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SUMMARY

Recently, new concepts have been proposed for assessing bioequivalence of two drug for-
mulations, namely the so—called population and individual bioequivalence. Using moment—
based and probability—based measures for evaluating the proposed bioequivalence concepts,
criteria have been formulated to decide whether two formulations should be regarded as bio-
equivalent or not. This decision has of course to be based on an adequate statistical method
where the Food and Drug Administration (FDA) guidance (1997) recommends the use of a

bootstrap percentile interval.

In this paper, we discuss theoretical properties such as consistency and accuracy of the
recommended bootstrap intervals. We focus our investigations on the concept of individual
bioequivalence and here especially on the scaled versions of the moment—based as well as
the probability—based measures as recommended by the FDA. As estimates for the former,
we consider those obtained from an according analysis of variance and restricted maximum
likelihood estimators under mixed effect models, where an unbiased estimator of the latter

can be derived from the corresponding relative frequencies.

Some key words: Bioequivalence; Bootstrap percentile; Consistency.



1. INTRODUCTION

Currently, there is a controversial discussion on the assessment of bioequivalence of two
different drug formulations (cf. Hauschke & Steinijans, 1999; for an overview of regulatory
requirements and scientific issues in bioequivalence trials see e.g. Chow & Liu, 1995). Due to
a draft of the FDA guidance (1997) other concepts than that of the average bioequivalence
are of concern. Whereas comparing the mean bioavailability, as for instance the area under
concentration versus time curve (AUC) or the observed maximum concentration (Ciax),
in two populations following from administration of a reference and a test formulation for
assessing average bioequivalence is the current standard, the concepts recently proposed (see
e.g. Anderson & Hauck, 1990; Chen, 1997) also account for the between-subject variances
of the bioavailabilities and their within—subject variances, respectively. The first aspect is
considered by the concept of population bioequivalence, which is of importance in the case
that a patient receives a new drug for the first time which is referred to as prescribability
(Hauck & Anderson, 1992, 1994). In contrast, by assessing the so—called individual bioe-
quivalence it should be ensured, that two formulations are said to be bioequivalent if the
responses to these formulations do not differ too much in the majority of patients, which is

relevant under the aspect of switchability.

Both concepts require adequate measures for their assessment. Here, various proposals
can be found in the literature (e.g. Eckbohm & Melander, 1989; Anderson & Hauck, 1990;
Sheiner, 1992; Holder & Hsuan, 1993; Schall & Luus, 1993; Esinhart & Chinchilli, 1994;
Schall, 1995; Chinchilli, 1996; Hwang & Wang, 1997; see also Schall & Williams, 1996; for
an overview see e.g. Patnaik et al., 1997), where the discussion focusses on two main ideas.
The first approach measures the discrepancy between the bioavailablities of two formula-
tions, say a reference and a test formulation, comparing the expected squared differences of
the bioavailabilities following the administration of the test and twice the reference formu-
lation, denoted with yr, yg, y%. More formally, this moment—based approach considers two

formulations as bioequivalent if
E(yr —yr)? — E(yr — yx)* < fu. (1)

The second idea is based on comparing the probabilities of the differences of the bioavail-
abilities not exceeding a predefined value r. Using this probability-based approach two

formulations are regarded as bioequivalent if
pr (lyr —yrl <) =pr (Jyr — ypl < 1) > 0, (2)
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or analogously if
pr (lyr —yr| <7)
pr (lyr — Yzl <7)
In (1) and (2) or (3), respectively, 8 as well as r and 6, or 6, are fixed constants determined

> GLZ. (3)

by drug regulatory authorities. Depending on which bioequivalence concept is of interest
and also depending of course on the assumed statistical model for the bioavailabilites, the
expectations and probabilities involved in the above formulae have to be derived. For the
population bioequivalence, yr, yg, and y% in (1) — (3) are considered to be independent
from different subjects, although yr and y}, are identically distributed. For the individual
bioequivalence, yr, yg, and y} are considered to be from the same subject and, thus, are

dependent.

The above moment— or probability—based criteria can also be used in scaled versions,
i.e. scaled with respect to the variance of the reference formulation. A decision among the
resulting four criteria should depend on the within—subject variability and the therapeutic
range of a drug (Schall & Williams, 1996). For the moment-based approach, FDA (1997)

recommended to use the following scaled version of (1):
0 < HU,

where

E - 27E a2 .
- E%&Tl;*yﬁz()gl/z o) if E(yr—yg)*/2 2> 0p

) o
E(nyyT)QBE(nyy;{)Z 1f E(yR — y%)2/2 < O-g

90

and of is a given constant, from which point on the scaled criterion has a wider bioequiv-

alence range compared to its unscaled counterpart. This value has to be determined by
drug regulatory authorities, where the FDA recommended a value of 0.2 for gy. For the
probability—based approach, Schall (1995) considered to replace 7 in (2) or (3) by a constant
times the squared root of E(y, — vk)%

For evaluating the bioequivalence criteria presented above the FDA recommended us-
ing bootstrap confidence intervals, especially a bootstrap percentile interval as proposed by
Schall & Luus (1993). As alternative Schall (1995) derived a bias—corrected bootstrap in-
terval. Several studies of the properties of the bootstrap intervals for assessing individual
or population bioequivalence recently appeared (e.g. Shao, Chow & Wang, 1999). For an
introduction to the bootstrap see Efron & Tibshirani (1993). A detailed discussion of the
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theoretical behaviour of bootstrap intervals in general can be also found for instance in Shao
& Tu (1995).

In the following, we focus on investigating bootstrap percentile intervals for the assess-
ment of individual bioequivalence. With some minor modifications, our results and dis-
cussions can be applied to bootstrap percentile intervals for the assessment of population
bioequivalence. In the next section, we show that under the moment—based approach with
the scaled individual bioequivalence parameter defined in (4), the standard bootstrap per-
centile interval and the bootstrap percentile interval proposed in FDA (1997) are consistent
under fairly weak conditions. Also, both bootstrap percentile intervals are found to be incon-
sistent if the model parameters vary in a subset of the parameter space with zero Lebesgue
measure. Furthermore, the accuracy of these bootstrap percentile intervals and the bias-
corrected and accelerated bias-corrected bootstrap percentile intervals is briefly discussed.
The probability—based approach with scaled or non-scaled individual bioequivalence param-
eter is considered in § 3. We show that the bootstrap percentile interval described in Schall
& Luus (1993) is generally inconsistent. The standard bootstrap percentile interval is then

derived and its consistency is established.

2. MOMENT-BASED APPROACH

2.1 STATISTICAL MODEL AND HYPOTHESIS

In the draft of the FDA guidance of 1997, in general, a replicated crossover design of
the bioequivalence study is recommended to obtain estimates of the above bioequivalence
parameters. Here, for instance, a two by three crossover design is suggested for assessing
individual bioequivalence. In the first sequence, n; patients receive three drug treatments
in the order of TRR (where T=test formulation, R=reference formulation), whereas in the
second sequence, no patients receive three drug treatments in the order of RT'R. The total
number of patients is n = n; + ny. Note that the bootstrap procedures and our discussion
of their consistency can be easily modified to the cases where other types of two by three
crossover designs (e.g., TRT and RTR) or two by four crossover designs (e.g., TRT' R and
RTRT) are used.

For the ith patient in the jth period and kth sequence, let y;;;, be the observed phar-

macokinetic response (bioavailability) or its logarithm. The following statistical model is



assumed:

Yije = 1+ Fi + Py + Qr + Wik + Sikt + €k (5)
where p is the overall mean; P; is the fixed effect of the jth period (3; P; = 0); Q is the
fixed effect of the kth sequence (3, Qx = 0); F; is the fixed effect of the [th drug formulation
(I =T when (j,k) = (1,1),(2,2) and | = R otherwise, Fr + Fr = 0); W)y, is the fixed effect
of interaction (sum of W;;;’s over any index is 0); Sy is the random effect of the ith subject
in the kth sequence under drug formulation ! and (Sir, Sikr), @ = 1,...,nk, k = 1,2, are
independent identically distributed random vectors with mean 0 and an unknown covariance

matrix

2
POBTOBR OBR

2
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Y
e;;r’s are independent random errors with mean 0 and variance o3, and (Syr, Sikr)’s and
e;;’s are independent. Note that 0%, and o%p are between—subject variances and 0%, and

0% are within-subject variances.

Under model (5), one can show that ¢ in (4) is equal to

2 2 2 2 2
Fr—Fp)* 4+ o0pp +0gr — 200105, + Oyr — Oiyg
SR
max{og, oy p}

)

: (6)
that is, # is a nonlinear function of Fr — Fr and the variance components.

Let 6y be given by (1). Assessing individual bioequivalence can be carried out by testing

the following hypotheses
Hy:0>0y, versus H;:0<0. (7)

It can be claimed if and only if Hy in (7) is rejected at the 5% significance level.

2.2 THE BOOTSTRAP TEST PROCEDURES

The following bootstrap test procedure is suggested in FDA’s draft guidance.

Step 1: The individual bioequivalence parameter 6 in (6) is estimated by
(FR - FT)2 + 0% + 0hr — 200500 pR + Olyr — Gy
max{og, 6%}

9 = ) (8)
where Fr, Fr, 67, Opr:p, Owr, and Oy g are estimated using analysis of variance or

the method of restricted maximum likelihood under mixed effects models. This can be
done by using for instance the SAS procedure PROC MIXED.



Step 2: Let Yix = (Vitk, .., Yisk) and Yy = (Yig, ..., Yy,x). For each fixed k, generate a sim-
ple random sample Y;** = (Yi¥,...,Y;”%) with replacement from Yj. In other words,
Y is obtained using subjects as sampling units, stratified by sequence. Repeat this
process b = 1,..., B times independently to obtain Y;*',....V;*B, k = 1,2. These are
called bootstrap samples. In FDA’s draft guidance, at least B = 2, 000 replications are

suggested.

Step 3: For each b = 1,..., B, compute Fi¥, Fib, 53 &%, p5* 60, and 638, by using the

same methods as those in step 1 but with the data set (Y7, Ys) replaced by the bootstrap
data set (Y, Y;?), and let

(F*b F*b) +(0'BbT)2+(&*BR)Z Qp*ba*bTUBR+(UWT)2 (U?/IZ}RP f ~9 > 9
2 I Owr Z 99
.- O3y r)
0" = (9)
(F;%biF%b)2+(g.*BbT)2+(g.B )2 22p*b *b O.BbR+(a.;VbT)2 (U;/I?R)Q lf a_%VR < O-g
90

Step 4: Let §FDA(95) denote the 95th percentile of **, b = 1, ..., B. Then individual bioequiv-

alence can be claimed if and only if éFDA(95) < 0y.

This procedure will be called FDA’s bootstrap procedure.

If we replace 6*% in (9) by

(Fp = FP°) + (03r)° + (05r)* — 20" 03005k + (0301)° — (637 R)°
max{og, (61 r)?} ,

é*b —

(10)

then the previously described procedure becomes the standard bootstrap percentile method
(Efron & Tibshirani, 1993, § 13.3).

2.3 THE CONSISTENCY OF THE BOOTSTRAP INDIVIDUAL BIOEQUIVALENCE TESTS

Let
Y= (FR; Fr, p, U%T:U%RaagvT:U%VR)a
'3/ — (ﬁRa FT} ﬁa &%Ta &%Ra &I%VTa &I%VR)
and

;Y*b = (ﬁ;b) ﬁ;ba 50 (6*BbT)27 (U*BbR)27 (a-;;II;T)ZJ (6;1[;1%)2)



Then 6, 6, and 6** can be written as 6 = g(v), 0 = g(¥), and 6** = g(¥™), respectively, for

a continuous function g.

Note that if oy r # 09, then the function g is differentiable in a neighborhood of 4 and,

hence, the consistency of the bootstrap procedure follows if

Vild =) =4 N(0, %) (11)

and
V(¥ —4) —a N(0,%), (12)

where n = ny + ny, ¥ is an asymptotic covariance matrix for \/n49, and 4* = 4* for a fixed
b.

If 4 is obtained from an analysis of variance, then 4 is a differentiable function of several
sample means and (11) and (12) hold under some moment conditions. In case that the

restricted maximum likelihood method is used, 4 is obtained by solving an equation
ik

with a known differentiable vector—valued function 1. We have the following result, where

the proof is given in an appendix.

Lemma 1. Suppose that 4 is obtained by solving equation (13) and 4" is obtained by
solving the same equation with {Yj;} replaced by the bootstrap sample {Y;;}. Assume that
(i) ni/ng — c € (0,1);
(ii) the function (-, -) is continuous and v (y, -) is continuously differentiable for each fixed
Ys
(iii) E(¢(Yik, 7)) = 0 when + is the true parameter value;
(iv) there is a 6 > 0 such that E||¢(Yi,v)||**? < oo and, for any compact neighborhood
C of v, E(hc(Yik))'™ < 0o, where he(y) = supsee |09 (y, B)/0B;
(v) liminf, A[n"'var(s,(v))] > 0 and liminf, A\[-n"'E(Vs,(v))] > 0, where s,(8) =
Yk ¥(Yik, B), Vs,(B) = 0s,(8)/083, and A[A] is the smallest eigenvalue of the ma-
trix A.

If {#} is a consistent sequence of solutions of equation (13) and {%"} is a consistent sequence
of solutions of the bootstrap analogs of (13), then (11) and (12) hold.



Since the conditions required for the function v are satisfied for the restricted maximum
likelihood estimator with some moment conditions and if for instance the error terms e;;, and
the random effects S;x; in model (5) are assumed as normal, the consistency of the bootstrap

percentile test procedure is an immediate consequence of Lemma 1.

Theorem 1. Assume the conditions in Lemma 1. Let éBp(95) be the 95th percentile of the
bootstrap distribution of 0. If owg # 09, then

pr (05p(95) > 0) — 0.95, (14)

Proof. Note that 0 = g(), 0 = ¢g(¥), 0** = g(#%™), and g¢ is a continuously differentiable
function in a neighborhood of 4 if oy # 0. The result follows from Lemma 1 and standard
results for the bootstrap (e.g., Shao & Tu, 1995, § 3.1.5 and § 4.2.1).

We now turn to FDA’s bootstrap procedure. Suppose that oz > 0g. For the consistency
of the bootstrap tests, we only need to focus on the event {63, > 02}, since pr (655 >
02) — 1. Comparing (9) and (10), we conclude that for the event {62, > o2}, 0 = §*
and, thus, the consistency of FDA’s bootstrap procedure follows from the consistency of the
bootstrap percentile procedure. The same conclusion can be made if oy r < 0y. Hence,
under the conditions in Theorem 1, the FDA’s bootstrap procedure is also consistent if
owr # 09. The question what happens in case that oy g = 0¢ is addressed in the next

section.

2.4 THE INCONSISTENCY OF THE BOOTSTRAP INDIVIDUAL BIOEQUIVALENCE TEST
PROCEDURES

If owr = 09, however, both standard bootstrap percentile and FDA’s bootstrap pro-
cedures are inconsistent, i.e., (14) does not hold. This is because the function ¢ is not
differentiable at v when oy = 0y and, consequently, /n(6* — ) and /n(f — 0) have dif-
ferent limiting distributions, which can be proved using similar arguments as in Shao (1994)
or as in Example 3.10 in Shao & Tu (1995).

We may use the so called m-out-of-n bootstrap procedure (see, e.g., Shao & Tu, 1995,
§ 3.6) to obtain a bootstrap test that is consistent regardless of whether oy p = 0y or not.
However, the m-out-of-n bootstrap procedure is not as efficient as the standard bootstrap
procedure when the latter is consistent. Practically speaking, the inconsistency of the boot-

strap procedures discussed here is not very serious, since the inconsistency occurs only when



the true parameter vector -y is in a subset of the parameter space with zero Lebesgue measure.

For a further discussion on practical implications of this restriction see also § 4.

2.5 THE ACCURACY OF THE BOOTSTRAP INDIVIDUAL BIOEQUIVALENCE TEST
PROCEDURES

To improve the accuracy of bootstrap confidence bounds, i.e. the convergence rate in (14),
a number of different bootstrap procedures have been proposed and studied in the literature.
In particular, we may apply the bias—corrected bootstrap percentile or the accelerated bias-
corrected bootstrap percentile method in the individual bioequivalence problem (Efron &
Tibshirani, 1993, § 22.4 & 22.5).

If 4 is obtained from an analysis of variance, then the accelerated bias—corrected boot-
strap percentile method is second—order accurate, whereas the bootstrap percentile and
bias—corrected bootstrap percentile are only first—order accurate assuming that owr = 0y.
FDA’s bootstrap is also first—order accurate. Although we may try to improve FDA’s boot-
strap procedure by using the bias—corrected or accelerated bias—corrected type of percentile
method, it does not lead to any second—order accurate bootstrap procedures, because of the

difference in the denominators of (9) and (10).

If 4 is a restricted maximum likelihood estimator, it is unknown whether the accelerated
bias—corrected bootstrap percentile is second—order accurate, because of the lack of theory

in Edgeworth expansions for the restricted maximum likelihood estimators.

3. PROBABILITY-BASED APPROACH

3.1 THE INDIVIDUAL BIOEQUIVALENCE PARAMETER AND BOOTSTRAP TEST
PROCEDURES

We use the same notation given in § 1 and § 2. Under the probability-based approach,

the individual bioequivalence parameter is defined on the left hand side of (2) or (3), i.e.,
0 = Prr — Prr or Prg/Prg, (15)

where Prgp = pr (lyr —yr| < 1), Prr = pr (lyr — y| < 1), and r is a constant or r = roowr
with a constant ry. Two drug formulations are regarded as individually bioequivalent if and

only if # > 6. Assessing individual bioequivalence can be carried out by testing

Hy:0<6;, versus H;:0>0,. (16)



From now on we focus on the case of § = Prr/Pgg, since the discussion for the case of

0 = Prr — Pgpg is exactly the same.

We again consider the two by three crossover design described in § 2.1 and assume model
(5). For each subject (fixed 7 and k), taking the difference between two observations under
formulation R gives

Yior — Vi1 = Oo31 +€ip1 — €31 (K =1)
and

Yit2 — Yiso = 0132 + €12 — €32 (kK =2),
where 0931 = Py — P3+ Wgo1 — Wgs1 and 0130 = P — P3 + Wgis — Wgso. Unfortunately, the
distribution of y;21 — yi31 (Or Yi12 — ¥is2) is not the same as that of yr — y), unless doz1 = 0

(or d132 = 0), which is true when there is no period or interaction effect. Similarly, the

differences
Yir1 — Yior = Fr — Fp + 0121 + Sir — Sar + €11 — €z
Yir1 — Yis1 = Fr — Fp+ 0131 + Sar — Sar + €11 — €31
Yioz — Yirz = Fp — Frp + 0212 + Siar — Siar + €i22 — €412
and

Yioz — Yisz = Fr — Fr + 0232 + Sior — Siar + €io2 — €i32
do not have the same distribution as that of y; — yg, unless d197 = 0131 = 0912 = o320 = O,
where 0191 = Py—Py+Wr11 —What, 0131 = Pr—P3+Wri—Whesy, 0212 = Po—Pi+Wrae—Whria,
and 0g32 = Py — Py + Wrgy — Whaa.

We consider first the case where r is a known constant (the case of r = rooy g is considered
in § 33) Let 6 = (6121, (5131, 6212, (5232, (5231, 6132). If 6 is kHOWH, then

R 1 n1 no
Prr(0) = " [ZI (Jyi21 — Yis1 — Oas1| < 1) 4+ DI (|yir2 — yis2 — G132| < 1)

i=1 i=1

and L [
Prr(0) = o [ZI (|yirr — ior — G121 < 7) + T (|yirr — Yis1 — S| < 1)

i—1
n2

+ > 1 (Jyiz — iz — 0212| < 7) + 1 (Jyinz2 — Yiz2 — G232 < 1)
i—1

are unbiased estimators of Prg and Prg, respectively, where I(A) is the indicator function

of an event A.
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Since § is usually unknown, Schall & Luus (1993) have proposed the following bootstrap
test procedure, where J is replaced by an appropriate estimator based on the original data

set.

Step 1: Let Yi, = (vi1k, .., Yisk) and Yy = (Yig, ..., Yn,x). For each fixed k, generate a simple

random sample Y = (Y50, ... V¥

nkk) with replacement from Yj. Repeat this process

b=1,..., B times independently.

Step 2: Let 6 be an estimator of § obtained from an analysis of variance or using the restricted
maximum likelihood method. Let P;%(6) and P4 (0) be the same as Prg(d) and

PRR(d), respectively, but with the y;;;, replaced by the bootstrap data y;‘;’k. Define

6% = Prp(9)/ Prg(0). (17)

Step 3: Let fs.,(5) be the 5th percentile of #**, b = 1,..., B. Then, individual bioequivalence
can be claimed if and only if fs,,(5) > 6.

However, it is shown in the next section that this bootstrap test procedure is inconsistent

in the sense that

pr (B5(5) < 6) £ 0.95. (18)
If we replace 6*° in (17) by

i = PG B,

where §* is the same as 0 but is computed based on the bootstrap data set (Y;, Y;?), then
the previously described procedure becomes the standard bootstrap percentile method. We

show in the next section that the bootstrap percentile test procedure is consistent.

3.2 THE CONSISTENCY OF BOOTSTRAP INDIVIDUAL BIOEQUIVALENCE TESTS

We first establish the consistency of the bootstrap percentile method. Let Pjip(t) (or
Pio(t)) be Piby(t) (or Pib.(t)) with a fixed b. We need the following result.

Lemma 2. Assume that n;/ny — ¢ € (0,1) and that the distribution functions of yr — yr

and yp — Yy are continuous and differentiable. Then

sup | Pri(t) — Pra(8) — Pra(t) + Pra(6)| = o,(n~"/%) (19)

[[t=0]|[<en—1/2
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and
sup | Pyp(t) — Prp(0) — Pra(t) + Pre(6)| = o)(n~'/?) (20)

t~5|<en—1/2

for any constant ¢ > 0, where Prg(t) = E[Prg(t)] for any t and Prg(6) = Prg. Results (19)
and (20) also hold if Prg is replaced by Pgpg.

Proof. Since Prg(t) is a type of empirical distribution estimator of Prg(t), result (19) is a
standard result in probability theory (e.g., Serfling, 1980, Lemma E, p. 97). Result (20) is a
bootstrap analog of (19) and is proved in Shao & Chen (1998, Lemma 1).

Theorem 2. Assume the conditions in Lemmas 1 and 2. Let éBp(5) be the 5th percentile
of the bootstrap distribution of * = P;,(6*)/P};x(6*). Then, it holds that

pr (Opp(5) < 0) — 0.95.

Proof. Following the proof of Lemma 1 we obtain that

~

V(o —6) —q N(0, %)
and
V(6" = 8) =4 N(0,%5),

where Y; is a covariance matrix. From result (19) in Lemma 2, we have
Prr(6) — Prr(8) = Prg(0) — Pra(d) + Prr(6) — Prr(9)

= Prp(8) — Prr(8) + Prp(8) — Prp(0) + o,(n"/?)
= P}(0)(6 — 8) + Prr(8) — Prr(8) + op(n~"/?),

which converges in law to a normal distribution with mean 0. The same result holds if Prg
is replaced by Prg. Hence, it suffices to show that Pjin(6*) — Prr(6) has the same limiting
distribution as that of Prg(8) — Prr(8). From results (19) and (20) in Lemma 2, we obtain
that

Pyr(0%) = Prr(0) = Pjp(6%) — Pra(d) + Prg(0) — Pre(d)
= Pra(d") -
= Pra(0") — Pra(d) + Pjx(6) — Prr(d) + o,(n /%)

= PII“R(S)(S* —6) + Py R(0) — Prr(d) + op(n='/?)

A

Pre(d) + Pjr(d) — Prr(d) + op(n /%)

12



= Pig(8)(0" = 8) + Pig(8) — Pra(8) + op(n™'1?),

which has the same limiting distribution as
Pp(8)(0 — 8) + Prr(6) — Pra(d). (21)

The same result holds if Prg is replaced by Prr. This completes the proof.

The inconsistency of the bootstrap test procedure proposed by Schall & Luus (1993) (i.e.,
result (18)) follows from the consistency of the standard bootstrap percentile test procedure
(Theorem 2) and the fact that Pj,(6*) and Pip(6) have different limiting distributions.

Under the conditions of Theorem 2, it follows from Lemma 2 that
Py p(6) = Pra(d) = Pig(6) = Pra(6) + o)(n™'7?),

which has the same limiting distribution as that of Prr(8) — Prr(d), not that of the quantity
given in (21) in the proof of Theorem 2. Hence, the asymptotic distributions of P (8) and
P;,(6%) are different.

3.3 THE CASE OF 7 = rg0wr

Schall (1995) suggests the use of r = roow g instead of a constant r in the definition of

the individual bioequivalence parameter 6 in (15). Define
R 1 ni no
Prr(d,0wr) = - [ZI (Jyi21 — Yim1 — Oas1| < roowr) + D1 ([yi2 — yiz2 — 132] < TOUWR)]
i—1 i1
and
1

~ 71
Prr(d,0wr) = on [ZI (lyi11 = yior — 11| < roowr) + 1 (|yinn — yiz1 — 0| < roownr)
i—1

n2
+ ZI (1Yi22 — itz — 0212 < roowr) + I (|Yin2 — Yizz — Oaz2| < TOUWR)] .
=1

If 9 and oy i are known, then these estimators are unbiased for Prp and Prg, respectively.
Let 6w g be an estimator of oy i obtained from an analysis of variance or using the restricted

maximum likelihood method. Let

é*b = pi*“g{(g*a &%R)/plgl;{(g*a &;;VR)7

13



where Pib, Pih. 6* and &3, are bootstrap analogs of Prg, Prg, 8, and Gy g, respectively,
and the bootstrap samples are obtained as described in § 3.1. Let éBp(5) be the 5th percentile
of é*b, b = 1,...,B. Then, the standard bootstrap percentile test rejects Hy (i.e., claims
bioequivalence) if and only if éBp(5) > 0.

Following the proof of Theorem 2 with § replaced by (J,o0wr), we conclude that this
bootstrap percentile test procedure is consistent. On the other hand, the bootstrap test
using the 5th percentile of 6* = Pib,(5, 6w g)/Pih (0, 6wr), b = 1,..., B, is inconsistent for

the same reason discussed at the end of § 3.2.

Thus, it is crucial to achieve consistency of the probability—based bootstrap procedure
that the unknown parameters oy and also § are estimated from each bootstrap sample
within the algorithm and not only once using the original data set. This is in contrast to
the moment—based approach investigated in § 2, the consistency of which also holds if the
decision about the reference scaled or constant scaled version of the bioequivalence parameter

is only based on the original data set.

4. DISCUSSION

As seen from the proofs in the preceding sections the FDA’s bootstrap procedure using
the moment—based approach yields a consistent test procedure in case that the within—
subject variance does not equal the point from which on the scaled criterion has a wider
bioequivalence range than the unscaled. In turn this means that the procedure is inconsistent
only if oy r = 0p. Note that this restriction is, however, of nearly no practical relevance
since on the one hand it only concerns a single point, an event which should occur only
seldom, and on the other hand there is some degree of freedom in the choice of oy. This
value is fixed by a regulatory decision based on reflections such as in the draft of the FDA
guidance, Appendix A (1997) or in Schall & Williams (1996). The latter for instance have
recommended that oy might be chosen smaller than 0.3 because a within—subject coefficient
of variation taking a value of 30% has already been commonly regarded as highly variable.

The derivation of the FDA has come up with a value of 0.2.

The proposal by Schall & Luus (1993) based on a comparison of the probabilities of
the difference between corresponding bioavailabilities instead of moments, however, turns
out to be inconsistent, although it can be easily modified to get a consistent bootstrap test

procedure, namely the standard bootstrap percentile method as discussed in § 3.2.
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Of course, one should be aware of the fact that the above results are asymptotic in
nature. Thus, additional investigations based on real-data examples and simulation stud-
ies are called for to judge their applicability in finite situations. This does not only concern
their actual coverage probabilities, but also power considerations and sample size determina-
tions. Comparable analyses can be found for instance in Schall (1995) for the bias—corrected
bootstrap, Kimanani & Potvin (1997) for a parametric confidence interval, Hauschke et al.
(1999) for a confidence interval from untransformed, normally distributed data for the ratio
of two means, and in Shao, Chow & Wang (1999) for the bootstrap percentile method, the
bias—corrected bootstrap, and the hybrid bootstrap. Examples for case studies of individual
bioequivalence are among others given in Schall & Luus (1993), Endrenyi (1994), Schall
(1995), and in Shumaker & Metzler (1998).

Nevertheless, the obtained results may help to take away some of the discomfort re-
lated to the use of bootstrap intervals for statistically evaluating individual or population
bioequivalence.
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APPENDIX: PROOF OF LEMMA 1

The proofs of (11) and (12) follow standard arguments in asymptotic theory. Since the proofs

are similar, we only prove (12).

Let s (08) = Xix (Y}, 8) and Vs (3) = 0s;,()/03. From the mean-value theorem and
the fact that s’ (") =0,

—shl3) = [ [ Vs + 1" - )

It follows from conditions (i)—(v) and the consistency of 4 and 4" that

3 =)

[ s+t = e = 95,3 = 000

Let E, be the bootstrap conditional expectation, given Yy, £ = 1,2, and let H,, = E,(Vs}(¥)).

By the law of large numbers and conditions (i)—(v),

st - ) = 01)
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and, consequently,
—H,'s3,(3) = {1+ 0,(D}H — 4).

Thus, (12) follows if we can show that
Vi PHL s (9) —a N(O, D), (22)

where V,, = E.[s%(4)s:(%)'] (note that E.[s:(%)] = s,(%) = 0). Using Liapunov’s central

limit theorem, result (22) follows from
1
i 2 Bl HT (Y, )P = 0,(1) (23)
(l/an)1+5/2 7 p

for any nonzero vector [ with the same dimension as 7. The proof is completed since result
(23) follows from conditions (i)—(v).
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