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A short note on quantifying and visualizing yearly
variation in online monitored temperature data

Göran Kauermann1 and Thomas Mestekemper2

1Department of Statistics, Ludwig-Maximilians-University Munich, Germany
2University Bielefeld, Center for Statistics, Bielefeld, Germany

Abstract: The paper demonstrates how seasonal variation in sequentially arriving temperature data
can be visualized by the specification of landmarks and subsequent time warping. We exemplify the
idea with water temperature data from the river Wupper in northwestern Germany and with air
temperature data from Berlin, Germany. Landmarks are thereby based on temperature thresholds. The
method allows to assess whether the seasonal variation is running ahead or behind the average.
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1 Introduction

We consider yearly water and air temperature variation, respectively. For the first,
we analyze data from the river Wupper in the northwestern part of Germany. For
the second, we look at air temperature taken in Berlin, Germany. For both examples
we focus the question how to identify variation of the annual temperature course.
Evidently, not all years are equal and even though the seasons are the dominating
factor, the beginning and end of warm and cold temperature seasons are variable
and can shift between years. In this paper, we focus on the problem of assessing from
a statistical perspective whether in a particular year the season is running behind or
ahead of the ‘average year’. Note that the ‘average temperature’ in an average year
has to be defined on both axes. First, the temperature curve showing the average
temperature at each time point. Second, the time axis which shows a standardized
time scale which for a particular year is stretched or compressed over some periods
of the year. In this paper, we are primarily interested in the second component, i.e.,
derivations form the ‘average year’ in terms of stretching or compressing time.
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The data of the first example give upstream water temperature which are not
affected by any kind of (relevant) human interference. The curves of the maximum
daily water temperatures are shown in Figure 1 with observations being shifted
vertically (by 10◦C) for better visual impression. Years are fixed here to last from
1 July to 30 June instead of the Julian calendar, which is more coherent with the
seasonal and biological pattern. Just by pure visual inspection we see a number of
features. For instance, summer 2003 started early (mid May) and lasted long (until
September), or winter 2005 started early (mid November). Our intention is to get
statements like these more formally based on statistical grounds.

The data we consider are functional. Functional data analysis is a term coined
by Ramsay and Silverman (2005) and recently further discussed in Ferraty and Vieu
(2006) and Ramsay et al. (2009). The problem we are tackling is also known under
terms like warping or registration. An early reference is Kneip and Gasser (1992)
or Gasser and Kneip (1995). They define landmarks by assuming that the data are
individual smooth functions disturbed by noise. The individual functions are then
used to reveal common structures like local maxima and minima which are then
defined as landmarks. Silverman (1995) discusses additive shifts on the time scale,
see also Rønn (2001). Ramsay and Li (1998) and Gervini and Gasser (2004) suggest
an automatic warping or also called self-modelling warping. They look at vertical and
horizontal deviations simultaneously. A wavelet approach in this direction has been
proposed in Bigot (2006). More recently Liu and Yang (2009) describe a procedure
for simultaneous registration and clustering of curves.

The data structure and the focus of our data analysis do not allow for a direct
application of the methods described above because of the following reasons. First,
looking at our data it appears that the only clearly exposed local extrema mark sum-
mer and winter and other local extrema appear more as spurious events. Hence, the
underlying ideas of finding local extrema as suggested in Gasser and Kneip (1995)
seem not fruitful except of defining these two yearly extrema. Second, all methods de-
scribed above are designed for a retrospective point of view, that is, the complete data
of an observation period are necessary to run a warping or registration procedure. In
our example, this would mean, based on the data of a year we could retrospectively
decide whether seasons were running ahead or behind the ‘average year’. We want,
however, a procedure reacting ‘online’ by looking at recent measurements. Hence,
based on data collected in the progression over a year, we want to decide whether the
temperature is running ahead or behind the average. Third, our yearly observations
are not independent replicates but consecutive, that is the end of one year is the
beginning of the next year. In so far, yearly warping functions must connect contin-
uously. To overcome these issues we suggest to find landmarks in a data-driven style
and to retrieve structures which can be found quite reliably every year. To do so, we
consider the daily average temperatures (see, e.g., Figure 1) and employ statistical
tests to recent temperature measurements in order to decide whether a pre-specified
temperature threshold has been significantly exceeded or fallen below. By only look-
ing at small time windows of recently available temperature values we can justify the
‘online’ applicability of our method.

Statistical Modelling 2012; 12(2): 195–209

 at LMU Muenchen on June 12, 2013smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


April 5, 2012 16:52 04-SMJ-12-2

A short note on quantifying and visualizing 197

Month

(S
h

if
te

d
) 

te
m

p
er

at
u

re
 in

 °
C

2002

2003

2004

2005

2006

2007

2002

2003

2004

2005

2006

2007

2008

2003

0 
   

   
   

   
   

10
   

   
   

   
   

   
20

   
   

   
   

   
 3

0 
   

   
   

   
   

 4
0 

   
   

   
   

   
50

   
   

   
   

   
 6

0 
   

   
   

   
   

  7
0

J         A         S         O         N        D         J          F       M         A        M        J

Temperature curves

Figure 1 Daily average water temperature recorded from 1 July 2002 to 30 June 2008. For visualization pur-
poses, the curves from the second year onwards have been shifted by cumulatively adding 10◦C

The paper is organized as follows. In Section 2, we suggest our landmark criteria.
The resulting landmarks are then used for time warping. Section 3 investigates the
variability of the landmark specification before Section 4 provides the analysis for
our two datasets. Section 5 concludes the paper.
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2 Landmark specification

2.1 Underlying model

Before giving our landmark definitions, we introduce our notation and define the
underlying model. Let wt be the daily average temperature at time t, where time t
can be expressed as t = (i, d) with i indexing the year and d giving the day in the
year (yearday). We assume that the seasons in year i are compressed and stretched
through the monotone function πi (d) which describes whether at day d the yearly
temperature course is like in the average year, i. e., πi (d) = d, whether it is running
ahead of the average year, i. e., πi (d) < d, or behind, i. e., πi (d) > d. Hence, the time
transformation πi (d) works by accelerating or slowing down time, respectively. The
function is called time-warping function subsequently. With d ∈ [1, 365] as day in
year we could in principle postulate πi : [1, 365] �→ [1, 365], ignoring leap years for
simplicity. But in this case, consecutive years would not show a continuous warping
structure and we therefore postulate that πi (365) and πi+1(1) merge continuously.
We will come back to this point later. The model is now defined through

wt = μw(π−1
i (d)) + εt , (2.1)

where μw(d) is the mean temperature at day of the year d, averaged over the available
years of data. Residual εt in (2.1) has zero mean but serial correlation is likely and
will be taken into account later in the paper. Our intention is now to estimate πi (d),
preferably in an ‘online’ manner, i. e., without having full years of data available.
To specify function πi (d), we allocate a number of landmarks, i. e., time points with
clearly defined properties on the data. In a final step, the landmarks will give the
information about the warping functions πi (d).

2.2 Temperature thresholds

A set of easy to calculate landmarks can be located by looking at temperature thresh-
olds, that is we specify the time point when the water temperature course exceeds or
falls below a specific value. This can be done with a moving average crossing water
temperature threshold. We here pursue an alternative though practically similar idea.
We apply simple t-tests to the daily mean temperature wt̃ in a small time window
t̃ ∈ {t − 14, . . . , t} and test the hypothesis

H0 : E(wt̃) ≥ η for t̃ ∈ {t − 14, . . . , t}, (2.2)

against its one-sided alternative. As temperature thresholds we choose η ∈ {7◦C,
8◦C, . . . , 16◦C} for the water temperature example and η ∈ {4, . . . , 14} for the
air temperature. We set the landmarks for temperature η when the corresponding
p-value of the test crosses the .1 threshold. Exemplarily the p-values for the water
temperature example at η = 7◦C, 11◦C and 15◦C and the related landmarks are
shown in Figure 2. Note that this criterion results in two possible landmarks per

Statistical Modelling 2012; 12(2): 195–209
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Figure 2 First three panels: p-values of the one-sided t-tests to hypothesis (2.2) for η = 7◦C, 11◦C, 15◦C taking
into account 15 consecutive days. Bottom panel: daily average water temperature. The vertical dashed lines
mark the positions of the daily mean temperature landmarks for η ∈ {7◦C, 11◦C, 15◦C}

threshold and per year. The first is set when the p-value exceeds the threshold for
the first time in the year and the second is set if the p-value falls below the threshold
for the first time. As we need an online criterion, we only count the first threshold
crossing from either side for each year though there might be more than one crossing

Statistical Modelling 2012; 12(2): 195–209
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within a small time window. We therefore introduce an additional stability restriction
in that we postulate that the minimum distance between two adjacent landmarks for
the same value of η is 30 days. As a consequence, it can happen that for some years
not all landmarks are found. If a landmark is missing, it is simply left out in the
calculations below. In total, our approach results in a set of pairs of landmarks based
on the average daily temperature which are coherent in terms of monotonicity, i.e.,
whose sequence is the same for all years.

2.3 Extreme points

The temperature threshold approach only provides reliable results during the
warming-up phase in spring and the cooling phase in autumn. Consequently, we
do not obtain landmarks for the summer or winter months. These are, however, the
time windows with the minimum and maximum temperature. We therefore make use
of local extrema as further landmark criterion. To pick the exposed extreme points
is quite natural for a seasonal time series that follows a roughly sinusoidal pattern.
Note, however, that a major drawback is that these landmarks cannot be calculated
in a stable way when data arrive sequentially, so that we need sufficient data around
the extreme points which is a kind of retrospective point of view. Stable results can be
obtained by first smoothing the historical data and then defining landmarks when the
derivative of the resulting smooth function crosses zero. We make use of penalized
spline smoothing as proposed in Eilers and Marx (1996) and extensively discussed in
Ruppert et al. (2003). In fact, the smoothing package SemiPar in R allows to fit a
smooth function and its derivative as shown in Figure 3 where the selected landmarks
for the water temperature data are given by vertical lines.

Let now Li,k denote the kth landmark in year i where k indexes temperature
threshold from Section 2.2 as well as yearly extrema described above. Note that
Li,k may exceed the interval [1, 365] which happens if a landmark that is normally
located near the beginning or end of a year is shifted into the adjacent year. In the
next step, we will use the set of landmarks to calculate the time-warping function
π̃ (t).

2.4 Landmark-based time warping

After allocation of the landmarks, we can now focus on our primary goal to esti-
mate the warping functions πi (d). We apply a landmark-based curve registration as
developed by Kneip and Gasser (1992) and Gasser and Kneip (1995). We therefore
rewrite the temperature wt as wi (d) indicating the temperature in year i at day of the
year d. We assume that the course carries annual characteristics but may be shifted
in time. We therefore need a (strictly) monotone time transformation d �→ πi (d) such
that

wi (d) = μw(π−1
i (d)) + εt, (2.3)

Statistical Modelling 2012; 12(2): 195–209
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Figure 3 Top panel: the grey line represents the smoothed average daily temperature. Bottom plot: first
derivative of the smoothed average daily temperatures. Landmarks are marked by vertical dashed lines

where μw(d) is the mean temperature curve that serves as reference for historical
and new data. The approach of Kneip and Gasser (1992) has to be extended to
our application in so far that the functional observations wi (d) are not independent
observations in i but parts from the same time series wt. Therefore, we derive a time-
warping function π̃ (t), say, which holds for the entire data and define πi (d) = π̃ (t),
bearing in mind that time t is indicated by year i and day d. That is, instead of
estimating time-warping functions for every year of data separately, we fit a single
time-warping function for the entire time series. Note that this also allows to apply
the routine if data arrive sequentially and we do not need all data and landmarks
from an entire year to be able to employ the time-warping procedure. If landmarks
in the current year are not yet available, they are simply left out in the calculation
of their corresponding reference landmark time point. Reference landmarks are now
defined for each k through

L̄k =
1
I ′

I′∑
i=1

Li,k,

Statistical Modelling 2012; 12(2): 195–209
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giving the average location of the historical landmarks over the years. Here I ′ = I−1
if the kth landmark has not been reached in the current year, yet, and I ′ = I otherwise
with I as current year. The landmarks and their reference points in the entire data
series are given by

L̄i,k = (i − 1) · 365 · L̄k and L̃i,k = (i − 1) · 365 · Li,k.

This gives a set of data points (L̄i,k, L̃i,k) and time warping assumes that L̃i,k =
π̃ (L̄i,k) + εi,k, where π̃ is the monotonic time-warping function. To estimate π̃ (·),
we apply monotone smoothing to the data points (L̄i,k, L̃i,k) following Kelly and
Rice (1990). Note that by monotonic smoothing, it is not necessary to impose a
coherent ordering restriction on the landmarks, although they were coherent in our
data example.

We sketch now how the monotone increasing function π̃ (t) can be fitted with
penalized splines. To do so we approximate the smoothed time-warping function
π̃ (t) by a linear combination of a high dimensional B-spline basis of order q through

π̃ (t) =
G∑

g=1

Bg(t)ug,

where we use quadratic B-splines subsequently built upon equidistant knots. A
penalty term on the spline coefficients guarantees a smooth fit, as extensively dis-
cussed in Ruppert et al. (2003). Kelly and Rice (1990) point out that there can be no
more sign changes in π̃ (t) than there are in the sequence of coefficients {ug}g=1,...,G. A
non-decreasing smooth time-warping function can therefore be found by minimizing
the penalized sum of squared residuals

Q(u, λ) =
I∑

i=1

K∑
k=1

(
L̃i,k − B(L̄i,k)u

)2
+

λ

2
u�

t R�Ru�, (2.4)

subject to the constraints that u1 ≤ u2 ≤ . . . ≤ uG, where B denotes the B-spline
basis {Bg(t)|g = 1, . . . , G}, u = (u1, . . . , uG)�, λ is a smoothing parameter and R is
the second-order difference matrix as suggested in Eilers and Marx (1996), i.e.,

R =

⎡
⎢⎣

1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·
...

...
. . . . . . . . . . . .

⎤
⎥⎦.

The constraints on the parameter u can be expressed in matrix form Cu ≥ 0 with
obvious definition for C. This allows to easily solve the minimization problem (2.4)
under the restriction Cu ≥ 0 by quadratic programming. Let therefore u(s) be the
current estimate in the sth iteration step and let u(s+1) = u(s) +δ(s). A Taylor expansion
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of (2.4) yields

Q
(
u(s+1), λ

)
= Q

(
u(s), λ

)
+

∂Q
(
u(s), λ

)
∂u︸ ︷︷ ︸
a(s)

δ(s) +
(
δ(s)

)� ∂2Q
(
u(s), λ

)
∂(u)�∂u︸ ︷︷ ︸

B (s)

δ(s),

so that we have to minimize the quadratic form

(
a(s)

)�
δ(s) +

(
δ(s)

)�
B δ(s), (2.5)

subject to Cδ(s) ≥ −Cu(s). An alternative approach to monotone smoothing with
quadratic B-splines using linear programming for L1-optimization can be found in
He and Shi (1998).

It remains to choose the smoothing parameter λ. We suggest to minimize the
Akaike Information Criterion given by

AIC(λ) = Q(u, 0) + 2 · df(λ),

where the number of degrees of freedom is defined to be the trace of the smoother
matrix

df(λ) = tr(B(B�B + λR�R)−1B�).

For our data examples, we employed a B-spline basis with 10 knots per year. For
the water temperature, the smoothing parameter was chosen to be λ = 0.01579 and
the resulting fit is shown as solid lines in Figure 4. If a season is running ahead of
its correspondent in the reference year, we find πi (d) below the diagonal. A course
above the diagonal means that the season is running late. For example, the winter in
2006 came late and did not last long as it merged with an early spring in 2007.

3 Variability of the time-warping function

The calculated landmarks itself are random variables and their specification is there-
fore stochastic. This induces stochastic variability for the estimation of the warping
function which needs to be assessed on statistical grounds. It is difficult to derive
the variability of the estimation of πi (d), analytically, so that we instead look at the
variability of the landmarks first. In order to assess the variability of the landmark
specifications, we run a bootstrap procedure. The idea is to use model (2.1) in order
to bootstrap the time series wt. From the newly generated series, we can recalculate
the landmarks and derive a bootstrapped time-warping function. This allows us to
assess the variability of the time-warping function.
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204 Göran Kauermann and Thomas Mestekemper

Reference time

J   A   S  O   N  D  J   F  M   A  M  J J   A   S  O   N  D  J   F  M   A  M  J

J   A   S  O  N   D  J    F  M  A  M  J J   A   S  O  N   D  J    F  M  A  M  J

J   A   S  O  N   D  J    F  M  A  M  J

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

J   A   S  O  N   D  J    F  M  A  M  J

Year 2002/2003

late

early early

early early

early early

Reference time

Year 2003/2004

late

Reference time

R
ea

l t
im

e
R

ea
l t

im
e

R
ea

l t
im

e
R

ea
l t

im
e

Year 2004/2005

late

Reference time

Year 2005/2006

late

Reference time

R
ea

l t
im

e

R
ea

l t
im

e

Year 2006/2007

late

Reference time

Year 2007/2008

late

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

J 
 A

  S
 O

  N
  D

  J
  F

 M
  A

 M
  J

Figure 4 Course of the time-warping functions π̂i (d) for the six years of our dataset (black solid lines). The
grey band marks the area where all bootstrapped time-warping functions π̂∗

i (d) where contained in. Observed
landmarks are shown visualized by circles
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For the bootstrap, we use model (2.3) but allow the residual process εt to carry
serial correlation. We therefore assume an autoregressive model

εt =
J∑

j=1

α jεt− j + et, (3.1)

where αk are autocorrelation coefficients and et is a white noise residual process
upon which we build our bootstrap. Note that et may still carry some heterogeneity
and we therefore pursue a wild bootstrap approach (Mammen, 1993). That is, we
draw the bootstrapped residual e∗t from a two-point distribution given by êt · ((1 −√

5)/2, (1 +
√

5)/2) with probabilities ((5 +
√

5)/ 10, (5 −
√

5)/10), where êt are the
fitted residuals based on (3.1). Inserting the resulting bootstrap in the autoregressive
model gives

ε∗t =
J∑

j=1

α jε
∗
t− j + e∗t ,

relying on the J initial values ε1, ε2, . . . , εJ . We then obtain the bootstrapped time
series by setting

w∗
t = μw(π−1

i (d)) + ε∗t .

Applying the landmark criteria from Section 2.2 to this newly generated time-series
yields a set of bootstrapped landmarks and thereby allows the estimation of a boot-
strapped time-warping function π̃∗(t).

4 Data examples

4.1 Water temperature

We first investigate the water temperature data shown in Figure 1. The warping
functions are already shown in Figure 4. To apply the bootstrap, we first have
to calculate the mean temperature function μw(d). We therefore use the warped
mean daily temperature functions w(π̂i (d)) shown in Figure 5. Calculating the cross-
sectional mean of these curves would lead to a wiggly estimation of μw(d). To avoid
this, we instead smooth over the warped temperature courses again using a B-spline
basis but now in cyclic form with six equidistant knots over the year. The resulting
estimation μ̂w(d) is illustrated in Figure 5 as superimposed smooth curve.

We obtain residuals ε̂t by subtracting the re-warped mean function
μ̂w(π̂−1

i (d)) from the observed daily mean temperature curves. Next, we use the
autoregressive model (3.1), where the autoregressive order was set to J = 3 based on
the partial autocorrelation function. We took the empirical residuals êt and employed
the wild bootstrap routine as described above to generate 500 new time series. From
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Figure 5 Warped daily mean temperature courses w̄(π̂i (d )), i = 1, . . . , 6 with smoothed mean temperature
function μw(d) superimposed. Vertical lines indicate the temperature thresholds that were used for the landmark
calculation

each we calculated the bootstrapped time-warping functions π∗
i (d) by employing

the monotonic smoothing described above. The grey shaded space in Figure 4 gives
the area where all 500 bootstrap replica were contained in. The variability is small
except for 2003/2004. Overall, we can now derive statements about the yearly shifts
of seasonal pattern as tentatively formulated in Section 1. That is summer 2003
started early and lasted long (May to September) or winter 2005 started early.
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4.2 Air temperature

As second example we explore air temperature data collected at the (former) airport
Berlin-Tempelhof in Germany. The data at hand give the average air temperature
from 01.01.1991 to 08.12.2010. In the analysis of this dataset, we focus on the
‘online’ use of the warping idea. We therefore use the data from year 2010 to show
how to make use of the above calculation sequentially in time. Starting from 2010,
we recalculate the warping function each time a landmark in 2010 has been reached.
Figure 6 shows these warping functions, where we plot the deviation to the reference
time as separate fitted lines which successively extend the warping function to the
right. The points thereby indicate the landmarks. In the graph, we superimpose the
bootstrap interval calculated from the entire dataset. We see that the variability of
the bootstrap mirrors the variability of the sequential warping functions.

To be more specific, we investigate the variability of the warping function estimates
if new data, that is landmarks, become available. Let therefore L1 < L2 < . . . define
the successively occurring landmarks in 2010 and define with π̂Lk(t) the warping
function estimate calculated at landmark time point Lk with t ≤ Lk. We may look
at π̂Lk(Lj ) for j ≤ k and assess how the estimates vary with increasing k. That is
we look at the landmark time points (real time) in Figure 6 and investigate how the
fitted warping functions vary with further landmarks becoming available. Estimates
π̂Lk(Lj ) for j ≤ k are plotted against Lk in Figure 7, upper plot. The resulting
empirical standard deviation of π̂Lk(Lj ) for j < k is shown in the bottom plot
of Figure 7. Overall, the estimates π̂Lk(Lj ) vary with about two to three days of
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Figure 6 Deviation of fitted warping functions from average year, calculated sequentially with each new occur-
ring landmark. A bootstrap interval is superimposed
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Figure 7 Estimates π̂Lk (L j ) for j ≤ k (upper plot) and their resulting empirical standard deviation

standard deviations, so that the warping function calculated in a sequentially or
‘online’ manner is rather stable.

5 Discussion

In this paper, we demonstrate landmark specification and time warping for tem-
perature data recorded in subsequent years. The proposed method allows to assess
whether the season in a year is running ahead or behind the average. The method
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allows to be applied online in the sense that not the entire data of a complete year are
necessary to draw the warping function. A bootstrap-based procedure is suggested to
assess the estimation variability. Overall, the proposed method is simple but effective,
so that it may allow to be generally used for consecutive temperature recording.
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