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Abstract

This article considers a linear regression model when a set of exact lin�

ear restrictions binding the coe�cients is available and some observations

on the study variable are missing� Estimators for the vectors of regression

coe�cients are presented and their superiority properties with respect to

the criteria of the variance covariance matrix and the risk under balanced

loss functions are analyzed�
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� Introduction

For analyzing the e�ciency properties of any estimation procedure for the co�
e�cients in a linear regression model� the performance criteria is either the
precision of estimates or the goodness of �tted model� In several practical sit�
uations� as pointed out by Zellner ��		
�� it may be desirable to use both the
criteria simultaneously assigning possibly unequal weights� This has led Zellner
��		
� to introduce the balanced loss function following a quadratic structure
for characterizing the losses� Such a loss function is indeed a convex linear
combination of the residual sum of squares and the weighted sum of estimation
errors� It also permits a kind of uni�ed treatment to the two criteria for the
performance analysis�

Application of balanced loss function to some speci�c problems in linear re�
gression models has provided some illuminating �ndings� see� e�g�� Giles� Giles
and Ohtani ��		
�� Ohtani ��		��� Ohtani� Giles and Giles ��		�� Wan ��		
�
and Zellner ��		
�� All these investigations assume that the available data set
is complete and there is no missing observation� Such a speci�cation may not be
tenable in actual practice� and some observations may be unavailable� see� e�g��
Little and Rubin ��	��� for an interesting exposition� In this article� we assume
that some observations on the study variable are missing� Now the estimation
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of regression coe�cients by least squares method using all the observations pro�
vides essentially the same estimators as obtained by an application of the least
squares method to complete observations alone� see� e�g�� Rao and Toutenburg
��		�� Chap� ��� Thus incomplete observations play absolutely no role� and no
gain in the e�ciency is achieved despite their use is in estimation procedure�
This result may take a pleasent turn when some additional information about
the model is available� This is the point of investigation here�

Let us assume that the prior information about the model consists of the
speci�cation of some exact restrictions binding the regression coe�cients� Such a
prior information may be derived from past experience of similar investigations
and�or from the exhibition of stability of estimates of regression coe�cients
in repeated studies and�or from some extraneous sources and�or from some
theoretical considerations� see� e�g�� Judge� Gri�ths� Hill� L�utkepohl and Lee
��	��� Chap��� and Rao and Toutenburg ��		�� Chap� ��� Incorporation of such
a prior information into the estimation procedure� it is well documented� leads
to generally e�cient estimation of regression coe�cients provided that there is
no missing observation in the data set� This article examines the truthfulness
of this result when some observations on the study variable are missing and
the performance criteria are the variance covariance matrix and the risk under
balanced loss function�

The organization of this article is as follows� In Section�� we describe the
model and present the estimators� Section � reports the superiority comparisons
according to the criterion of variance covariance matrix while Section 
 compares
the estimators with respect to the criterion of risk under balanced loss function
and discusses the optimal choice of the estimator� Finally� some concluding
remarks are placed in Section ��

� Model Speci�cation And Estimators

Let us postulate a linear regression model in which there are nc complete and
nm incomplete observations�

Yc � Xc� � ��c �����

Ymis � Xm� � ��m �����

where Yc and Ymis denote column vectors of observations on the study variable�
Xc and Xm are matrices of observations on K explanatory variables� �c and �m
are column vectors of disturbances� � denotes the column vector of unknown
regression coe�cients and � is an unknown scalar�

It is assumed that observations in Ymis are missing� Further� the elements
of vectors �c and �m are independently and identically distributed with mean
zero and variance unity�

Besides the observations� let us assume to be given a set of J exact linear
restrictions binding the regression coe�cients�

r � R� �����

where the J � � vector r and J �K matrix R contains known elements� It is
assumed that redundant restrictions are absent so that R has full row rank�
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From ������ we observe that the unrestricted least squares estimator of � is
given by

b � �X �

cXc�
��X �Yc ���
�

which may not necessarily obey the restrictions ������ Such is� however� not the
case with restricted least squares estimator�

bR � b� �X �

cXc�
��R��R�X �

cXc�
��R�����r �Rb� �����

which does satisfy the restrictions�
The estimators b and bR can now be used to �nd the predicted or imputed

values Xmb and XmbR for Ymis� see� e�g�� Toutenburg and Shalabh ��		
�
for their predictive performance� Now using these in ����� and applying least
squares method� we �nd the following estimators of ��

�� � �X �

cXc �X �

mXm�
���X �

cYc �X �

mXmb� ���
�

� b

��R � �X �

cXc �X �

mXm�
���X �

cYc �X �

mXmbR� �����

� b� �X �

cXc �X �

mXm�
��X �

mXm�X
�

cXc�
��

R��R�X �

cXc�
��R�����r �Rb��

Observing that

�X �

cXc �X �

mXm�
��X �

mXm � Ip � �X �

cXc �X �

mXm�
��X �

cXc �����

we can express

��R � �X �

cXc �X �

mXm�
���X �

cXcb�X �

mXmbR� ���	�

whence it follows that the estimator ��R is a matrix weighted average of unre�
stricted and restricted estimators�

The equivalence of �� and b is a well�known result implying that use of im�
puted values derived from complete observations but ignoring the prior infor�
mation has no impact on the estimation of regression coe�cients�

Further� it may be observed that both the estimators �� and ��R do not
satisfy the prior restrictions ������ To overcome this problem� we may assume
for a moment that ymis is known� and then apply the method of restricted least
squares to ������ ����� and ������ The thus obtained estimator of � will obviously
contain Ymis which can now be replaced by its imputed value� This proposition
provides the following two estimators of ��

�� � �� � �X �

cXc �X �

mXm�
��R��R�X �

cXc �X �

mXm�
��R�����r �R���

� b� �X �

cXc �X �

mXm�
��R��R�X �

cXc �X �

mXm�
��R�����r �Rb� ������

�� � ��R � �X �

cXc �X �

mXm�
��R��R�X �

cXc �X �

mXm�
��R�����r �R��R�

������

which clearly obey the prior restrictions�
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Using ������ we observe that

�r �R��R� � r �Rb�R�X �

cXc �X �

mXm�
��

X �

mXm�X
�

cXc�
��R��R�X �

cXc�
��R���r �Rb�

� r �Rb�R��X �

cXc�
�� � �X �

cXc �X �

mXm�
��R����

R��R�X �

cXc�
��R���r �Rb�

� R�X �

cXc �X �

mXm�
��R��R�X �

cXc�
��R�����r �Rb�

whence it follows that

��R � bR� ������

Thus we have four distinct estimators b� bR� ��R and �� of � out of which only
bR and �� satisfy the prior restrictions while the remaining two estimators b and
��R may not necessarily satisfy them� Further� the estimators b and bR fail to
utilize the incomplete observations while the estimators ��R and �� use all the
available observations�

� Variance Covariance Matrix

Employing ����� and ������ it can be easily veri�ed from ���
�� ������ ���	�� and

������ that all the four estimators b� bR� ��R and �� are unbiased for �� Further�
if we write

Sc � ���X �

cXc�
�� �����

S � ���X �

cXc �X �

mXm�
�� �����

their variance covariance matrices are given by

V�b� � Sc �����

V�bR� � Sc � ScR
��RScR

����RSc ���
�

V���R� � Sc � ScR
��RScR

����RSc � SR��RScR
����RS �����

V���� � Sc � SR��RSR����RSc � ScR
��RSR����RS

� SR��RSR����RScR
��RSR����RS� ���
�

Recalling that the estimators b and ��R do not satisfy the prior restrictions
������ it is seen that

D�b� ��R� � V�b��V���R� �����

� ScR
��RScR

����RSc � SR��RScR
����RS�

As S�� � S��
C � ��X �

mXm is a nonnegative de�nite matrix� the matrix

expression ����� is also nonnegative de�nite implying the superiority of ��R over
b with respect to the criterion of variance covariance matrix�

Similarly� if we compare bR and �� which satisfy the prior restrictions ������
we observe that

D���� bR� � V�����V�bR� �����

� G�RScR
�G






where

G � �RSR����RS � �RScR
����RSc� ���	�

Clearly� the matrix expression ����� is nonnegative de�nite� This means that
the estimator bR is superior to ���

Next� let us compare the estimators b and bR which fail to utilize the incom�
plete observations of the data set� It is seen from ����� and ���
� that

D�b� bR� � V�b��V�bR� ������

� ScR
��RScR

����RSc

which is a nonnegative de�nite matrix implying the superiority of restricted
estimator bR over the unrestricted estimator b� This is a well documented
result�

Similarly� if we compare the estimators �� and �� which utilize the entire data
set� we observe from ����� and ���
� that

D���� ��R� � V�����V���R� ������

� G�RScR
�G� SR��RScR

����RS�

It is� however� di�cult to determine whether the matrix expression ������ is
nonnegative de�nite or not� Consequently� no general conclusion can be drawn
regarding the superiority of one estimator over the other with respect to the
criterion of variance covariance matrix in this case�

Finally� looking at the expression ������ ���
�� ����� and ���
�� it is interesting
to observe that the variance covariance matrix of b exceeds the variance covari�
ance matrices of bR� ��R and �� by a nonnegative de�nite matrix implying the
superiority of the three estimators over b�

� Risk Function Under Balanced Loss

If �� is any estimator of �� the risk under balanced loss function is de�ned by

����� � wE��Yc �Xc�
����Yc �Xc�

�� � �Ymis �Xm�
����Ymis �Xm�

���

� ��� w�E���� � ����X �

cXc �X �

mXm���
� � ��� �
���

where w is a nonnegative constant not exceeding � and can be regarded as
weight being assigned to the criterion of goodness of �tted model in comparison
to the criterion of precision of estimator� see Zellner ��		
��

Expressing

����� � �� trS��V���� � w����nc � nm�� ��Ef��� � �����cXc � ��mXm�g�

and using ������ ���
�� ����� and ���
�� it is easy to obtain the following results

��b� � ���trS��Sc � w�nc � nm � �K�� �
���

��bR� � ���trS��Sc � Jf � w�nc � nm � �K � �J�� �
���

�� ��R� � ���trS��Sc � J�f � g� � w�nc � nm � �K � �J � �Jg�� �
�
�

�� ��� � ���trS��Sc � Jh� w�nc � nm � �K � �J�� �
���

�



where

f �
�

J
tr�RScR

����RScS
��ScR

�

g �
�

J
tr�RScR

����RSR� �
�
�

h �
�

J
tr�RSR����RScR

��

As �S�� � S��
c � and �Sc � S� are nonnegative matrices� it can be easily

veri�ed that

f �
�

J
tr�RScR

����RScS
��ScR

� �
���

�
�

J
tr�RScR

����RScR
� � �

g �
�

J
tr�RScR

����RSR� �
���

�
�

J
tr�RScR

����RScR
� � �

h �
�

J
tr�RSR����RScR

� �
�	�

�
�

J
tr�RSR����RSR� � ��

When the criterion for comparing the estimators is the precision of estima�
tors� it follows from setting w � � in �
���� �
���� �
�
�� and �
��� that �� is the
best estimator when h is greater than f � If h is less than f � the estimator bR
emerges to be the best choice�

Similarly� if we compare the estimators with respect to the criterion of good�
ness of the �tted model� we �nd that �� turns out to be the best choice so long
as h exceeds the maximum of � and �f � g� while ��R is the best choice as long
as �f � g� exceeds the maximum of � and h� The estimator b� however� remains
unbeaten so long as �f � g� and h both are less than ��

When both the criteria of the precision of estimation and the goodness of
�tted model are equally important so that w � ���� it is observed that the
estimator �� is optimal if h is greater than f � When h is smaller than f � the
optimal choice falls on bR and ��R which are equally good�

When the precision of estimators and the goodness of �tted model are as�
signed unequal weights in the risk function� the estimator b is the best choice
when

�f � g� � �w��� g�� h � �w� �
����

Similarly� the estimator bR performs best when

h � f � w �
�

�
� �
����

The condition for the optimality of ��R is

�f � g� � max�h	 �w�� �wg� w �
�

�
�
����






Table 
��� Optimal choice of estimator among the estimators b� bR� ��R and ��
according to the risk under balanced loss function�

Optimal choice
w � � bR if h � f

Precision of estimation �� if h � f

w � � b if max�h	 f � g� � �

Goodness of �tted model ��R if max��	 h� � �f � g�
�� if max��	 f � g� � h

w � �
� bR and ��R if h � f

Equal weights to the �� if h � f

two criteria

� � w � �
� bR if h � f

Larger weight to the �� if h � f

precision of estimation
�
� � w � � b if w � �

� max
�
h	 f�g��g

�

Smaller weight to the ��R if f�g
����g� � w h�f�g

�g � h �
�
f�g
��g

�

precision of estimation �� if w � �
� min

�
h	 h�f�g

g

�
� h � f

while similar condition for �� is given by

h � max�f	 �w�� �
����

All such conditions are compiled and presented in the Table�

� Some Concluding Remarks

We have considered the problem of estimating the regression coe�cients when
some observations on the study variable are missing and a set of exact restric�
tions binding the regression coe�cients is available� Several strategies have been
formulated which have led to four distinct estimators of coe�cient vector� The
�rst estimator b takes into account neither the incomplete observations nor the
prior restrictions� The second estimator bR is the traditional restricted esti�
mator which satis�es the prior restrictions but fails to utilize the incomplete
observations� Similarly� the third estimator ��R succeeds in utilizing the incom�
plete observations but may not necessarily satisfy the prior restrictions� This
estimator incidently turns out to be the matrix weighted average of b and bR�
The fourth estimator ��� however� meets both the desirable requirements� i�e�� it
uses the entire data and it satis�es the prior restrictions too�

All the four estimators are found to estimate the regression coe�cients un�
biasedly� Comparing them with respect to the criterion of variance covariance
matrix� it is seen that the unrestricted estimator b is dominated by the remain�
ing three estimators� This means that discarding the incomplete observations
as well as the prior restrictions is not a good strategy at all�

Next� comparing the estimators bR and ��R representing the two strategies
of discarding incomplete observations but incorporating the prior restrictions
and utilizing the incomplete observations but the estimator may not necessarily
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obey the prior restrictions� it is interesting to �nd that the �rst strategy is better
than the second one for the e�cient estimation of regression coe�cients�

Treating �� as representative of the strategy that utilizes all the available ob�
servations and prior restrictions together� it is surprising that this strategy is no
better than the one which ignores the incomplete observations but incorporates
the prior restrictions� So far as the comparison with the strategy that uses the
incomplete observations but may provide an estimator not satisfying the prior
restrictions is concerned� no clear inference can be drawn� In other words� this
strategy may be sometimes preferable and sometimes not�

Finally� we have compared the estimators according to their performance
under balanced loss function which combines the two popular criteria� viz�� pre�
cision of estimation and goodness of �tted model� Considering �ve interesting
situations� we have identi�ed the optimal choice of estimators and have pre�
sented the results in a tabular form for convenience� It may be observed from a
look at the conditions that they are simple to use in practice and are helpful in
making an appropriate choice among the competing estimators�

It may be remarked that if we take the performance criterion as the vari�
ance covariance matrix� the estimator arising from simultaneous utilization of
incomplete observations and prior restrictions is uniformly superior to the esti�
mator that ignores the incomplete observations as well as the prior restrictions�
Further� conditions for its superiority over the estimators that use either the
incomplete observations or prior restrictions but not both are hard to deduce�
This is� however� not true when we take the performance criterion as risk under
balanced loss function which is indeed a combination of the precision of estima�
tion and the goodness of �tted model� In this case� conditions for its superiority
are available and easy to verify�

References

Giles� J� A�� Giles� D� E� A� and Ohtani� K� ��		
�� The exact risk of some
pre�test and Stein�type regression estimators under balanced loss� Com�
munications in Statistics� Part A�Theory and Methods ��� �	����	�	�

Judge� G� G�� Gri�ths� W� E�� Hill� R� C�� L�utkepohl� H� and Lee� T��C� ��	����
The theory and practice of econometrics� � edn� Wiley� New York�

Little� R� J� A� and Rubin� D� B� ��	���� Statistical Analysis with Missing Data�
Wiley� New York�

Ohtani� K� ��		��� The exact risk of weighted average of the OLS and Stein�rule
estimators in regression under balanced loss� Economics Letter pp� ���
��

Ohtani� K�� Giles� D� E� A� and Giles� J� A� ��		��� The exact risk performance
of a pre�test estimator in a heteroskedastic linear regression model under
the balanced loss function� Econometric Reviews pp� ��	�����

Rao� C� R� and Toutenburg� H� ��		��� Linear Models� Least Squares and

Alternatives� Springer� New York�

Toutenburg� H� and Shalabh ��		
�� Predictive performance of the methods of
restricted and mixed regression estimators� Biometrical Journal ��� 	���
	�	�

�



Wan� A� T� K� ��		
�� Risk comparison of the inequality constrained least
squares and other related estimators under balanced loss� Economics Letter
pp� ��������

Zellner� A� ��		
�� Bayesian and non�bayesian estimation using balanced loss
functions� in S� S� Gupta and J� O� Berger �eds�� Statistical Decision Theory

and Related Topics V� Springer� Berlin� pp� �����	��

	


