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SUMMARY

We propose a new method for estimation of a high number of coefficients within
the generalized linear model framework. The estimator leads to an adaptive selec-
tion of model terms without substantial variance inflation. Our proposal extends
the soft—thresholding strategy from Donoho and Johnstone (1994) to generalized
linear models and multiple predictor variables. Furthermore, we develop an esti-
mator for the covariance matrix of the estimated coeflicients, which can even be
used for terms dropped from the model. Used in connection with basis functions,
the proposed methodology provides an alternative to other generalized function
estimators. It leads to an adaptive economical description of the results in terms
of basis functions. Specifically, it is shown how adaptive regression splines and
qualitative restrictions can be incorporated. Our approach is demonstrated by

applications to solvency prognosis and rental guides.

Keywords: Generalized additive models; Generalized linear models; Penalized

likelihood; Shrinkage; Splines; Thresholding;



1 INTRODUCTION

Let 1 denote the linear predictor of a generalized linear model(GLM) (McCullagh
and Nelder, 1989; Fahrmeir and Tutz, 1994), which is linked by

E(y’b) = Hi, Ui:h_l(ﬂi)a 7i:17"'7n

to a response variable y; with known distribution function. This paper focuses

on GLM, having many terms in the linear predictor,
ni = zitfr + -+ 2ipOp, t=1,-,n (1)

where z;;, j = 1,---,p are possibly transformed explanatory variables. We in-
troduce the term HDGLM (High dimensional generalized linear model) for those
models incorporating many parameters compared to the sample size n. HDGLM
occur in many observational studies, where explanatory variables have to be in-
cluded to account for effects not controlled by the experimental design. Another
application of HDGLM are situations, where no given functional form for the
influence of a metrical covariate z; can be assumed in advance. In this setting,
the z;; are defined by point evaluations of appropriate basis-functions ;(x;;),

(e.g. spline-functions) leading to functional terms of the form

n
Filzg) = e (xi) B
k=1
in (1) Used in connection with basis functions, HDGLM are a powerful alternative

to nonparametric smoothing procedures as used in the generalized additive model

framework of Hastie and Tibshirani (1990), where a predictor of the form

n=fi(z1) + - fo(zp).

is assumed.

It is already known since Stein (1956), that maximum likelihood and least
squares principles are unsuitable for handling many parameters. Putting much
emphasis on bias, these estimators lead to unreasonably high variance of the
estimates. Classical remedies for high dimensional problems can be classified
into two groups.

The first group consists of approximately linear estimators, including the

ridge—estimator (Nyquist, 1990; Marx et al., 1992; Segerstedt, 1992) and many



of the smoothing principles (O’Sullivan et al., 1986; Hastie and Tibshirani, 1990;
Staniswalis, 1989; Fan et al., 1995). Generally, estimators of this class reduce
variance globally by introducing some bias. The amount of bias depends on the
true parameter vector 3 = (f1,...,5,)" and is not limited in RP. Reasonable bias
can only be guaranteed by incorporating prior knowledge about the magnitude
of the parameters or about the smoothness of each predictor function. While
approximately linear estimators are theoretically well understood, they are not
able to adapt onto distinct parametrization or on a smoothness class, compare
Donoho and Johnstone (1995). Therefore, additional nonlinear decision rules
have to be incorporated, in practice.

The second group of estimators comprises numerous variable selection strate-
gies. These nonlinear estimators lead to an explicit reduction of dimensionality.
They are adaptively selecting model terms and, by using appropriate basis func-
tions, they are also able to detect single jumps or breakpoints in the predictor
functions. As a drawback, these nonlinear strategies lead to considerable variance
inflation and, in conjunction with the maximum likelihood principle, to selection
bias.

In this paper we suggest a compromise between these two classical remedies,
the generalized soft-threshold (GSoft) estimator. The naming is due to the soft—
threshold strategy, introduced by Donoho and Johnstone (1994) in the case of
normally distributed errors and orthogonal covariate design. GSoft is closely
related to the LASSO of Tibshirani (1996), but is further developed in several
aspects.

As the ridge estimator maximizes the loglikelihood in an elliptical region,
GSoft can be regarded as a maximizer of the loglikelihood in an angular region.
This alternative restriction allows for adaptive selection of basis—functions and
model terms without substantial variance inflation. GSoft leads to a parsimo-
nious decomposition of the predictor, which is often demanded in practice but in
contrast to common variable selection techniques, GSoft is a smooth procedure
without selection bias. Even terms dropped from the model can be judged by
their variances or derived test statistics. In connection with spline basis-functions
or wavelets, GSoft allows for locally adaptive smoothing within the generalized
linear model framework. It leads to a parsimonious representation of the predictor
functions in terms of basis functions, which can be further studied by analyzing

the corresponding covariance matrix. In addition, qualitative information about



non-negative coefficients or the monotonicity of predictor functions can simply

be incorporated.

1-1  OQutline

The estimator is defined in section 2 and it is shown how inequality constraints
can be incorporated into the procedure. Section 3 deals with problems arising
from linear transformation of the predictor variables. It is shown how GSoft can
be made invariant to linear transformations of the covariates. Section 4 gives
approximations to the variance and the bias of the estimate. These approxima-
tions are further used to develop an estimator for the corresponding covariance
matrix. In section 5, we demonstrate the small sample properties of the estima-
tor in a simulation study. The extension to nonparametric function estimation
in generalized linear models is made in section 6, where GSoft is connected to
spline smoothing. Applications of the methodology to prognosis of solvency and

rental guides are given in section 7.

2 GENERALIZED SOFT-THRESHOLDING

Given a sequence of thresholds v,---,7, > 0 and a global threshold A > 0,
GSoft (Generalized Soft-Thresholding) is defined as a maximizer of the penalized

likelihood criterion
P
Ip(y; B, ) = 1y; B) = A _lBil, v =0, (2)
j=1

where [(y; 3) is the loglikelihood function, given the data. Following Tibshirani
(1996), the estimator can be interpreted as a constrained maximum likelihood
estimator, or in a Bayesian context, as a maximum a posteriori estimator. The
additional thresholds y; account for the scaling of each covariate and can also be
used to incorporate prior knowledge about the relevance of each term. The next

theorem characterizes the estimator by estimating equations:

Theorem: Let s;(y; 8) = 0l(y; 8)/0B; denote the score-function with respect
to ; and H(n) = —0l(y;n)/(0ndn') the negative Hessian with respect to the

linear predictor . Conditions (3) and (4) give a necessary and sufficient condition



for a local maximizer 3 of Ip(y; B, N).

Is;j(y:B)] < Ny ifB = 0

sily; ) = My iff > 0 (3)
sily;B) = =y B < 0
Z\H (1) Zy is positive definite, (4)

where Z) a design matrix, consisting of all z; satisfying |s;(y; B)| = A\y;. (Proof
in appendix)

From the implicit definition (3) we see that the estimator has point mass
on Bj = 0 for v; > 0. Depending on s;(y; B), it adaptively selects terms from
the model. In the case of a normal error distribution and orthogonal design, it

reduces to the explicitly defined soft—threshold estimator

Bi = sgn(Zjy) (|12jyl — A7)+

of Donoho and Johnstone (1994). When using the threshold y; = 0, the equations

(3) reduce to the common maximum likelihood score equations s;(y; 8) = 0.
—- Figure 1 about here —-

Fig. 1 (a) illustrates GSoft in a logit-model. It corresponds to the abscissa of
the intersection between the score-function s;(y, ), y = 0,...,20 and the step
function Ayjsgn(f;) in (a). Fig 1 (b) shows GSoft as a function of the maximum

likelihood estimator, which doesn’t converge for y = 0 and y = 20.

2-1  Existence and uniqueness

Since GSoft can be regarded as a penalized likelihood estimator incorporating
a convex penalty, it exists even in situations, where the maximum likelihood
principle diverges, compare Fig. 1 (a). However, in special cases of collinearity,
solutions to the estimating equations (3) are not unique.

Consider the example

21+ =z
n=Piz1 + Bazo + B3z3, 23 = 12 2 (5)

where the linear predictor alternatively can be written as
1 1
n= P+ 50 )t Pt 505 ) 2 (6)

4



For sgu(f1) = sgn(f%) = sgn(fh) we have
511+ 1621 + 165l = 161 + 3 sl + 162 + 5l

and both 7 and the penalty are equivalent for the models (5) and (6). Therefore,
no unique GSoft estimation exists in this example. However, using slightly dif-
ferent thresholds «; would lead to a unique estimator. Since Zy in (3) depends
on the observations y and on the thresholds ;, the uniqueness condition (4) is

difficult to verify in practice.

2:2  Nomnegativity constraints

By a simple modification, GSoft can be extended to incorporate nonnegativity

or nonpositivity constraints of the form
,Bj > 0 or ﬂj < 0. (7)

Let (Bj)+ = max(f3;,0) denote the nonnegative part and (3;)— = max(—4;,0)

denote the nonpositive part of a coefficient 3;. Then we have

Bi=Bj)+ — Bj)— and  |Bj| = (Bj)+ + (B))-, (8)

and by
P
p(y; 5,0 = Hy (B))+ — (B) -} = 2D {8+ + (B)-},
j=1
(/BJ)+ Z 07 (/BJ)* Z 07
GSoft can alternatively be regarded as a constrained penalized likelihood estima-

tor for the positive and the negative part of 3. Different penalization of (3;)+
and (;)— yields the restrictions (7). We extend the target function of GSoft to

p(y; B,0) = Hy, B+ — B} = XD v B)+ +7; (By)-}
j=1
(Bij)+ >0, (Bj)- >0, (9)

by introducing separate thresholds ’yf and -y, for (Bj)+ and (B;)—, respectively.

This leads to the estimating equations

Ny < osi(yB) < M B = 0

sily;B) = M ifB > 0 (10)
Ay o= sy ) ifg; < 0
Z\H () Z) is positive definite. (11)



for a local maximum of (9). The result follows immediately from the proof in the

appendix.
— Figure 2 about here —

In the following, we focus on the nonnegativity constraint Bj > 0, which is
in complete analogy to Bj < 0. The third equation in (10) can be neglected,
if ;7 = C with C sufficiently large, such that —AC' < s;(y; B) for Bj = 0,
j =1,...,p. Then the first or the second condition of (10) are always fulfilled

and we have Bj > 0. For C' — o0, the estimating equations for Bj result in

siiB) < M B = 0

sily;B) = M oifB > 0,
as illustrated in fig. 2. There, GSoft under the constraint 3; > 0 corresponds to
the intersection of s;(y; #) with the angular in Fig. 2 (a). By moving this angular,
general constraints of the form 8; > ¢ can be handled, as well. In the limit A\ — 0,

this approach leads to the constrained maximum likelihood estimator as proposed

by McDonald and Diamond (1990).

3 SCALING

As with other biased techniques for high dimensional design, GSoft is not in-
variant to linear transformations of covariates z;. This means, that an estimate
Bj, which corresponds to a covariate z; = az; does not equal Bj /a. Therefore,
the estimated predictor depends on the scaling of the covariates. To overcome
this problem in Ridge estimation and in the LASSO of Tibshirani (1996), it is
required that the design has to be standardized in advance by

1 ¢ y 1 o
m(z;) = - szi =0, sQ(zj) = Z(z]Z - m(zj))2 =1. (12)

i=1 i=1
In contrast, GSoft implicitly accounts for the scaling of covariates by adjusting
the thresholds 7; appropriately. No modification has to be made to the design

matrix and model terms can be forced to enter by using a threshold «; = 0.

3-1 Adjusting the thresholds

In the following, we assume that an intercept zg = 1 is included. With the choice

70 = 0 the intercept fy is not penalized and m(z;) from (12) enters in Bo. Hence,



no centering is necessary when vy = 0. Using the thresholds

Vi =1/ 5(%)), (13)

any scaled version Z; = az; of z; yields a threshold 7; = {5%(2;)}'/? = |a|v;.
Inserting 7; into the penalty we have 7, |BJ| = 7;|8;| when 2]-5]- = 2;3j. Therefore,
the penalty becomes invariant to a scaling factor @ # 0. The special choice
a = 1/,/32(z;) results in the standardized design (12) and 4; = 1. Adjusting of
the thresholds y; by (13) is therefore equivalent to standardization.

32 The embedded model

Alternatively, the thresholds can be adjusted on the probability for selection of
a term Bj # 0 given 3; = 0. We start by choosing a set of covariates that
have to enter the model, denoted by the subdesign matrix Z;. This model is
termed the embedded model My, having thresholds y; = 0 for each j € M. For
the embedded model, GSoft is equivalent to maximum likelihood estimation of
corresponding coefficients [(q).

Let the embedded model serve as a true data generating model. Then

5 \—113 5 d.
{F(B(O)) ! jzjsj(y; /8(0)) - N(Oa 1)7 (14)
with {F~1 (B(O))} j; the last element from the diagonal of the inverse Fisher matrix

{(Z0,2) F(i0))(%0,2)} ", F(n) = —E (%%:}7/))

evaluated at the maximum likelihood estimate of the embedded model. Expres-
sion (14) is equivalent to a score test on the hypothesis 3; = 0, which is known
to be invariant to any linear transformation of z;, compare e.g. Cox and Hinkley
(1974, p. 339).

Using the thresholds

v = {F(B)) ™ j_j%, (15)

the first estimating equation of GSoft (3) has the form
. . _1 .
|5j(y; )] < MF(Boy) ™'}, for =0 (16)

and is a score test, obeying B = B(o)- Since generally, the Fisher information
is defined as the covariance of the score vector, this strategy adjusts 7; on an

estimation of the score function’s standard deviation. In the case when Z consists



of the intercept term only, strategy (15) reduces to the simple standardization by
(13).

The form of the score test in (14) is based on the assumption, that the embed-
ded model is correctly specified. Since Zj usually consists of only a few important
terms, we have to account for possible misspecifications and Fjj(ﬁ(o)) is no more
a consistent estimator for the variance of s;(y, B(o))-

Fahrmeir (1990) discusses different kinds of misspecification in GLM and pro-
poses the estimator F'(7}) = R(7) with

R(i) = diag {s1(9, D315, 8)', -, su(y, D)3y, B) | (17)

as a robust alternative to F'(7)) = F(#}). Therefore, the choice

v = {R(Boy) 1},,? (18)

yields a more robust adjustment of ;. In numerous simulation studies, the

strategy based on (18) has been proven to be superior to (13) and (15).

4  APPROXIMATION OF VARIANCE AND BIAS

In this section, we give an approach for statistical inference based on linear ex-
pansions to GSoft. These approximations are used to construct an estimator for
GSoft’s covariance matrix. In Subsection 4-1, the total estimation error is decom-
posed into a deterministic and a stochastic part. The covariance matrix of GSoft
is approximated by usual linear expansions of a differentiable approximation to
the target function in Subsection 4-3. This approximation indicates, that GSoft
has no variance inflation. To obtain a reasonable estimator, discontinuities in the

approximate covariance matrix are smoothed in Subsection 4-4.

4-1 Decomposition of the estimation error

Suppose that the matrix of thresholds, I' = diag(yi,...,vp) and the trade-off
parameter A > 0 is fixed in advance and let 5* denote a maximizer of the expected
absolute penalized loglikelihood in the GSoft criterion. In the case of uniqueness,

this is equivalent to the root of

u (B) =E{u(B)},  u(B) =s(y:;8) — Al'{g(B)}, (19)
and we have

u (%) =0



The components of I'g(3) in (19) are defined by

—y; fir B; <0
79(8)) = < si(y; B)/A fiir B =0 (20)
v fur B; >0

and satisfy |v;9(8;)| < ;.

If the true linear predictor n is a linear function of the columns in Z, the
corresponding coefficients 3 are termed the true model. A true model exists, pro-
vided Z has full rank n. As with other penalized likelihood estimators, compare
e.g. Cox and O’Sullivan (1996), the estimation error of GSoft can be decomposed
by

B=B=(B~p)+ (B~ 0" (21)
into two terms where (0* — ) is a deterministic error or systematic bias, which
is due to the biased estimation and due to selection of model terms. The second
term (B — 3*) comprises random errors, but also further bias.

The error decomposition (21) is even correct when the true 7 cannot be ex-
pressed by a linear combination of the form Zf3. In this situation, § corresponds,
in the sense of Kullback—Leibler distances, to an optimal approximation to the
true model, compare Fahrmeir (1990). Therefore, properties of the estimator can
be characterized even in the case, where the set of regressors or basis functions

is not rich enough to ensure the existence of a true model.

4.2 Systematic bias

Let 8 denote a true model or an optimal approximation to the true model and

consider the linear expansion

0 =u™(6) = E{s(y; 8)} = F(B)(B" — B) — ALE{g(5")} (22)

of the score functions expectation around (. Provided that F(8) > 0,
E{s(y; B)} = 0 yields

b(B") = (8" = B) = AF(B) "' TE{g(6")} (23)

as approximation for the deterministic error or systematic bias..

If the embedded model B(g) is a true model then, by v; = 0 for all 8; # 0 and
E{s;j(y,8)} = E{s;(y,8")} = 0 for all 8; = 0, we have I'E{g(8")} = 0 in (23)

and there is no deterministic error, i.e. § ~ §*.



By the form of (20) the systematic bias of GSoft is bounded in p; € R? and
attains its maximum when 3 # 0, respectively g(8;) = 1 for all j = 1,...,p.
Since g(*) is bounded, this approximation indicates that GSoft has limited bias
in # € R. This property is an important feature of the soft—thresholding studied
by Donoho and Johnstone (1994) and Bruce and Gao (1996).

In the limit n — oo, the systematic bias tends to 0, provided AE{g(8*)}
increases at a lower rate than F'(3). If A is chosen at an appropriate rate, GSoft
is asymptotically unbiased under usual maximum likelihood regularity conditions
on F(f). In the more interesting situation when the design matrix grows with
n, the limit behavior of AE{g(;)} has to be studied in detail. This is a topic of

future research.

4-3  Stochastic error and variance

Approximations to the variance of GSoft are derived by linear expansions from

the stochastic error term (3 — 4*) in decomposition (21).

Let
—Bj, fur ,Bj<—(5
B2+62 .
a(B,0) = { —g—, fir —6<p;<6 (24)

,Bj, far ,Bj >0
be a continuously differentiable piecewise polynomial approximation to the
penalty, satisfying lims_,¢ a(53;,0) = |B;|, compare Tishler and Zang (1982). An

approximation for the variance of B (0), defined as maximizer of the function

P
s (y; B, N) = Uy; B) = A Y (), ). (25)
j=1
is derived first. Let g(8,0) = {9(51,9),...,9(Bp,6)} with the components
—1 fur ﬁj <=0
9Bj,0) =9 % fiwx —6<p;<o

+1 fir B;>9

denote the first derivative and

G(B,6) = % = diag (I{WI(LS 5}7""I{|ﬁp(|5§ 5})

denote the second derivative of the approximation a((,d). The maximizer 3 (0)

can be characterized as
us(B) = s(y; B) — A\Lg(B,6) =0,

10



which is expanded linearly around §* by

0 =us{B(6)} = us(8) — {H(B*) + ALG(5*,0) HB(6) — 5}

yielding
{B(0) = 5"} = {H(B") + ALG (8", 0)} " us(5) (26)
as first approximation to the stochastic error (B — (*). In the limit 6 — 0, we

have us(5*) = u(f*), as defined in (19), compare Tishler and Zang (1982). For

GSoft, the bias in the stochastic error disappears in linear approximation, since

(* is defined by E{u(5*)} = 0, which results in E(3) = g*.

Using the relation

Var{us(5*)} = Var{s(y; 8")},

the approximate variance of B (0) can be calculated by

Vs(8*) = Var{B(s)}
= Var{B(6) — 5}
~ Var [{H(8%) + A\TG(8%,8)}"s(y. 5], (27)

(
(

which leads to the well-known sandwich form
Vs(8°) = {H(8") + ALG(5*,6)} ' Var{s(y, ) {H(8") + A\LG(5*,6)} 7" (28)

of Huber (1967).
First, we consider § > 0 to be given. In the case where || > ¢ for all

j=1,...,p, we have G(*,J) = 0 and V() results in the sandwich form

H(B*) ™ Var{s(y, 5*)} H(5") " (29)

as used in possibly misspecified GLMs, compare Fahrmeir (1990). When | ﬂ;| <4
for some coefficient, we have G(£;,d) = 1/6 in the diagonal of G(8*,d) and
by increasing the diagonal elements of {H(5*) + AI'G(5*,0)}, the eigenvalues
of the inverse decrease, resulting in a reduced variance of 5(6) Hence, the ap-
proximation indicates that GSoft prevents from variance inflation. The trade—off
parameter A tunes the variance reduction: It determines the number of g7 =0

and G(B;,0) > 0 and directly reduces variance by controlling the eigenvalues of

{H(B*) + ATG(5",8)} 1.

11



In the limit § — 0, leading to GSoft, the diagonal elements of G(/3*,J) corre-
sponding to (7 = 0 tend to oo. As a consequence, corresponding eigenvalues of
{H(B*) + \I'G(*,0)} explode and we have to consider a generalized inverse in
(28). The covariance matrix V' = limg_,o V5(8*) becomes singular, approximating
the variance of components having ﬁ;-‘ =0 by 0. For the remaining components,
(28) leads to an approximate covariance of the form (29). However, by explo-
sion of the eigenvalues of {H(3) + \['G(f3,0)}, usual regularity conditions of the
asymptotic theory are not fulfilled.

4-4  Estimation of the covariance matriz

The approximation leading to (28) is useful, when |37 | is large, but it is insufficient
for §; = 0. This is mainly due to violation of the smoothness condition on
{H(p*)+ A\I'G(5*, )}, which is part of asymptotic theory, compare e.g. Fahrmeir
(1990). In the following, we therefore propose an estimator of the covariance of
GSoft, which is based on smoothing the jump in limgs_,o G(5*,0).

%

Consider a continuous random variable X; having E(X;) = ;

the diagonal elements G(87,6) from G(B*,6) by E{G(X;,d)}. This results in
H{|X;| <6
Bty ) = B{HELE

1 0
= g/_dej(x)dw
= P, (0) ~ Fx, (~0)) (30)
and in the limit § — 0 we have the simple form E{G(X};,0)} = 2fx;(0).
2

Using a normal distribution ¢ having mean B;-‘ and variance o3 as a smoothing

and replace

kernel leads to
E % . 2 * 2 *
6°(6",0) = ding { 29051 /o). 255 )} (31)
o1 op
as smoothed version of G(3*,0) and substitution of 5* by £ results in
V(B;) = {H(B) + \LG*(B,6)} ' F(B){H(B) + \LG*(B,6)} !, (32)
as estimator of the covariance.
In (32) we still need a pilot estimate for the smoothers bandwidth 2. The

proposed approach suggests to replace X; by Bj and UJZ by Var(ﬁj). A conserva-

tive pilot estimator for [712- can be constructed by

(63,...,6%) = diag [{H(B)} " FB{H(B)} ], (33)

12



which is an estimator for the variance of the maximum likelihood estimate. Simu-
lation studies have shown, that the estimator (32) is quite insensitive against the
choice of the kernel fx. However, it leads to a systematic overestimation of the
true variance, caused by the conservative pilot estimate. A two stage approach,
where the pilot estimate of 032- is corrected in a second step by (32), overcomes
the problem of overestimation.

Tests on the general linear hypothesis can be derived from the formula for the
estimators variance, in principle. However, the results depend on the dimension

of the model and on the trade off parameter.

4-5 Inequality constraints

When inequality constraints are employed, as described in section 2-2, a kernel
with nonnegative (nonpositive) support has to be used in (31). We propose to

use a truncated normal distribution

qs*(x):%, resp. ¢ (o)

p(z)
=— 4
1—®(z) (34)
for a constraint §; > 0, respectively §; < 0. Simulation studies have shown, that

together with the two stage pilot estimate, this strategy gives appropriate results.

5 SIMULATION STUDY

In this section, we describe a simulation study, which is part of extensive simula-
tion experiments that have been conducted to investigate into the properties of

the methods proposed. We consider a logit model with the linear predictor

ni = o+ Pizin + Paziz
1 = {(i—15.5)/10}? (35)
2 = log(i/5)

fors=1,...,30. The coefficient of correlation between z; and x5 is —0.3370 and
the response y; follows a binomial B(m, ;) distribution.

The goodness of fit is measured by the Kullback—Leibler distance or expected
deviance, which is adjusted by

nf R (i(A), 1)

A Rpr(pmt, p) (36)

on a corresponding maximum likelihood estimate p™.

13



5-1 Risk reduction

— Figure 3 about here —

Figure 3 shows the Kullback-Leibler risk ratio (36) of a GSoft estimate 7
depending on x; and x5 with m = 5. The thresholds have been adjusted according
to (18), with only Sy = —1/2 included in the embedded model.

Since GSoft leads to a maximum likelihood estimate for A — 0, the relative
risk (36) is bounded by 1. Around the origin at (1,2 € [—0.2,0.2], GSoft has
less than half of the risk of a maximum likelihood estimate. The ellipsoidal form
of this region is due to the correlation between x; and x2. We observe a further

reduction of risk near the coordinate axes in Fig. 3.

5-2  Covariance estimation

— Figure 4 about here —

The simulation, shown in Fig. 4, is based on the parameters Gy = —0.5, 81 = 0,
B2 =1, m =2 and n = 30. It demonstrates the behavior of variance estimation
by selection of x; and shrinkage of 8. With decreasing variance of GSoft, the
variance of the estimator for the covariance matrix decreases as well. When
A = 0, GSoft is equivalent to the maximum likelihood estimate and the variance
estimator from (32) reduces to the inverse Fisher matrix. It underestimates the
variance in more than 75 % of the runs, compare Fig. 4 (a,b,c). With increasing
A > 0.25, the median of the variance estimate is near the true variance. The
distribution in Fig. 4 (a) becomes very skewed for A closed to 1. This is due to
the fact that, with high probability, we have 51 = 0 and the estimates 51, Bg are
nearly uncorrelated in Fig. 4 (c). Therefore, the variance estimation for B =0

often yields similar results.

— Figure 5 about here —

The simulation in Fig. 5 shows the behavior of the estimator under inequality

constraints. It is based on small coefficients Gy = 0.25, f; = 0.25 and [ =

14



0.25 and a small sample size m = 1, n = 30.e The coefficients Bl und Bg are
estimated under the constraints Bl >0, Bg > 0 and the intercept is included in
the embedded model.

Interpretation of the variance estimates is analogous to Fig. 4. On the left
border we observe, that the maximum likelihood estimate corresponding to A = 0
has much higher variance. At this small sample size, it is heavily underestimated

by the inverse of the Fisher matrix.

6 FUNCTION ESTIMATION BY GSOFT

An important application of GSoft is in the area of function estimation in
structured nonparametric regression models such as generalized additive models
(Hastie and Tibshirani, 1990) or varying—coefficient models (Hastie and Tibshi-
rani, 1993). In this situation, the high dimensional design arises from representing

each predictor function fj(z;) by

Filzy) = din(z;)Bin
k=1"J
as sum of basis functions. As has been indicated in section 4, the contribution
of basis coefficients ;5 to the variance of GSoft depends on their magnitude in
relation to the threshold. Relatively small coefficients don’t essentially contribute
to the estimators variance, whereas for large |3;;| the variance is bounded by
the variance of a maximum likelihood estimate. Hence, provided that the true
function f;(x;) can parsimoniously be well approximated by a linear combination
of the basis functions supplied, GSoft gives efficient estimates.

By specification of an appropriate set of basis—functions, the procedure can
therefore easily be tailored to specific purposes. For example, functions which are
irregularly smooth can be well approximated by using a library of wavelet basis
functions, compare Donoho and Johnstone (1995). Smooth functions are effi-
ciently estimated by the orthogonal basis of Demmler-Reinsch splines (Demmler
and Reinsch, 1975) in connection with thresholds depending on the smoothness

of basis functions, compare Klinger (1998).

6-1 Spline regression

In the following, we focus on simple one—sided spline functions, which are specifi-

cally easy to interpret and useful in many applications. For convenience, we skip
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the index j in f;(z;) and consider the case of univariate function estimation first.

Let

k; .
) =zx", if k=0,1,...,
Pi(z) ! q (37)
@bk(fl;‘): x_‘%‘(k—q))ia if k:q+1aq+277n+q_1
with
(x —zp)? if z>uxg
(z — )} = ,
0 if z<ux
denote a set of truncated power spline basis—functions, where ), K =1,...,n

refers to the ordered values of . For ¢ = 0, the basis (37) reduces to the set of

indicator functions

Yo(z) =1,
Ye(z) = {z > zgy}, if k=1,2,...,n—1

(38)

When setting up a predictor function by linear combinations of these basis func-

tions as
q n+q—1
fl@)=Bo+ Y Bra* + Y Belw —zp_g)%,
k=1 k=q+1

the ¢g—th left sided derivative can be expressed as a simple step function

n+q—1

FO2) =B+ D Bel{z >z} (39)

k=q+1
It follows, by
Bivg = 1) (zy) — F97) (@),
that each coefficient of the spline is identified as a jump in the ¢—th derivative.
Let Z = (20,--.,2p) with entries 2z = {yx(z()),- -, Yp(zm))} for &k =
0,...,pand p=n+q—1 be a design matrix for the predictor function f(x), then
GSoft results in a penalized likelihood estimator I(y, f) — J(f) with the penalty

f(q_)(fﬂ(z'ﬂ)) - f(q_)(x(z’)) - (40)

q n—1
T() =Y B+ > Yari
k=0 im1

Including all polynomial terms up to order ¢ into the embedded model (i.e. vy =

.-+ =y, = 0), the penalty reduces to

n—1
Ts,(f) = Y 119 (@ign) = F97) (i) (41)
=1

and judges the variation in the g—th derivative. Penalties of this kind have been

studied in detail by Mammen and van de Geer (1997). There it is shown, that
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the form (40) arises from an infinite dimensional total variation penalty on the
derivatives. Furthermore, the authors derive asymptotical optimality results for
the estimator, provided that the true function has bounded total variation of the
g—th derivative. For ¢ = 0, this class includes even functions with discontinuities,

as e.g. step functions.

6-2 Monotonicity constraints

Since by (39), each basis coefficient corresponds to an increment of the g¢-th
derivative, nonnegativity constraints on (3;;, lead to positive increments of the
function f(z). Therefore, monotonicity restrictions on the g-th derivative can
easily be transformed into nonnegativity constraints on the basis coefficients, as

described in Section 2-2.

6-3 Adjusting the thresholds

In the context of univariate function estimation, the GSoft estimator with thresh-
olds vo = -+ =79 =0, Y441 = -+ = Yntg—1 = 1 corresponds to a penalized
likelihood estimator (41) and no adjustment is necessary. If several functions
are specified, as in generalized additive models, thresholds have to be adjusted
appropriately to account for the scaling of the different covariates.

We proceed as in Section 3 and compute corresponding robustified score statis-
tics for each basis coefficient 3;;. The thresholds vz, k = 1,...,n; for all basis
functions contributing to one term f;(x;) are adjusted according to the average

estimated variance of the score function under the embedded model:

1, Rt
Vik = {n—] Z{R(B(O))_l}jkl,jk}
P

By this strategy, all basis functions describing one single term have the same
threshold and the penalized likelihood representation in (40) remains valid also

for models with multiple predictor functions.

7 APPLICATIONS

7-1  Credit scoring

In parametric models, the proposed GSoft methodology is illustrated on the credit

scoring data, described in Fahrmeir, Hamerle and Tutz (1996a) and available form
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the data archive http://www.stat.uni-muenchen.de/data-sets. The purpose
is to develop a classification rule for solvency prognosis on the basis of a sample
of 300 bad and 700 good consumer credits. Besides the response variable

1, client 7 is creditworthy

Yi =
0, client ¢ is not creditworthy,

there are 20 covariates, which are summarized in Table 1.
— Table 1 about here —

Except duration (z2), amount of credit (z5) and age (z13), all covariates are
on an ordinal scale. This scale is derived from a scoring system from experts,
where high values indicate good credit worthiness. The dataset served as basis
for a number of investigations in this form. For example, Fahrmeir and Kredler
(1984) compare variable selection procedures in the logit model and Klinke and

Grassmann (1996) use this data to test neural networks.
— Table 2 about here —

To illustrate the performance of GSoft, the data are randomly divided into a
training sample of size n = 200 and a validation sample with the remaining 800

observations. We assume a univariate logit model

Ply=152)
8 Py =0]2)

with all covariates included.

= 0o+ 2161+ + 220020, (42)

The results, gained by application of the glm() function in S—Plus to the total
data and to the test data are summarized in Table 2. Furthermore, we applied

the function step.glm(), targeting on the variable selection criterion
P
AIC =1(y: ) =2 ) I{B} # 0},
j=1

on the test data. Except for zg and zg all significant terms from the total sample
are selected by the variable selection algorithm. The effects of the covariates,

selected from the learning sample, have about double of the size of the effects

18



estimated from the entire population. This indicates a considerable selection bias
of the stepwise variable selection procedure. The classification result, based on

the logit model in the test sample and the maximum likelihood classification rule

72el > log(144/56)

1 jil

is shown in Tab. 3.

— Table 3 about here —

— Figure 6 about here —

The same model is analyzed by GSoft. Obviously, the covariate z; indicating
the client’s running account is an important indicator. Hence, it is included in
the embedded model, which is defined by the design matrix Zy = (1, z1). Results
of GSoft based on the learning sample are shown for A = {0,0.01,...,4} in
Fig. 6. A detailed description of the efficient algorithm, which is based on the
approximation (24) can be found in Klinger (1998). By decreasing A, the number
of terms in the model decreases as well. All coefficients 3; appear as a smooth
function in A.

Let #);” ¢ denote the linear predictor of an observation y;, estimated by GSoft
applied to all data except (y;, z;). The global threshold A = 0.91 has been chosen

as minimizer of the cross—validated deviance criterion
n .
CVp(A) = =2 {Uyi ;") = Uyi i)}, (43)
i=1

which is shown in Fig. 6.

The results of GSoft, based on cross—validation only the data from the learn-
ing sample are summarized in right two columns of Tab. 2. GSoft identifies the
covariate zjo having the p—value 0.0752 in the total sample in addition to the
terms selected by the variable selection procedure. Compared to the maximum
likelihood estimation in the selected model, the magnitude of the effects are gen-
erally reduced and about the same as in the whole population. As a consequence,
missclassification in the validation sample is considerably lower than missclassi-

fication rate obtained after the variable selection procedure.
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— Table 4 about here —

After we have studied the classification properties of GSoft by dividing the
dataset into a learning and a validation sample, we applied the procedure to the
total sample of 1000 consumer credits. When the trade—off parameter is chosen as
minimizer of the cross—validated deviance, only the covariates z11, z17 and 213 are
dropped from the model at AV = 0.41. By a cross-validated missclassification
rate, we obtain A°¥Y™ = 0.21 as optimal trade-off parameter and only z7 is

dropped from the model.

— Table 5 about here —

The average missclassification rates of GSoft, shown in Tab. 5 are consider-
ably lower than the best rates reported in Fahrmeir et al. (1996b, p. 394), where
different classification procedures are compared. There, the best cross—validated
missclassifikation rate is obtained by a linear discriminant analysis based on 15
covariates, compare Tab. 5. Also Klinke and Grassmann (1996), who compare
different neural networks, couldn’t improve the classification rate of linear dis-

criminant analysis.

7-2  Rental guide

The second example illustrates the GSoft methodology in models with multiple
functional terms in the linear predictor. According to the German rental law,
owners of apartments or flats can base an increase in the amount that they charge
for rent on the “usual rents” for flats comparable in type, size, equipment, quality
and location in a community. Commonly, these “usual rents” are calculated
from an official rental guide (“Mietspiegel”). Our data are based on a random
sample of 1969 flats in Munich, conducted 1993 to construct a rental guide,
compare Fahrmeir, Gieger, Mathes and Schneeweiff (1994). The official guide is
based on two metrical covariates F' (floor space in square meters) and A (year of

construction). and a set of indicator variables, shown in Tab. 6

— Table 5 about here —
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A main criticism of the official rental guide, calculated from a nonlinear para-
metric regression on the response variable R ( monthly net rent in DM), from
Fahrmeir, Gieger, Mathes and Schneeweiff (1994), is that possible interactions

between the indicators and F' or A have not been accounted for.

7-3 Model specification

Fahrmeir et al. (1998), study some general transformation models and conclude,
that the response variable R follows approximately a gamma distribution. This
model can derived by assuming a constant coefficient of variation in R, com-
pare McCullagh and Nelder (1989, Ch. 8). In the following model we account
for interactions between an indicator X; and F' or A by assuming nonparametric
terms of the form {fi(F) + f2(A)F'} * X; for each indicator. The identity is used
as linkfunction in the gamma model. Hence, the effect of A and each interaction
with A can directly be interpreted as a surcharge or discount on the rent per

square meter. The assumed predictor

po= filF) + f2(A)F + {fs(F) + fa(A)F}ST + {f5(F) + fe(A)F}S~
Hf2(F) + fs(A)FYAT + {fo(F) + fro(A)F}A™ + {f11(F) + f12(A) F}Bd~
Hf13(F) + fra(A)FYZh™ + {f15(F) + fie(A)FIW ™ + { f17(F) + fis(A)F}BI*
Hfr9(F) + fao(A)FYFT 4+ {for(F) + foa(A)FYF~ + {fos(F) + fos(A)F}Z+
+{f25(F) + f26(A)F}Bd* + {for(F) + fos(A)FIK T + {foo(F) + f30(A)F}G*
( (A)

+{f31(F) + f32(A)F}R" + {f33(F) + f3a(A)F}Ab~ + {f35(F) + f36(A)F}H~
(44)

~— O~

consists of 36 functional terms and has the form of a varying—coefficient model,
compare Hastie and Tibshirani (1993). In the basis configuration of (44), we
take into account possible breakpoints in the interactions with f(A), by using
the set of indicator functions as basis. This representation of effects allows the
communication of the results in common tabular form, in addition. The main
effect f(A) is modelled by a quadratic spline-function, whereas the main effect
f(F) and all interactions with floor space are described as piecewise linear splines.
This is according to the assumption of a continuous effect in F', which has a linear
component corresponding to the average effect per square meter. Note that a
linear interaction of the form 3; F X; acts constantly per square meter. To ensure
identifiability, all constant terms are excluded from the set of basis functions,
used to describe functions in A. Moreover, we excluded the constant terms in

the coeflicients varying over floor space, to account for no effect for flats having
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0 square meters. The embedded model, derived from (44)

po= Po+BiF + BAF + B3A°F
+{BuST + B35 + -+ + fo1 H } F,

assumes a constant effect of each indicator on the rent per square meter.

7-4  Model estimation

The smoothing parameter has been chosen by a randomized 44—fold cross—
validated deviance criterion, where each block was buildt around one flat with-
out bathroom. A global minimum of the cross—validation function was found at
AVD = 0.79, where 71 of 1617 possible basis functions enter the model. The
covarince estimation of GSoft is only based on selected basis functions and on

the moment estimator

n

o 1 yi — i\
1 ) 7
) ‘n—712< jii )

i=1

for the dispersion parameter v in the gamma model, compare McCullagh and

Nelder (1989, S. 196).

— Figure 7 about here —

Figure 7 shows the main effects from model (44). The linear spline

AWF) = Pro+ BiaF + Prgr(F —68)
= 320.28 + 5.067F + 0.3170(F — 68)+
= {320.28 + 5.067TF}I{F < 68} 4+ {659.77 + 5.384F }I{F > 68}
(45)
can be interpreted as follows: For the first 68 m?, we have to add 5.067
DM/m? on the base rent of 320.28 DM. Each additional square meter costs
5.067+0.3170=5.384 DM. Corresponding standard deviations (0.219, 0.269) are
based on the quadratic form ¢’ V{B}e, where e marks corresponding coefficients
by 1. The quadratic spline f3(A) has a single knot in 1940.
Table 8 and Tab. 7 show discounts and surcharges for the different indicators,
which depend on F' and A. The tabular form of the interactions with F' is calcu-
lated by cummulation of basis coefficients, as described above and corresponds to

the derivative of the functions f}(F) With the restriction fj(O) = 0, they can be
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interpreted as effect on the rent per additional square meter. For the interactions

with A, the reported functions fj(A) directly effect the rent per square meter.

— Table 7 about here —

— Figure 8 about here —

For lack of space, we only give a brief summary of the results. The indicators
Zh~, F~ and BI" show a nonlinear interaction with floor space. No central
heating (Zh™) leads to a larger discount for bigger flats, where a central heating
is more benificial. The coefficients for F~ and BI" are not monotone in F' and
show some variaton around a constant. The effect of a balcony in a flat built up
before 1970 varies between 69.63 DM at 55 m?, 11.35 DM at 87 m? and 168.58
DM at 120 m? and cannot be assumed to be constant on the rent per m?.

The indicators Bd™, ZT and KT show a strong interaction with A. For
example a good equipped kitchen KT gives a much bigger effect in older buildings.
The reason might be, that the equipment of a kitchen is nearly standardized in

newer buildings, whereas in old buildings a well equipped kitchen indicates a

higher general standard of the flat.

8 DISCUSSION

High dimensional generalized linear models combine a number of nonparametric
extensions into one model class. All these models can be handeled within the
GSoft framework, which allows the user to specify a high dimensional design
reflecting his uncertainty about the data generating process. In analogy to robust
statistics, the uncertain model formulation has its counterpart in the estimating
equations, which allow the score function to be in an interval around 0. This
scope is used to select basis functions and to reduce the estimators variance.

Of course, GSoft is not preferable in any situations. For example, the maxi-
mum likelihood principle might do better when a parsimonious description of the
underlying process can be assumed in advance and linear smoothers might have
lower risk in some prespecified smoothnes class. These assumptions are often

difficult to state and to verify in real data situations. A careful investigation of a
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high dimensional model by GSoft can then help to improve the model structure
and the estimates substantially. This has been demonstrated by the two examples

presented.

A PROOF OF THE THEOREM

We follow the characterization of conditions for an optima under inequality con-
straints, given in Gill, Murray and Wright (1981, Ch. 3). The absolute penalized

likelihood criterion can equivalently be expressed by

Ip(y: B,0) = Uy, (B)+ — (B)=} = XD _ {8+ + (B;)-} (46)

j=1

under the constraints (8;)+ > 0,(8;)- > 0 for j = 1,...,p. Let AT = {j :
(Bj)y = 0}y A= = {j : (Bj)— = 0} denote the set of constraints, active at a
maxima, and C, C~ corresponding complements. Moreover, e; denotes the j—
th unit vector and E 4+ resp. E - is a matrix with rows e}, j € A", resp. j € A~
and

Ap{y; (B)+ — (B)-, A} 0Bj)+ = sj(y; 8) — A

Alpi{y; (B)+ — (B)=, A}/OB)- = —si(y,8) — M
are partial derivatives of (46). By (47), neccessary conditions for a maximum of

(46) can be stated as

(47)

iB) — A
oo | @AM Bive > 0,7 = (Y- m)- (48)

—s(y; B) — Ay

Due to the form of E 4, the conditions (48) simplify to

si(yiB) < Ny fir je At,
s (y; ﬁA) > =AY fir je A, (49)
sj(y; B) = Ny fir j € C+,
si(yiB) = =My fir jeC .

This leads to |s;(y, 3)] < M\y; for a coefficient in A = {5 : §; = 0} = ATNA~. For
positive coefficient in A~NC™ we have s, (y; B) = \v; and for a negative coefficient
in AT N C~ we have Sj(y;ﬁ) = —A\v;j. This is equivalent to the estimating
equations in (3).
To characterize sufficient conditions, let
AT = {jisi(y:
A = {jisly:b

) < )\’)’j} N A+,
) > _)"YJ}HAia
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From the vectors {e; : j € AT}, resp. {e; : j € A™} we construct a matrix
EA and let EC denote a matrix, with columns orthogonal to the rows in EA. The

condition for a unique maxima is

E¢(2,—2) H(i)(Z,~2) Ec
to be positively definite. Let Z) denote a matrix, having columns z; with j € {j :
|5 (y; B)] = My;} then EL(Z, —Z)' = Zy, leading to the condition Z} H (7)) Zy > 0
in (4).
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Figure 1: GSoft for a logit model with y ~ B(20, 7). In (a) the score-functions for
y=0,...,20 are plotted versus . In (b), GSoft is plotted against the maximum
likelihood estimator in this model. Each single estimation corresponds to the

abscissa of the intersection between the score—function and the step function in

(a).

(b)

|

|
GSoft
o

[ ]

[ ]

[ ]
.L

g

Figure 2: GSoft under the restriction 5; > 0 in a logit-model y ~ B(30, 7).
Score functions for y = 0, ..., 30 are shown in panel (a). In (b) GSoft is plotted
against the maximum likelihood estimate. It corresponds to the abscissa of the

intersection between the score—function and the rectangle in (a).
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Figure 3: Kullback-Leibler risk ratio based on 100 simulations.
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Figure 4: Variance estimation of GSoft as function of A. The bold line corre-
sponds to the true variance, computed from 1000 replications. Remaining lines
correspond to pointwise 5%, 25%, 50%, 75%, bzw. 95% quantiles of the proposed

estimator for the variance.
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(b) ©

Figure 5: Variance estimation of GSoft under nonnegativity constraints as func-
tion of A. The bold line corresponds to the true variance, computed from 1000
replications. Remaining lines correspond to pointwise 5%, 25%, 50%, 75%, bzw.

95% quantiles of the proposed estimator for the variance.
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Variable description range

z1 current account at the bank 1,2,3,4
29 term of the credit in months metrical
z3 previous repayment 1,2,3,4
24 purpose 0,1

25 total of the advance metrical
Z6 bankbook or securities 1,2,3,4,5
27 working for the present employer since 1,2,3,4,5
28 monthly interest in % of the disposable monthly income 1,2,3,4
Z9 marital status and sex of the applicant 1,2,3,4
210 other debtors / bails 1,2,3
211 lives in the current habitation since 1,2,3,4
212 effects 1,2,3.,4
213 age of the applicant in years metrical
Z14 other credits 1,2,3
215 habitation 1,2,3
216 total of former credits at the bank 1,2,3.,4
217 job 1,2,3,4
Z18 number of persons who are entitled to alimonies 1,2

219 phone 1,2

220 foreign worker 1,2

Table 1: Description of the credit scoring data.
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total sample

learning sample

J ﬁjml p-value B}”l p-value B; e pvalue Bj a( BJ)
0 43171 0.0001 -2.8878 0.3626 —-2.9189 0.0092 -1.3049 1.0885
1 05765 0.0000 0.7611  0.0003  0.7110  0.0001 0.6518 0.1358
2 —0.2780 0.0220 —0.4044 0.2841 —0.4849 0.0946 —0.2351 0.1472
3 03653 0.0001 0.5458 0.0258  0.4168 0.0454  0.1813 0.1223
4 0.5747  0.0029 1.1072  0.0410 0.9762 0.0484  0.4787 0.2940
5 —0.0926  0.05680 —0.1799  0.1659 -0.1536  0.1327 -0.0984 0.0529
6 0.2428 0.0002 -0.0353  0.7799 0 — 0 0.0596
7 0.1536 0.0794 0.6187  0.0060  0.5669  0.00564  0.3210 0.1425
8§ -0.3082 0.0008 -0.2314 0.4603 0 — 0 0.0608
9 0.2601 0.0637 -0.0421  0.7909 0 — 0 0.1165
10  0.3017  0.1937  0.3399  0.5359 0 — 0 0.1214
11 -0.0300  0.7408 -0.1156  0.6689 0 — 0 0.0580
12 -0.1982  0.0752 -0.3775  0.2443 0 —  —0.1778 0.1254
13 0.0104 0.3618 -0.0027  0.7905 0 — 0 0.0059
14 0.2055  0.1426 -0.0460  0.7872 0 — 0 0.0998
15 0.2937  0.1769  0.4242  0.4738 0 — 0 0.1212
16 -0.1687  0.46568 —0.4544  0.3897 0 — 0 0.1275
17 -0.0129 0.7944 0.0664 0.7836 0 — 0 0.0923
18 -0.1279  0.6857  0.6707  0.3892 0 — 0 0.1671
19  0.3541  0.1368  0.4746  0.4704 0 — 0 0.1344
20 1.2608  0.0936 —-0.6072  0.6735 0 — 0 0.3202

Table 2: Parameter estimates for the credit data with corresponding p—values.

The middle columns are based on the S—Plus function step.glm() and the learn-

ing sample and the two right columns correspond to the GSoft, applied to the

learning sample

33



Learning-sample Validation
Nmiss/T  €rror rate  mNyiss/n  error rate
y=1 53/144  36.81 % 219/556  39.39 %
y=0 14/56  25.00 %  75/244  30.74 %
Average 30.91 % 35.07 %

Table 3: Missclassification based on variable selection in a logit model

NGV = 0.91
Learning sample Validation
Nmiss /N Nomiss /T
rate rate
y=1 40/144 186/556
27.78 % 33.45 %
y=20 13/56 63/244
23.21 % 25.82 %

Table 4: Missclassification based on GSoft and a linear logit model.

XCVD = 0.41 NV = 0.21 LDA, p=15
Nmiss/T CVar(A)  npmiss/n CVar(A)
y=1 27.57 % 2829 % 26.57 % 2729 % 27.43 %  28.0%
y=0 23.67 % 2533 % 23.67% 24.67% 27.00% 27.6 %
Average 25.62 % 26.81 % 2512 % 2598 %  27.2% 27.8 %

Table 5: Missclassification rates of GSoft and a linear discriminant analysis, based

on all 1000 samples.
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Credit Scoring
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Figure 6: GSoft for the credit data based on a linear logistic regression. In
the upper panel ﬁj are plotted as a function in A\. The lower panel shows the

cross—validated deviance.
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Indicator number of flats description

St 653 indicator of location (“site”) above average
S 173 indicator of location (“site”) below average
At 28 indicator for top location

A~ 43 indicator for bad location

Bd~ 44 no bathroom indicator

Zh~ 389 no central heating indicator

W= 125 no central hot water indicator

BIT 250 indicator for a bigger balcony

F* 49 indicator for nicely shaped windows

F- 122 indicator for isolated glass in windows

Z+ 203 indicator for general special equipment

Bd* 1135 indicator of bathroom equipment above average
Kt 173 indicator of kitchen equipment above average
Gt 414 indicator of floor plan above average

Rt 167 indicator of fundamental renovation

Ab~ 258 indicator for a simple, old building

H™ 29 indicator for an old building in the backyard

Table 6: Indicator variables used in the munich rental guide. The second column

indicates the number of flats.
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Figure 7: Centered main effects together with pointwise 20 bands
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Indicator m? cost per additional m? age f(A)
S+ 0-42 0.347 (0.150) 19581971  0.422 (0.100)
43-120 1.988 (0.224) 1972-1989  0.037 (0.117)
S~ 0-120 21047 (0.142)  1928-1938 -0.037 (0.090)
1939-1989 -0.927 (0.186)
At 0-59 1.629 (0.368) 1958-1989  4.063 (0.541)
60-120 1.007 (0.643)
A~ 0-50 0.312 (0.296) 1958-1971 -0.300 (0.112)
51-120 2.862 (0.511) 19721980 -3.502 (0.417)
1981-1989 -4.562 (0.278)
Bd~ 0-53 -1.650 (0.232)
54-120 20.958 (0.456)
Zh™ 0-41 -2.710 (0.186) 1890-1899  0.379 (0.110)
42-89 1574 (0.231)  1938-1955  0.134 (0.121)
90-120 ~4.470 (0.660) 1956-1963  0.113 (0.141)
1964-1989  0.885 (0.240)
W= 0-42 -1.883 (0.208)
43-120 0.246 (0.314)
Bt 0-55 1.266 (0.172) 1970-1971 -0.815 (0.181)
56-87 -1.880 (0.501) 1972-1980 -0.752 (0.174)
88-89 3.872 (0.967) 1981-1989  0.031 (0.219)
90-120 4.983 (1.096)
Ft 0-64 2.873 (0.555)
65-120 ~1.702 (0.911)
F~ 0-45 -0.752 (0.317)  1900-1937 -0.220 (0.131)
46-120 1.497 (0.437) 1938-1971 -2.160 (0.289)

1972-1989 -0.578 (0.307)

Table 7: Additional effects for indicators based on the rent per square meter,

with corresponding standard deviation in brackets.
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Indicator m? cost per additional m? age f(A)
Z+ 0-52 2.027 (0.194) 1919-1967 -0.005 (0.116)
53-120 0.712 (0.306) 1968-1989 -0.895 (0.202)
Bd* 0-36 0.041 (0.155) 1934-1972  0.689 (0.144)
37-120 0.190 (0.172) 1973-1989  1.660 (0.213)
K+ 0-120 2.840 (0.273) 1938-1955 -0.002 (0.127)
1956-1971  -0.994 (0.279)
1972-1980 -1.190 (0.293)
1980-1985 -1.893 (0.321)
1986-1989 -3.011 (0.467)
Gt 0-48 0.867 (0.174) 1934-1989  0.623 (0.152)
49-120 0.832 (0.214)
Rt 0-120 2.098 (0.199) 1919-1989 -1.266 (0.234)
Ab~ 0-73 J1.274 (0.126) 1934-1949  0.427 (0.130)
74-120 -0.451 (0.285)
H- 0-120 “1.537 (0.232)

Table 8: Additional effects for indicators based on the rent per square meter,

with corresponding standard deviation in brackets.
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