very natural way
 The
distinction of exogenous and endogenous covariate processes translates to the local
independence framework as follows
 Exogenous covariate processes are locally inde�
pendent of any of the remaining processes� i
e
 directed edges pointing at them are
forbidden� endogenous covariate processes may possibly be locally dependent of any of
the remaining ones


Finally we would like to mention the a nity of local dependence to a certain notion
of causality as described by Aalen ������
 In a system of processes represented by

��



Y � �Y�� � � � � YK� any Yj with Ykn

lYj� j �� k� can be regarded as a cause of Yk in the

sense that it cannot be replaced by any other subprocess in the system whereas Yj
with Yk


l Yj� j �� k� is no cause of Yk since the depevelopment of Yk does not depend
on Yj given Ycl�k�
 Thus� Ycl�k� can be interpreted as minimal causal set for Yk
 Note�
that this always refers to the speci�c system of processes taken into consideration

Discarding a subset ofYmay change the local dependence structure and thus the causal
structure as shown in the context of ��separation as well as adding new information�
i
e
 when considering Y� � �Y�� � � � � YK� YK��� � � � � YK�L� instead of Y
 The concept
of local independence seems to be a sensible starting point for establishing� analyzing�
and visualizing complex causal relations and could therefore be a rewarding topic of
future research


Appendix

Proof of Proposition �
��
For the sake of simplicity we write P �Y�tj� � yjjY�tj��� � yj��� � P �Y�tj�jY�tj����

Since

P �YA�ti�jYA�ti���� � � � �YA�t��� �
P �YA�ti��YA�ti���� � � � �YA�t���

P �YA�ti���� � � � �YA�t���
����

consider �rst

P �YA�ti��YA�ti���� � � � �YA�t��� �
X
�y �A

P �Y�ti��Y�ti���� � � � �Y�t���

�
X
�y �A

P �Y�t���
iY

j��

P �Y�tj�jY�tj����� ����

Since
P �Y�tj�jY�tj���� � P �YA��tj�jYcl�A���tj���� P �YA��tj�jYcl�A���tj���� P �Y 	A�tj�jYcl� 	A��tj�����

where cl�A�� � �A � �� we get that ���� equals

�P �YA��t���
iY

j��

P �YA��tj�jYcl�A���tj����	P �YA��t���

X
�y �A

P �Y 	A�t���
iY

j��

P �YA��tj�jYcl�A���tj����P �Y 	A�tj�jYcl� 	A��tj����� ��
�

Further� it follows from

X
yi
�A

P �YA��ti�jYcl�A���ti����P �Y 	A�ti�jYcl� 	A��ti���� � P �YA��ti�jYcl�A���ti����

that ���� equals
P

�y �A

Qi
j�� P �YA��tj�jYcl�A���tj����P �Y 	A�tj���jYcl� 	A��tj���� with

P �Y 	A�tj���jYcl� 	A��tj���� � P �Y 	A�t��� for j � �

The same argument applied to the denominator of ���� yields the desired result
 �

��
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