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ABSTRACT:

The concept of local independence is used to define local independence
graphs representing the dynamic dependence structure of several continuous
time processes which jointly form a so—called composable Markov process.
Specific properties of this new class of graphs are discussed such as the
role of separating sets. Further insight is gained by considering possible
extensions to the discrete time situation. It is shown that the latter case
can be reduced to classical graphical interaction models.

1 Introduction

This paper proposes a modelling technique for multistate Markov processes which uses
graphs to visualize the underlying dependence structure. In order to speak of depen-
dences the notion of composability is introduced by formalizing the assumption that
the whole process consists of different components. This has first been defined by
Schweder (1970) and applied to event history analysis for example by Aalen et al.
(1980). In general terms, local independence means that a component of the process is
independent of the past of another component given its own past and possibly the past
of the remaining components. In the context of event history analysis this is exactly
what is meant by saying that an event does not depend on the prior occurrence of
another event, i.e. the intensity is not altered by the past event. A graphical repre-
sentation should capture all such independences and possibly further properties of the
underlying statistical model.

Classical graphical models as treated for instance by Lauritzen (1996) are based on con-
ditional stochastical independence relations among the involved variables and it is the
conditional independence structure that is represented by the graph. In contrast, local
independence graphs are based on local independence relations among the components
of a composable stochastic process, i.e. the vertices represent no random variables but
stochastic processes or events which are registered by suitable processes. The emphasis
of the present paper lies on the discussion of the graphical Markov properties for such
local independence graphs and on possible extensions to the discrete time situation.



The outline of the paper is as follows. First, the concept of local independence for com-
posable Markov processes is defined and discussed following Schweder (1970). Based
on this, local independence graphs are defined in Section 3. In this context, we present
the implications of separation and give conditions for the equivalence of different in-
dependence properties suggested by the graph in analogy to the pairwise, local, and
global Markov properties in classical graphs. In Section 4 we treat the discrete time
situation and indicate two possible approaches which are derived from the concept of
local independence for the continuous time situation. As will be seen, the first ap-
proach appears somewhat unsuited for practical purposes but instead indicates the
generalization of the concept of local independence graphs to non-Markov processes.
The second approach assumes that a continuous time Markov process underlies the
discrete one and derives its properties for a given local independence structure of the
underlying process. Finally, we discuss the concept of local independence graphs with
respect to estimation, inclusion of covariate information, and causality aspects.

2 Local independence in Markov processes

In this and the following section we consider Markov processes Y = {Y ()|t € T} with
finite state space S and continuous time scale, i.e. 7 = [0, 7). The transition intensities
are given by

1
a(y;y) =limo PY(E+h) =y Y (t)=y), y#y €S
We assume that the transition intensities exist, i.e.

ay;y') <oco  Yy#y, (1)

and that they are continuous and bounded functions of ¢ on any closed interval in 7.
If the process is regarded as consisting of different components it will be denoted by
bold face letters as in the following definition.

Definition 2.1 Composable finite Markov process, CFMP (Schweder, 1970)

Let Y = {Y(t)|[t € T} be a Markov process with finite state space S and transition
intensities that hold (1). Let further V' = {1,..., K}, K > 2, and assume that there
are K spaces S;,j € V, with |S;| > 2, and that there exists a one-to-one mapping f of
S onto @,cy S; so that elements y € S can be identified with elements (y1,...,yx) €
®,ev Sj. Then, Y is a composable finite Markov process (CFMP) with components
Yi,..., Yy such that f(Y () = (Yi(t),...,Yk(t)) it VACV, |A] > 2,

lim P ( MY+ ) # )] N {0 = yj}) =0 )

hio h jeA

Vy; € S;,j € V,and t € T. Composability is denoted by Y ~ (Y7,...,Yxk). //



The definition states that for a composable process the probability that more than one
component changes in a short period of length h is of magnitude o(h). This formal-
izes the intuitive claim that the different components should not describe the same or
similar phenomenons or events. Consequently, in continuous time they should have
probability zero of changing states at the same time. Note that the compositioning is
not necessarily unique. If for example Y ~ (Y7,...,Yx) then Y ~ (Y4, Yy\4). In the

following we treat f(y) = (y1,-..,yx) asify = (y1, ..., yx)-

Definition 2.1 implies that the transition intensities of a CFMP have the following
properties.

Corollary 2.2 Transition intensities for CFMP
Let Y ~ (Y1,...,Yk) be a CEMP.

1. The intensity au(y;y’), t € T, for any y # y' is given by

J(nre ot / o .
oy )y, YAy =y JEV
;') { 0, otherwise

withy_; = (v1,-- -, Yj—1,Yj+1, - - -, Yk ), i.e. the intensity equals 0 if y and y’ differ
on more than one component, where

o7 (y;y;) = lim ,-P (Vi(t+h) =Y () =y).

2. The total intensity ay(y), t € T, is given as a continuous and bounded function
of t with

aly) = lim (1= P(Y(1+ 1) =y Y () =y) = = 3 allyiv)).

JEV yi#y;

//

The dependence structure of the components Yi,..., Yy is thus determined by the
quantities o7 (y;45), ¥y € S, y; € Sj, j € V.. Since

h-al(y;y)) m P(Yi(t+h) =yj|Y(t) =y)

we can say, that if a{(y; y;) is independent of some components of the first argument
y this also holds for the probability P (Y] (t+h)=y|Y(t) = y) of an instantaneous

change in Y}, and one would intuitively speak of local independence. This is formalized
in the following definition.

Definition 2.3 Local independence in a CFMP (Schweder, 1970)

Let Y ~ (Y1,...,Yg) be a CFMP. Then, Yj is locally independent of Yy, k # j, if
Vy € Syandy) €S8y # yj al(y;y;) is a constant function of y;. This is
denoted by Y;1'Y). Otherwise, Y; is locally dependent on Y} and we write Y;\'Y}.
For A C V we have that Y ~ (Y4, Yy 4) so that the vector-valued local independence
Y 41! Y is defined by of*(y;y’y) being a constant function of y in the first argument

Vy p€S pandyy € Sa, ¥y #ya, BCV\A, //

3



A more general definition which is not restricted to Markov processes would postulate
that the presence of Y is independent of the past of Y} given past of Y_;. Similar
concepts can be found in time series analysis (Granger, 1969) or in the framework of
general stochastic processes considered in Mykland (1986).

Remark 2.4 Local independence: not marginal

Note that the property Y;1'Yj is not a marginal property of the two involved compo-
nents since it may depend on the other components y_ in o (y; yé) If for example
the information contained in y_j is altered by discarding some of these components
then local independence of Y; on Yj might not be preserved. In general, the reduced
process Y'(t) ~ (Y;(t), Yi(¢)) is neither a Markov process nor does Y; 1' Y} have to hold
with respect to Y'. //

As can easily be checked, local independence is neither necessarily symmetric nor re-
flexive nor transitive. Thus, we make the following assumption.

Assumption 2.5 Refilexivity
Since in most practical situations a process depends at least on its own past we only
consider stochastic processes where local dependence is reflexive. //

Let us present two short examples within the framework of event history analysis where
local independence could be of special interest. The first one describes the situation of
several non—recurrent events. Aalen et al. (1980) consider a data example where the
interesting events are menopause, subdivided into induced and natural menopause, and
occurrence of a certain skin disease (pustulosis palmo—plantaris). This is modelled as a
Markov process with states 0, i.e. no event has occurred so far, states (M), (I), or (D)
i.e. menopause, induced menopause, or disease, respectively, has occurred but none of
the other events, and states (M D) or (ID) if both, menopause and disease have oc-
curred. It seems reasonable to assume that the indicator processes Y;(t), Yas(t), Yp(2)
form a CFMP (one could of course doubt the Markov assumption). It is clear that
YMLIYI and YAVZYM since if one of the events M or I has occurred then the inten-
sity for the other one equals zero. Interestingly the analysis of the author shows that
Y 1'Yp whereas Yp\'Yy, and a corresponding result for induced menopause. More
generally, consider events Ay, ..., Ay then Yy (t) = 1(A has occurred before or at time
t) form the components of a CEMP if no two or more events may occurr systematically
at the same time. The state space is given by all combinations {0,1}* of the events
having occurred or not. The local independence structure indicates those events the
occurrences of which can be discarded when assessing the intensity for a specific event,
i.e. the dependence structure between past and present events.

A special case of event history analysis is survival analysis. Here, the occurrence of a
specific event marks the transition into an absorbing state. As discussed for instance by
Andersen (1986), survival analysis with time dependent covariates may appropriately
be modelled using multistate Markov processes. Assume that the process Y (t) = 1(
survival at least until time ¢) describes the survival status and the covariate processes
Xy, ..., Xk the occurrence of intermediate events, as for instance onset of a side effect
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of a medicamentation. If it can be ruled out that any of the corresponding counting
processes jump at the same time we again have that (Y, Xy,..., Xx) form a CEMP.
Trivially we have that X;\'Y" holds for k¥ = 1,..., K, since after death no further
transitions are possible, i.e. every intensity for a change from state (y = 1,z1,...,2k)
into any other is zero. Schweder (1970) proposes in this case to condition on being
alife in order to assess the interaction between the covariates. A statistical test of the
hypothesis that a specific covariate X}, has no influence on the survival is in this setting
equivalent to assessing that Y 1' X;. The presented approach additionally allows for
the modelling of intermediate events. It is for example possible that Y 1 X} but Y'X;
and X AZX ¢ which implies that X, has an indirect effect on survival.

3 Local independence graphs

Local independence graphs are defined to represent the local independence structure
of a CFMP. This calls for a new kind of graph which allows for cycles and bidirected
edges since reciprocal local dependence is possible.

Definition 3.1 Directed reciprocal graph / subgraph

A directed reciprocal graph is a pair G = (V, E), where V = {1,..., K} is a finite set
of vertices and F is a set of directed edges, i.e. E C EY(V) ={(j,k)|j,k € V,j # k}.
If A C V the induced subgraph G 4 is defined as (A, E4) with E4 = ENEY(A4).  //

In the visualization of the graph directed edges (7, k) are represented by arrows, j — k.
In contrast to the convention, the case (j,k) € E and (k,j) € E is shown as double
headed arrow, j <— k. Two vertices j and k are elements of a cycle if there exists a
(directed) path from j to k as well as from £ to j. Note that the usual graph termi-
nology (cf. Koster, 1996, who also considers non-recursive graphs) can still be applied
to directed reciprocal graphs.

The following definition provides the link between the above defined graphs and local
independence structures.

Definition 3.2 Local independence graph
Let Y ~ (Y3,...,Yx) be a CEMP and G = (V, E) a directed reciprocal graph. The
distribution of Y is graphical with respect to G if

The graph G is then called local independence graph of Y. //
Property (3) is the analogue of the pairwise Markov property of a conditional indepen-
dence graph. It is therefore called pairwise dynamic Markov property (DP). As stated

in Assumption 2.5, Y;\'Y; Vi € V, but this is not shown by a special symbol in the
graph.

Example: Consider a CFMP Y ~ (Y1,Y5,Y3). The graph in Figure 1 is the local
independence graph of Y if YV, 1'Vs, Y, 1'Ys, Y31'Y;. The only cycle component is
given by {1,2}. //



Figure 1

The visualization of the local independence structure is all the more of interest as addi-
tional properties can be read off the graph. These could be further Markov properties
as addressed in the following.

Theorem 3.3 Local dynamic Markov property
Let Y ~ (Y7,...,Yk) be a CEFMP and G = (V, E) a directed reciprocal graph. Then,
property (DP) is equivalent to

Y5 LYo aguts
which is called the local dynamic Markov property (DL). //

Proof:

First, we show that (DL) implies (DP). From Definition 2.3 it follows with (DL) that
; (y; ;) is a constant function of any y;, with & € V\{pa(j) U{j}} so that oj(y;y}) =
@ (YpaGyug)s ¥5) ¥V Ypa@oty € Spagugy and g € S; with gy # y;, j € V. Since
V\{pa(j)Ui{j}t} =1{k € VI(k,j) ¢ E,k # j}, it follows immediately that (DP) holds.
Now we show that (DP) implies (DL). By (DP) we have for any j € V: of(y;y}) =
of (Y-k;yj) VE € V with (k,j) ¢ E. Assume that pa(j) = {k,l} then of(y;y}) =
ol (y_k; y;) = o (y_i; y;). The case that o (Y-1k395) # ol (y; y;) can only occurr if Y]
and Y} carry the same information, but this contradicts the assumption of composabil-
ity. The same argument can be applied to the general situation of pa(j) C V. O

The above proof of (DP) implying (DL) relies on the composability of the process and
on the fact that Y is a Markov process. Therefore, Theorem 3.3 does not necessar-
ily hold for more general processes. However, for the transition intensities of Markov
processes we may now write o (y;y;) = a{(ycl(j); y;), where cl(j) =pa(j) U{j} is the
closure of j.

The analogue of the global Markov property in conditional independence graphs is
concerned with the role of separating sets and subprocesses of the original process.
Since we restrict our considerations to Markov processes we use a result of Schweder
(1970) stating which subprocesses of a CFMP Y are still Markov processes in order to
show the following lemma.

Lemma 3.4 Local independence graph for subprocess

Let Y4, A C V, be a subprocess of a CFMP Y ~ (Y73, ...Y) with local independence
graph G and assume pa(A) = (), i.e. A is an anterior set. The local independence graph
of Y4 is given as the subgraph G4 = (A, E4) of G. //



Proof:
It follows from Schweder (1970, Theorem 2) that for pa(A) = () Y 4 is a Markov process
with transition intensities

a.j ; /‘ , . /. /\ o= ! ., . 6 A
N yay) = { Ot(YA Y5) Zfszé Yy AYA\GY = YavyyJ CteT

This immediately yields the proof. O

From Lemma 3.4 it follows that within the class of CFMP any set A C V' with pa(A) =
() is collapsible, i.e. the marginal distribution has the same local dependence structure
as the corresponding subgraph. In contrast, an arbitrary subprocess Y 4 with pa(A) #
() is not necessarily a Markov process, i.e. the class of CFMPs is not closed under
marginalization (see Remark 2.4) and the dependence structure may differ from the
corresponding subgraph. The following definition of separating sets takes that into
account.

Definition 3.5 0*—separation
Let G = (V, E) be a directed reciprocal graph. For three disjoint subsets A, B,C' C V
we say that C' 0*—separates A from B if

(a) each path from B to A has elements in C,
(b) and pa(AuU BUC) = 0. //

Thus, d*—sparation guarantees that the subprocess given by ignoring the components
in V\(AU BUC), i.e. Yaunuc, is a Markov process. Note that the definition is not
symmetric in A and B. For general CEFMPs we get the following result.

Theorem 3.6 6*—global dynamic Markov property

Let Y ~ (Y3,...,Yx) be a CEFMP and G = (V, E) a directed reciprocal graph. Then
property (DP) is equivalent to the 6*—global dynamic Markov property (DG*) which is
defined as follows: V disjoint sets A, B,C' C V with C §*-separating A from B it holds
that

Y4 1' Y with respect to the local independence graph of Y 4upuc:. (4)

//

Proof:

The implication (DP) = (DG") is an immediate consequence of Lemma (3.4).

The fact that (DG*) implies (DP) can be seen by showing that (DG*) = (DL). For
any j € V we have that pa(j) ¢*—separates {j} from V\cl(j) with D = () and (DL) =
(DP) follows from Theorem 3.3. O

Theorems 3.3 and 3.6 thus yield the equivalence of properties (DP), (DL) and (DG").
However, the §*—separation is not as exhaustive as one would wish because of condition

(b) which is mainly due to the fact that the class of CFMPs is not closed under
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marginalization. Results for more general separations can be obtained by generalizing
the concept of local independence to non—Markov processes. For the continuous time
situation this requires some deeper results on the behaviour of subprocesses of CFMPs
which are not considered here. The discrete time situation is addressed in the following
section.

4 Discrete time models

Until now we have restricted our considerations to continuous time Markov processes.
There are different possible approaches to the general discrete time situation in event
history analysis. If several processes with finite state spaces are considered, there is
at first the possibility to model the dependence structure via classical graphical chain
models for discrete variables where each discrete time point represents a chain com-
ponent. In case that there are many time points, many processes, and/or a high
dimensional state space, this would result in high dimensional loglinear models with
the eventual problem of non identifiability or the need of a very large sample size.
Thus, some restrictive assumptions such as the one of p—th order Markov processes or
a repetition of the same dependence structure between any p chain components are
called for. Classical chain graphs have for instance been applied by Klein et al. (1995)
or in a more general framework not restricted to discrete variables by Lynggaard &
Walther (1993). Statistical software packages such as DIGRAM (described for instance
in Klein et al., 1995) provide the necessary computational support.

In this section we discuss two extensions to the discrete time situation that are more
closely related to the ideas of the foregoing sections. On the one hand, the assumptions
of a composable Markov process may be maintained where the condition of no more
than one jump at a time translates to the discrete time case as stochastically indepen-
dent innovations. This seems to be a sensible assumption only if the space between
two sequential points in time is not too large in relation to the considered events. We
deal with this case in the first subsection. On the other hand, one may assume that a
continuous time Markov process with a local independence structure modelled as above
underlies the discrete process. Then, the innovations may no longer be independent.
In the second subsection we present a proposition that deals with this situation.

4.1 Composable finite Markov chains

Let Y = {Y(¢)|t € T} be a Markov chain with state space S and discrete time scale,
ie. T = {to,t1,t9,...}, where 0 = ¢ty < t; < ty < ---. The single-step transition
probabilities are given by

ai(y;y) =P (Y (t) =y |Y(tica) =), y,y €8S,i=1,2,....

Like in the preceding section we assume that the process consists of different compo-
nents.



Definition 4.1 Composable finite Markov chain, CFMC
Let Y = {Y(t)|t € T} be a Markov chain with Y ~ (Y7,...,Yx) as in Definition 2.1,
where condition (2) is modified to

K
ai(y;y') = [ d(y;v5),  Vyy' eSi=12,..., (5)
i=1

where o (y; y;) =P (Y](tz) = y;|Y (tic1) = y). The process Y is then called compos-
able finite state Markov chain, CFMC. //

Remark 4.2 Independent innovations

The above definition implies by (5) that for any ¢ = 1,2,... all components Yj(t;),
j =1,..., K, are stochastically independent of one another given Y (¢; ;). To put it
differently, any dependences in the marginal distribution of Y;(t;),..., Yk (t;) should
vanish by conditioning on the preceding time point. This is in analogy to (2) because
of the underlying idea that the different processes should not be fed by the same
innovations. If there were dependences within the vector Y (¢;) given Y(¢; 1) this
would mean that the latter is not the ’only cause’ of the former, but that there is
a ’common development’ during the time period ¢;_; to ¢;. Consider the example of
different measures concerning the physical status of a person. If these are measured
daily one could under certain circumstances say that the development of the different
measures is independent from one day to another given the preceding day. But if
they are observed weekly it should reasonably be assumed that there is a common
development during a week. Obviously, assumption (5) will not be appropriate in
many practical situations, since it is often sensible to assume that there are common
causes during ¢; ;1 and ;. //

In complete analogy to the preceding section we define for a CFMC Y ~ (Y7,...,Yk)
that

V'Y, & ol (y; yg) constant function of y, Vy_, € S_, y;- €S;.

If G = (V,E) is the corresponding local independence graph of Y as in Definition 3.2
it is straightforward from (5) that

K
az(Y;YI) = Hag(yCl(j)ay;)a Vy-7y16871217277 (6)
j=1

where cl(j) = pa(j) U{j} is the closure of j. It follows from (6) that the independence
structure of Y can equivalently be described by a classical DAG G with directed edges
from Yj(t;_1) to Yi(t;), i =1,2,...,if (j,k) € Eor j =k, j,k € V (for the definition
of a DAG cf. Lauritzen, 1996). All independence properties of the distribution can be
read off this DAG. An exception is the starting distribution, i.e. the distribution of
Y (t9) which is not necessarily the independence distribution, so that one possibly has
to condition on Y (tp).



It is obvious that a result analogous to Lemma 3.4 and to Theorems 3.3, 3.6 holds for
CFMCs, too. In contrast to Theorem 3.6 we now consider the behaviour of subpro-
cesses Y 4, where pa(A) # 0, when marginalizing over Yy 4. As noted above, such a
subprocess is not necessarily a Markov process but we will see that the notion of local
independence can still be applied. Instead of the single step transition probabilities,
one has to consider the transition probabilities conditional on the whole past of the
process. The following proposition shows that the subprocess Y 4 depends on this past
via pa(A) because this is a subset of the set V'\ A with respect to which we marginalize
and via pa(V'\ A), i.e. the parents of the set with respect to which we marginalize. Only
for subsets A° C A with pa(A°%) NV\A =0, Y 4o is still a Markov process.

Proposition 4.3 Subprocess of a CFMC

Let Y ~ (Y3,...,Yx) be a CFMC with local independence graph G and consider a
subprocess Y 4, A C V. Let further A = A°UA! for disjoint sets A%, A*, where pa(A”)N
A =10, and A" = pa(A) N A with A = V\A. Assume for the starting distribution that
it factorizes according to P(Y (o)) = P(Y 40(t0))P(Y 41(t0))P(Y 5(t9)). Then it holds
for the transition probabilities of the subprocess Y 4 that

P(Ya(t) =yulYaltin) =y5 ', Yalto) = y%)
= P(Y0(ti) = yho|Yer a0y (tiz1) = yf;(IAO))
CP(Y i (t) = y'ulYalti) =yt Yalto) =y%) (7)
with
P(Yu(ti) =y Yaltio)) =yi ', Yalto) =y%) =
g (Wi POYar(t) = ¥ Y ey (t5-1) = ¥0y o Jes 05 v )]

— . — — (8)
S [IE25 POY s (1) = ¥ Yeran (t-1) = vl o Jwos 0 vl )

with w;(y L yr2 ) = { P(Y 4(to) = y?&i)’, g=1
NS =

cl(A) P(Y 4(tj-1) =y Yo a)(tj2) = yf:l_(ii))’ g>17
where Y-, means summarizing over all (y9,...,y%) € ®§-:0 Si. //

Since the proof is technical and of no substantial interest it is referred to the appendix.

Plausibly, the subprocess Y 4o still has the Markov property since it is not touched
by Y ; whereas the remaining Y 41 depends through pa(A') N A on the whole past
of the subprocess. The second factor of (7) may even depend on the past of Y 4o if
pa(A) N A% # () as can be seen from the weights in (8).

Example: In order to illustrate the Proposition 4.3 consider again the first example
of a local independence graph with vertices {(1,2),(2,1),(2,3)} (Figure 1). The sub-
process Y1, is still a Markov process since 3 ¢ pa(l,2). In contrast, this is not the
case if the vertices are given by {(1,2),(2,3),(3,1)} (Figure 2 (a)). Here we have for
A = {1,2} that A° = {2}, A' = {1}, and A’ = {2}. Tt follows from Proposition 4.3
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that the local independence Y;1' Y, which holds with respect to Yis3 is not preserved
when marginalizing over Y3 because of the vertices (2,3) and (3,1).

(a) (b) (c)

Figure 2

If the edge (3,1) was absent as in Figure 2 (b) Y2 would be a Markov process and
Y1 1'Y, with respect to the reduced subprocess Yio. If, in contrast, the edge (2, 3) was
absent (Figure 2 (¢)), Y12 would be no Markov process but P(Y1(¢;) = yi(¢;)| history of
Y o) = P(Yi(t;) = yi(t;)] history of Y}), i.e. the transition probability is independent
Of}/g(ti_l),...,lfg(to). //

The latter consideration gives rise to the following more general definition of local
independence.

Remark 4.4 General local independence for CFMC

In the situation of Proposition 4.3 we speak of local independence within Y 4 in the
following sense: Any Yj;, j € A', is locally independent of Yy, k € A, if the second
factor in (7), i.e. (8), is independent of Yy (¢;), ..., Y% (0). //

Lemma 4.5 General local independence within a subprocess of a CFMC
With the assumptions as in Proposition 4.3 and with Remark 4.4 we have

(a) Vje AL
Y'Y, VE € A\(cl(AY) u A'); (9)

(b) Vj € A% Y 1'Y; Yk € A\cl(j). //

Proof:

To see (a) consider (8): if k ¢ cl(A") then P(Y 1(t;)[Y¢yar)(tj-1)) is independent of
k and if additionally & ¢ A’ then w;(y’, ', y7),
second factor of (7) is independent of .

Part (b) is obvious from the first factor in (7) which gives the probability for a change

in YAO. d

(ii)) is also independent of k. Thus the
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The above lemma is not exhaustive since Y; in (9) may in special cases be locally
independent on even more components. Consequently, the local independence graph
of a general subprocess cannot be given explicitly as in Lemma 3.4 since it depends

on the structure of (8). However, we can see that a sufficient condition for Y 41 1! Y3,
B C A% is that pa(A') N B =0 and BN A’ = () hold.

The foregoing considerations lead to a more general definition of separation in local
independence graphs and to restate the global Markov property as well as Theorem
3.6 for CFMCs.

Definition 4.6 d—separation
Let G = (V, E) be a directed reciprocal graph. For three disjoint subsets A, B,C' C V
and D = V\(AU B U C) we say that C' 0—separates A from B if

(a) each path from B to A has elements in C,
(b) and either pa(A) N D = or pa(B) N D = 0. //

The d—global dynamic Markov property (DG) is definied in analogy to (4) by replacing
the ¢*-separation by the d-—separation. The necessity of condition (b) in the above
definition can be understood by the following argument: If the subset A as well as the
subset B have parents in D then the marginalization with respect to D could induce
dependences between the former which are not captured by C. This phenomenon is
very similar to classical graphical models.

With Definition 4.6 we now have the following result.

Theorem 4.7 FEquivalence of Markov properties for CEFMC
Let Y ~ (Y3,...,Yx) be a CFMC and G a directed reciprocal graph. Then it holds
that (DP) < (DL) <(DG). //

Proof:

The first equivalence can be shown as in Theorem 3.3 and (DG) = (DP) as in Theorem
3.6.

To see (DP) = (DG) consider first the situation that pa(4) N D = (). Then A takes
the role of A in Proposition 4.3. Since BN cl(A) = () because of C' separating A from
B Lemma 4.5 (b) yields the proof.

If pa(A) N D # () we have pa(B) N D = ) and pa(D) N B = () because of the definition
of 6-separation. Thus, the set A takes the role of A' in Proposition 4.3 and since BN
cl(A) = () as well as pa(D) N B = () Lemma 4.5 (a) yields the proof. O

We have seen for the case of CFMCs that Definition 2.3 can be generalized. Aalen
(1987) proposes an even more general definition with respect to counting processes.
Within that framework more general results concerning the global Markov property as
in Theorem 3.6 can be obtained. This, however, requires some deeper results on the
behaviour of subprocesses of CEFMPs, which are not considered here.
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4.2 Discretizing a CFMP

In this section we relax assumption (5) which is crucial to the results of the foregoing
section. Instead, we consider discrete time processes that result from CFMPs which are
only observed in discrete time, i.e. we have to cope with the fact that the CFMP ‘con-
tinues’ between the points in time where it can be observed. The following proposition
indicates the conditional independences within such a discretized process. The aim is
to ’translate’ the local independence graph into an appropriate chain graph similar to
the independence structure of a CFMC being represented by a DAG (cf. equation (6)).

Proposition 4.8 Generated chain model

Let Y ~ (Y1,...,Yk) be a CFMP with local independence graph G, and let ¢; € T
with tg =0, t; < t;31, 2 =0,1,2,..., be discrete points in time. We will describe the
distribution of the discretized process Y' = {Y'(:)|i = 1,2, ...} with Y'(:) =Y (¢;). It
holds for all © = 1,2, ... that

(a) P(Y'(i) = yil Y'(i = k) = yik,-.., Y'(1) =y1) = P(Y'(i) = yi|Y'(i — k) = yi_s), for
k=1,...,i—1;

(b) for all j € V:

(c) the distribution of Y'(¢)|Y'(i — k) is G'-Markov (in the classical sense) V k =
1,...,0 — 1, where G' = (V, E') is the classical chain graph with edges E' =
{(j, k) € V x V|3 directed path from j to k in G or ang(j)Nang (k) #0,j # k}.//

Proof:

Part (a) follows from the Markov property of the underlying CFMP.

Part (b) follows from Y ~ (YV\anG(j); Yang(j)) V7 €V, where Yanc(j)J_l YV\anG(j) SO
that Y;1' Yy\ang(j) VJj € V, and by application of Theorem 1 of Schweder (1970).
To see (c¢) we have to show that Y, (1) LY'5(7)| Y (1) Y'(i — k) whenever C' separates A
and B in the moral graph of the smallest anterior subgraph of G’ containing A, B, and
C'. By the construction of the graph G’ we have that it holds for the separating set with
respect to G that (i) no element in C has ancestors in A as well as in B; (ii) neither A
has ancestors in B nor vice versa; (iii) A and B have no common ancestors. Thus, C
can be partitioned into sets C'y and Cp with ang(C4) N B = () and ang(B) N Cy = 0,
ang(Cp) N A =0 and ang(A) NCp =0, and Y, ' Y, It follows that Y 4uc, and
Y puc, are stochastically independent processes. This yields the proposition. O

The second part of the above theorem states that Y;(t + h), h > 0, is conditionally
independent of those Yy (t) where there is no directed path from k to j in the local in-
dependence graph G given the components where there is such a path. In (10) ang(j)
cannot be replaced by clg(j), i.e. by those components of which Y; is locally dependent,
since Y, (k' Yinelg() if there exists | € clg(j) and k € V\cla(j) with (k,1) € E. It
follows that independences are preserved only if they are not conveyed by intermediates
when marginalizing over the time between ¢ and ¢ + h.
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The proof of the third part makes clear that the conditional independences within the
distribution of Y'(:)|'Y'(i — k) are at the same time marginal independences. This can
be explained by the fact that marginalization over the time between ¢;,_; and ¢; implies
marginalzing over all 'common causes’ during this time which are given by common
ancestors. Independences are only preserved between those processes who have no
common ancestors and these are already marginally independent. It can be supposed
that in practical situations there will usually be more (conditional) independences since
local independence is restrictively defined by assuming that the independence holds for
all t € 7. The property of the transition intensities described in Definition 2.3 may
hold for a subset 7" C T yielding more independences than those which can be read off
the local independence graph.

Example: To illustrate the above theorem consider a CFMP Y ~ (Y7, Y3, Y3, Y)) with
local independence graph G = (V, E), E = {(1,2),(3,2),(3,4), (4,3)} (Figure 3).

Figure 8

By Lemma 3.4 we know that each of the subprocesses Y7, Y34, and Y3, are Markov
processes. By part (b) of the above theorem we further have that for two discrete
points in time ¢ and ¢ + h, h > 0: Y1(t + h) LY534(¢)|Y1(2), Y3(t + h) LY12(2)|Y34(2), and
Yi(t + h)LY19(t)|Yaa(2).

t+h

Figure J
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From part (c¢) it follows that the conditional distribution of Y (¢ + h)[Y (¢) holds the
classical Markov properties of the graph given in Figure 4, above. This illustrates for
example that Y3 (t + h)LY3(t + h)|Ya(t + h)Y (t) as well as Yi(t + h) LY5(t + h)[Y (1).
Combining Theorems 2 and 3 from Schweder (1970) we additionally get that Y7 and
Y3, are marginally independent Markov processes so that Y, 1Y3; and Y; LY. //

5 Discussion

A further important question related to the proposed local independence graphs con-
cerns estimation and test procedures. Since we restrict our considerations to Markov
processes, standard results on estimating and testing within this class can be applied
(cf. Andersen et al., 1993). The restrictions given by the graphical structure have
to be taken into account by modelling the transition intensities o (Yel(); y/) as func-
tions only of y;). Two general approaches are available: the nonparametric and the
(semi-)parametric. The former mainly relies on the Nelson-Aalen estimator for the
integrated transition intensities. Within the nonparametric framework k—sample tests
of equality of transition intensities are available if no a priori assumptions on the local
dependence structure are possible. In the (semi-)parametric approach o] (Yeigy ¥7) is
modelled as a specific function of y;) but we would like to restrict ourselves from
going into details here.

The modelling and analyzing of local independence structures can be useful in several
fields of application. In survival analysis, for instance, typically not only the survival
status but also different time varying covariates describing health status or onset of side
effects are observed (cf. Klein et al. 1995). It should be pointed out that time—constant
as well as time—varying covariates can be included in local independence graphs. Firstly,
the former are equivalent to processes that do not change in time, i.e. they are a priori
locally independent of all varying processes. Secondly, if a time constant covariate
has a significant influence on one of the processes, say the one describing the survival
status, then the latter is obviously locally dependent on this covariate. To put it
differently: Time constant covariates can be represented in the local independence
graphs by special symbols, where directed edges from processes to constant covariates
are forbidden. Additionally, one could analyze the dependence structure among the
time—constant covariates using classical graphical modelling techniques.

Time varying covariates can be included in the analysis by assuming appropriate mul-
tistate Markov processes. The composability is then given in a very natural way. The
distinction of exogenous and endogenous covariate processes translates to the local
independence framework as follows. Exogenous covariate processes are locally inde-
pendent of any of the remaining processes, i.e. directed edges pointing at them are
forbidden, endogenous covariate processes may possibly be locally dependent of any of
the remaining ones.

Finally we would like to mention the affinity of local dependence to a certain notion
of causality as described by Aalen (1987). In a system of processes represented by
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Y ~ (Y1,...,Yg) any Y; with Y\'Y}, j # k, can be regarded as a cause of Y}, in the
sense that it cannot be replaced by any other subprocess in the system whereas Y
with Y, 1'Y;, j # k, is no cause of Y} since the depevelopment of Y, does not depend
on Y; given Y. Thus, Yy can be interpreted as minimal causal set for Yj. Note,
that this always refers to the specific system of processes taken into consideration.
Discarding a subset of Y may change the local dependence structure and thus the causal
structure as shown in the context of d—separation as well as adding new information,
i.e. when considering Y' ~ (Y1,..., Y%, Yii1,...,Ykyr) instead of Y. The concept
of local independence seems to be a sensible starting point for establishing, analyzing,
and visualizing complex causal relations and could therefore be a rewarding topic of
future research.

Appendix

Proof of Proposition 4.3:

For the sake of simplicity we write P(Y (¢;) = y’[Y(t;-1) = y1) = P(Y(¢;)|Y (¢;-1)).

Since

P(Ya(ti), Ya(ti1), .., Ya(to))
P(Y 4(ti1),--.,Ya(to))

P(YA(t)|[Ya(tior), ..., Yalto)) = (11)

consider first

P(Ya(t). Yaltio), . Yalta) = S POY(1). Y (). Y (1)

i

= Z;P(Y(to))HP(Y(tj)IY(tjfl))- (12)

J=1

Since
PY ()Y (tj-1)) = P(Y 0 ()| Y1 a0y (8j-1)) P(Y a1 () Yerpany (8-1)) POY 1)1 Y ey (2i-1)),
where c1(A%) N A =0, we get that (12) equals
[P(Y 40(t0)) [T P(Y a0 (t))[Y 10y (t-1))]P(Y a1 (o))
i=1
> P(Y 5(t0)) [T POY ar (6)[Y cxar) (- 1)) P(Y 4(8) [ Yo ) (t-1)- (13)
F J=1

Further, it follows from

5 POY s ()] Yotgany (1) POY (1) Yty (1-1) = POY ar (6] Yetoany (1))

Vs

that (13) equals X, TTiey P(Yoas () Yaioan (1) P(Y a(t5)[ Ve ) (12)) with
P(Y g(tj-1)[Yeya)(tj—2)) = P(Y 4(to)) for j = 1.
The same argument applied to the denominator of (11) yields the desired result. O
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