LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

Toutenburg, Fieger, Schaffrin:

Approximate Confidence Regions for Minimax-Linear
Estimators

Sonderforschungsbereich 386, Paper 166 (1999)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Approximate Confidence Regions for
Minimax-Linear Estimators

H. Toutenburg* A Fieger* B. Schaffrin**

1st September 1999

Abstract

Minimax estimation is based on the idea, that the quadratic risk func-
tion for the estimate ﬁ is not minimized over the entire parameter space
IR™, but only over an area B(8) that is restricted by a priori knowledge.
If all restrictions define a convex area, this area can often be enclosed
in an ellipsoid of the form B(3) = {8 : 8T8 < r}. The ellipsoid has
a larger volume than the cuboid. Hence, the transition to an ellipsoid
as a priori information represents a weakening, but comes with an easier
mathematical handling.

Deriving the linear Minimax estimator we see that it is biased and non-
operationable. Using an approximation of the non-central y?-distribution
and prior information on the variance, we get an operationable solution
which is compared with OLSE with respect to the size of the corresponding
confidence intervals.

1 Introduction
We consider the linear regression model
y=XB+e, e~ N(0,02I) (1)

with nonstochastic regressor matrix X of full column rank K. The sample size
is T'. The restriction to uncorrelated errors is not essential since it is easy to
give the corresponding formulae for a covariance matrix o?W # o?I. If there is
no further information given, the Gau.-Markov estimator for OLSE: Ordinary
Least Squares Estimator

b=(X'X)'X'y=5"'X"y~ N(B,0°S™ 1) (2)
with S = X'X is optimal with respect to the BLUE-property. The variance
factor o2 is estimated by

2
o 2

s°=(y - Xb)'(y - X0)(T - K) ' ~ T _ gXT-K (3)
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Confidence Regions for 3 on the Basis of b: From (2) we get

o' S (b~ B) ~ N(0,1) (4)
and thus
1 -2 i 1 2
=072 b=B)S(b— B) ~ =X )

As this x2 variable is independent of s2, we may conclude that
K~'s72(b—p)'S(b— B) ~ Frr-k- (6)

From the central Fx r_ g distribution we define the (1 —a) fractile Fx 7 g (1—
a) according to

P(F<Fgr-g(l-a))=1-a (7
Using these results we have

p(U=s0=s)

82K SFK,T—K(I_Q)> =1-a. (8)

In this way we have found a simultaneous confidence region for 8 which is formed
by the interior of the K-dimensional ellipsoid

1(G=p)Sb-7)

K 52
In practice, besides the simultaneous confidence region, one might be more
interested in the resulting intervals for the components (3;. They are determined
according to Appendix A. From (75) we get the interval for the i-th component

/62' (izl,...,K):

:FK7T7K(1 —Oé). (9)

bi —gi < Bi <bi+ g, (10)

with

gi = \/FK7T7K(]- —04)82K(Sfl)z'i (11)
where (S71);; is the i-th diagonal element of S~1
of b.

The length of the intervals (11) is

and b; is the i-th component

lz' = 292'. (12)

The points of intersection of the ellipsoid (9) with the g;-axes result from (76)
as

hehE \/FKVT_K((;); L 19

In the special case of a diagonal matrix S = X'X (as e.g. in the case of orthog-
onal regressors), S~! is diagonal, too, and we have (S~!);; = 1/(S);. Hence
in this case for once the points of intersection (13) with the 3;-axes coincide
with the end points of the confidence intervals (10). But in general we have

(97" < (S™Hui



2 Minimax-Linear Estimation
Under the additional condition
B'BB<r (14)

with a positive definite (K x K) matrix B and a constant 7 > 0, the minimax-
linear estimation (MMLE) is of the form

b*=(r"to’B+S)'X'y=D"'X"y (15)

where D = (I7'0?B + S); cf.,e.g.,Rao and Toutenburg(1995, Theorem 3.9).
This estimator is biased:

A = bias(b*,8) = E(b*) — 5 = (DflS —-DNp= —r~1e?2D71T. (16)
The covariance matrix o2V is
?V=E [(b* — E(B*) (" —E®"))] = a?D 18D, (17)

Assuming normal distribution of € thus leads to

b*—B8 ~ N(\o?V), (18)
V72— 8) ~ N(VTY2)\ %), (19
o2 =) VT = B) ~ xk(9) (20)
with the noncentrality parameter
=0 2NV (21)

As the MMLE b* (15) is dependent on the unknown parameter o2, this estimator
is not operational.

Substitution of 0?: We confine ourselves on the substitution to o® by a
positive constant ¢ and, therefore obtain the corrected estimator

b = DIIX'y (22)

with
D, = (r'eB+09), (23)
bias(b*,8) = (D;'S—-1B=-r"'eD.'Bp =X, (24)
o’V. = o*D.;'SD;* (25)

and
o 2 (b; = B)' V(b = B) ~ X (8c) (26)

where the noncentrality parameter ¢, is given by

5. = oAV A\ =07?(SD;' —1)D.ST'D.(D;'S - 1)3  (27)
= 0 °F'(S=D)S (S~ Do)B = (o5*) 'B'B'S BB (28)



We note that §, is unknown, too, along with the unknown o—!4.

The choice of ¢ has to be done such that the corrected MMLE b} is superior
to the GauBi-Markov estimator b. Based on the scalar quadratic risk of an
estimator (3

R(3,0) = ' E[(3-8)(B - B)] a (29)
with a fixed K x 1 vector a # 0, it holds that

R(b,a) > sup{R(b:,a) : B'BB < r}, (30)

if (see Toutenburg, 1982, p.96)
c<20%. (31)

This (sufficient) condition follows from a general lemma on the robustness
of the MMLE against misspecification of the additional restriction 8'Bg < r
since the substitution of 02 by ¢ may be interpreted as a misspecified ellipsoid
of the shape

B'BB <ro’ct. (32)
The condition (31) is practical, if a lower bound for ¢? is known:
ol < a?, (33)
resulting in the choice

c =20} (34)

for c. Such a lower bound may be reclaimed using the estimator s2 of o2:
P<7§2(T_K) §02>:1—a. (35)

X7r-k(1—a)

Hence one may choose 07 < s?(T — K)/x%_, at a 1 — a level of significance.
The estimator b% with ¢ = 207 is called two-stage minimax linear estimator
(2SMMLE).

3 Approximation of the noncentral y? distribu-
tion

By formula (24.21), page 245, in Kendall and Stuart (1977), a noncentral >
distribution may be approximated by a central x? distribution according to

X% (0c) = ax3 (36)
with
K +26, (K +6.)?
T K+6.] d= K +26.° (37)



where, due to the unknown 4., the factor a and the number of degrees of freedom
d are unknown, too.
With the approximation (36), formula (26) becomes

a~to T3 (b; = B)' V1 (b: — B) ~ X (38)
i.e. approximately (in case of independence of s?) we have

(b2 — B)' V' (b: — B)

ads?

~ Fd,T—K . (39)

The wanted confidence region for 3 at the level 1—« is defined by the interior
of the ellipsoid

(b = B)' VL b — B) < ads®Fyr_x (1 — a). (40)

Because of the unknown ¢., a and d relation (40) cannot be applied directly,
but only via an approximation such as the following.

Bounds for d.: We rewrite the noncentrality parameter J. (27) as follows.
From

bias(b;, §) = Ae = (D 'S = I)B = —r~'eD; ' BB, (41)
we get
Se = o ALV
= o % **3'BD,'D.S'D.D;'Bj
= o % 22BF'BST'BA. (42)

Let Amin(A) denote the minimal and Ajax(A4) the maximal eigenvalue of a ma-
trix A, respectively. Then it is well-known that ”Raleigh’s inequalities”

0 < B'BBAmin(BY?*S7'BY?) < B'BS BB < rAax(BY?S'BY?)  (43)
hold true, yielding for a general ¢ and with the inequality (33) at first
de < 07 7 P Amax(BY2S71 BY/?), (44)
and for ¢ = 20? especially
e < 2 Amax (B'/2871BY/?) = §,. (45)

Hence, the upper bound §g for é. can be calculated for any c.
Using this inequality, we get for the coefficients a and d of the approximation
(36)

K +25, _
a s m = Qg (46)
and
(K + 00)?
= o, 4
d - K+ 20, d ( 7)



ad = K+ 0. < K+, = aod,. (48)
The approximate confidence region for 5 then becomes
{B: (b —B) VIHbE — B) < (K +66)s* Fu, r—i (1 — )} (49)

We have (K +6.) < (K +9,), but Fyr_x(1—a) > Fy, 7—r (1 — «) for realistic
choices of o and T'— K > 3. Thus the impact of changing the actual param-
eter to its maximal value d,, on the volume of the confidence region (49) used
in practice, has to be analysed numerically. Simulations (see Section 4) were
carried out which show that using ¢, instead of §. will increase the volume of
the confidence region.

With the abbreviation

60 = \/Fa, r-x(1 = @)s2(K +85) (Vo (50)

it follows from (49), that the confidence intervals for the components from /3
may be written as

KI; = [b5, — g2 < B < 0%, + 7). (51)

4 Properties of Efficiency

Let us now investigate the efficiency of the proposed solution. Assume that the
confidence level 1 — « is fixed. Replacing d. by the least favourable value §, has
influence on the length of the confidence intervals.

a) True, but unknown confidence region (40) on the basis of d.. Length of the
confidence interval:

2glc = 2\/Fd,T7K(]— — a)s2(K + 60)(Vc)zz

b) Practical confidence region (49) on the base of d,. Length of the confidence
interval according to (50):

297 = 2\/Fdo,T—K(l —a)s?(K +6o)(Ve)ii-

By defining the ratio

Length of the interval on the basis of d,
Length of the interval on the basis of d.

we get (for alli =1,... , K) the same stretching factor

299

f:f((sCaéO:KaT_K) = 290 :\/

(K + 50)Fdo,T7K(]- — Oé)
(K +6)Far—rk(1—a)

(52)

For given values of §, where (6. = 0.1 and 0. = 1) and for T'— K = 10 and
T — K = 33 — K, respectively, we have calculated the stretching factor in



dependence of d, and varying values of K (Figures 3, 4 and 5). The stretching
factor is decreasing with increasing K (number of regressors) and is increasing
with the distance (do — d.); see Fig. 3-4.

Another kind of rating the quality of the practical confidence region (49) is
to determine the equivalent confidence level 1 — «; of the true (but unknown)
confidence region (40).

The true confidence region is defined approximately through

p (i BV - 8)

ads?

<Fir-kx(1- 04)) =1l-a. (53)

Due to the replacement of §. by its maximum §,, we instead determine an
increased confidence ellipsoid by

P ((bz — BV, b= B)

aod,s?

S Fdo,T—K(l_a)> = 1—041. (54)

Hence, by combination of (53) and (54), we find for the true (and smaller)
confidence region

p (U BV, (b~ B)

ads?

S f2Fd,T—K(1 — a)> =1- q Z 1—« (55)

with f > 1 from (52). Replacing the unknown noncentrality parameter J. by
its maximum &, results in an increase of the confidence level, as we have a; < «
(Figures 5-6 present values of oy for varying values of T' and K).

As a consequence in practice we choose a smaller confidence level of e.g.
1 —a = 0.90 to reach a real confidence level of 1 — a; < 1 (also for greater
distances d, — d;).

The stretching factor f and, moreover, the increase of the confidence level
are increasing with 6, — d.. For model and data given the distance d, — d. may
be approximately determined by

0o — 0c < 0o — by < do (56)
where, according to (42) and (43),
8y = 40772 [ Amin(B/2S7'BY)|3'BB > 0 (57)

turns out to be a lower bound of the true noncentrality parameter é.. The
upper bound §, is calculated for concrete models such that it becomes possible
to estimate the maximum stretch factor f and the maximal increase of the
confidence level from 1 —a to 1 — ;. In this way the practicality of the proposed
method is given in addition to the estimation of its efficiency.

If the ellipsoid of the prior information is not centred in the origin but in a
general mid point vector By # 0, i.e.

(B —=Bo)'B(B—Bo) <, (58)
then the MMLE becomes

b*(Bo) = o+ D' X' (y — X o) (59)



with
bias(b*(fo), B) = (D'S = I)(B — o) (60)
and (see (17))
V(b (o)) = V(b") = V. (61)

All the preceding results remain valid if we replace for A in (16) and 6. in (24)
the vector 8 by (8 — fo), provided that ¢ in (21) and d. in (27) is defined with
the accordingly changed A and A..

5 Comparing the Volumes

The definition of a confidence ellipsoid is based on the assumption that the
unknown parameter 3 is contained with probability 1 — « in the random ellip-
soid. If one has the choice between alternative ellipsoids, one would choose the
ellipsoid with the smallest volume. In other words, the MDE-superiority of the
MMLE with respect to the Gaufl-Markov estimator in the sense of (14) does
not necessarily lead to a preference of the ellipsoids based on the MMLE. Hence
in the following we determine the volume of both ellipsoids. The volume of the
T-dimensional unit sphere

'z <1

(z being a T' x 1-Vector) is given as

T/2
Volg = m (62)
For an ellipsoid 2’ Az < 1 with a positive definite matrix A, the volume is
Vol(A) = Volg|A|~1/2. (63)

a) Gauf3-Markov Estimator The confidence ellipsoid for § on the basis of
the GauB-Markov estimator b in (2) is, according to (8),

1
S2KFK7T_K(1 — a)

(b-p)'Sb-p)<1, (64)
thus the volume becomes
Vol(b) = (s> K Fx 7k (1 — ))%/2|S|7/?Volg. (65)

b) MMLE Based on the approximations (36) and (48), the confidence region
using the MMLE b* was (see (49))

1
A b —B) VIt —p) <1, 66
(K + 50)32Fd0’T7K(1 _ a)( C ﬂ) c ( c ﬂ) —_ ( )

hence its volume is
Vol(b?) = (K + 80)s*Fa, 7 i (1 — )5/ V17 2Volg . (67)



Comparing both volumes with each other gives

_ Vol(b?)

% |XIX|1/2
1= Nol)

|Vt

:[f(OJ(sO)KJT_K)] (68)

where f(0,d,, K, T — K) is the maximal stretch factor (52) for the lower bound
0, = 0 of the noncentrality parameters §.. §, = 0 corresponds to T' — oo,i.e.
to the change from the MMLE to the GauB-Markov estimator. The MMLE b,
has smaller variance than the Gaufl-Markov estimator b:

0<(X'X)'—-V, (nonnegative definite,)
i.e. we have
0<V ' -X'X =2r"'¢B+r~'¢?BSB=C
or
V! = X'X 4 C with C > 0 (nonnegative definite). (69)
From (69) we may conclude that
XX <[V,

and thus

B L |XIX|1/2
|I+7° 1CBS 1| 1:WS1 (70)

So the relation (68) between both volumes turns out to be the product of a
function f > 1 and the expression (70) which is < 1.

The ratio (68) has to be investigated for a concrete model and given data,
as 0, (and hence f) and the quantity (70) are dependent on the data as well as
on the strength of the additional condition.

Let X’X = S and assume the condition 8'S3 < r. Then according to
Section 3 we have

Vit = 1+ 2708
(rte+1)28

and
IVZH = (e + 1)) (71)
Analogously, from (45) with ¢ = 207, we get
5o = 2rte. (72)

This results in a change of the relation of the volumes (68) to

£(0,2r Y¢, K, T — K))K
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Figure 1: Region of the components z; and x5 of an ellipsoid z' Az = r

A Appendix

Assume an ellipsoid

Az =r

with the positive definite matrix A and the 1 x T vector z' = (z1, ...

We determine the regions of the z; components for the ellipsoid. Without loss
of generality, we solve this problem for the first component z; only, this is

equivalent to finding an extremum under linear constraints.
Let €] =(1,0,...,0) and p be a Lagrange muliplier. Further, let

f(il?) = ml:ellma

g(z) = 2'Az—r
and

F(z) = f(2) + ng(z).
Then we have to solve

F(z) = stationaryg , ,

which leads to the necessary normal equations

OF(z) = e +20Az =0,
Ox

OF () = 2Az—-r=0
op ’

From (74) it follows that:
z'e; + 20z’ Az =0,

thus we get

(74)



Inserting this into (74) gives

T
e1420Ar = e — ZLAx =0,
r
r
x = Ale,—
T1

and therefore

or
Ir1 = + ’I“(A_l)ll,

with (A=1);; as the first diagonal element of the matrix A=!. In case that the
ellipsoid is not centered in the origin:

(x — o) Az — o) =7
the regions of the x; components become
zo; — V1(A )i <@ < wo, + /(A7) (75)

The intersection points of the ellipsoid ' Az = r with the coordinate axes follow
from

(0,...,2 — 203, 0,...,0)A0,...,2; — 205,0,...,0) = (z; — 20;)*(A)is =7,

as

(76)
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Figure 2: Stretching factor f (vertical axis) depending on K (horizontal axis).
With increasing K the stretching factor is decreasing. Results are presented for
0. = 1, T = 33 and additionally varying d, starting from d. + 0.1 (solid line,
step 0.1). With increasing difference (J, — d.) the stretching factor increases;
see also Figure 4
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Figure 3: Stretching factor f (vertical axis) depending on K (horizontal axis).
With increasing K the stretching factor is decreasing. Results are presented for
0. =1, T = K + 10 and additionally varying J, from J. + 0.1 (solid line, step
0.1). With increasing difference (J, — d.) the stretching factor increases; see also

Figure 4

13



1.16
1.14
1.12
1.1 e ~
1.08 - e .7
1.06— P /

1.04 - ey -

1.02 LT

1= T T T T
0 0.2 0.4 0.6 0.8 1

Figure 4: Stretching factor f (vertical axis) depending on the difference (d, —d)
(horizontal axis). With increasing difference (§, — d.) the stretching factor
increases. Results are presented for §. = 1, 7' = 33 and additionally varying K
from 1 (solid line) to 5. With increasing K the stretching factor decreases; see
also Figure 2
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Figure 5: Confidence level a; (vertical axis) depending on T (horizontal axis)
for f2 = 1.02? and a = 0.05. Additionally varying K from 1 (solid line) to 5.

ay decreases with increasing K.
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Figure 6: Difference of the confidence level (v — ;) (vertical axis) depending
on « (horizontal axis) for f2 = 1.02% and K = 3. Additionally varying 7' = 10
(solid line), 15,20, 25,30. With increasing T' the difference o — a; increases.
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