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Abstract

Elevated plasma levels of apolipoproteins Al (apoAl) and B (apoB)
are important protective factors and risk factors, respectively, for atheroscle-
rosis and coronary heart disease. It is well known that both apoAl
and apoB reveal strong familial aggregation. Our goal was to investi-
gate whether exogenous variables influence these associations. We used
marginal regression models for the mean and association structure (Gen-
eralised Estimating Equations 2; GEE2) to analyse data from 1435 family
members within 469 families of different sizes included in the Donolo-Tel
Aviv Three-Generation Offspring Study. The usual robust variance ma-
trix was approximated by extensions of jackknife estimators of variance
to GEE2 models. Upon use of this approach estimation of standard er-
rors in models with quite complex correlation structures was possible. All
analyses were easily carried out using a menu-driven stand-alone software
tool for marginal regression modelling. We demonstrate that a variety
of hypotheses can be tested using Wald statistics by modelling regres-
sion matrices for the association structure. We show that correlation for
apoB between parent-offspring pairs increased with decreasing age differ-
ence and that pairs with individuals of the same gender had more similar
apoAl levels than individuals of different gender. Associations between
different relative pairs did not all agree with those expected from differ-
ences in kinship coefficients. The analysis using GEE2 models revealed
structures that would not have been detected by other models and should
therefore be used in addition to traditional approaches of analysing family
data. GEE2 should be considered a standard method for the investigation
of familial aggregation.
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1 Introduction

Family studies are often considered the key for discrimination between genetic
and environmental aetiologies (Dorman, Trucco, LaPorte and Kuller, 1988).
If familial aggregation is found, the second step is to discriminate among en-
vironmental and/or genetic factors that contribute to this clustering (King,
Lee, Spinner, Thomson and Wrensch, 1984; Khoury, Beaty and Cohen, 1993).
For this purpose, several approaches have been proposed (for an overview see
Khoury et al., 1993). These include segregation analyses which are designed
to test whether or not the data are compatible with Mendelian expectations
by estimating parameters of a given genetic model of inheritance with latent
genes (Jarvik, 1998). With these parameter estimates that can be obtained e.g.
by Maximum Likelihood (ML; Jarvik, 1998) or Generalised Estimating Equa-
tions (GEE; Zhao, 1994), the magnitude of genetic sources of variation in the
variable of interest can be determined. Segregation analyses, however, impose
rather restrictive assumptions which may not be valid (Jarvik, 1998; Ziegler and
Hebebrand, 1998).

As an alternative, the sources of aggregation might be analysed by inves-
tigating the mean and the association structure via second-order Generalised
Estimating Equations (GEE2). They have been applied several times in fam-
ily studies (for an overview see e.g. Ziegler, Kastner and Blettner, 1998). This
method may give hints as to the presence or absence of a genetic component.
Pairs of siblings, for example, are expected to share 50% of the genetic mate-
rial. If, however, the sibling correlation is low with respect to the variable of
interest, there is not much evidence for the presence of a genetic component
that might be relevant for the entire population. If the data additionally reveal
a high spouse correlation, it seems plausible that environmental factors play a
more important role than genetic factors.

A statistical test can be carried out to compare the correlation between
any two different relative pairs. For example, parent-offspring pairs and sibling
pairs share on the average the same amount of genetic material. Hence, the
respective correlation should be identical after adjustment for environmental
factors if Mendelian genetic effects play an important role. In a general situa-
tion, the expected correlation between any relative pair depends on its kinship
coefficient (Vogel and Motulsky, 1997). This is the probability that any two
related individuals have received a gene from a common ancestor. Thus, the
kinship coefficient is a genetic distance measure which can be used to compare
the correlation between related pairs.

Apolipoprotein Al (apoAl) is the major component of high-density lipopro-
tein C (HDL-C), while apolipoprotein B (apoB) is the predominant protein of
low-density lipoprotein C (LDL-C; Breslow, 1985; Havel, Goldstein and Brown,
1980). Several studies have found that both serum apoAl and apoB levels are
strong predictors for atherosclerosis and coronary/cerebral artery disease (CAD;
see e.g. Assmann, Schulte, von Eckardstein and Huang, 1996; Kwiterovich,
Coresh, Smith, Bachorik, Derby and Pearson, 1992; Livshits, Weisbort, Meshu-
lam and Brunner, 1989; Schmitz and Lackner, 1993). Furthermore, it has been
suggested that apoAl and apoB are better predictors for CAD than HDL-C
and LDL-C, respectively (Kottke, Zinsmeister, Holmes, Kneller, Hallaway and
Mao, 1986). While the risk for atherosclerosis and CAD increases with serum
apoB concentrations, it decreases with increasing plasma apoAl levels.



It is well known that both apoAl and apoB reveal strong familial aggre-
gation. Results using segregation analysis were quite contradictory (Livshits,
Blettner, Graff, Hoting, Wahrendorf, Brunner and Schettler, 1995). We there-
fore used GEE2 models to investigate whether this approach can be used to
analyse the correlation structure in a large population based family data set.

The data set and the available family structures are briefly presented in
Section 2. The GEE2 methodology is outlined in Section 3 as applied to our
data set. Furthermore, we extend jackknife estimator of the robust variance
matrix and some approximations to GEE2. In section 4 the different variance
estimators for GEE2 are compared in a simulation study. Section 5 presents the
estimation results for the real data set in detail. Some further discussion and
extensions of our work appear in Section 6.

2 Data Set

Detailed descriptions of family recruitment and data collection is given e.g. in
Livshits et al. (1989), Livshits et al. (1995) and Brunner, Weisbort, Meshulam,
Schwartz, Lin, Kaplan, Zhao, Bisson, Fitzpatrick and Dodge (1990). In short,
the present study represents a continuation of the Donolo-Tel Aviv prospective
artery disease study which started in 1964 in the 8 Kibbutzim (co-operative
settlements). The present study was based on a sample of 1466 individuals who
were contacted during 1992 and 1993. One should, however, note that the sam-
ple mostly consists of members of agricultural co- operative settlements and can-
not therefore be considered as a representative sample of the Israeli population.
Medical records were available on all individuals, and the history was abstracted
from these records (Livshits et al., 1995). Blood sampling and quantitative de-
termination of plasma concentrations were performed as described previously
(Livshits et al., 1995). Additional variables were gathered using a standard-
ised questionnaire. These included smoking habits and socio-demographic data.
Some misclassification in the confounding variables is possible, as only basic
information was obtained and very crude categorisation was performed in the
study (Livshits et al., 1995). After validation and plausibility checks data re-
mained from 1435 living individuals in 469 families. ApoAl and apoB plasma
concentrations were assessed for 1239 and 1240 individuals, respectively. A core
data set for apoAl consisting of gender (1 = female, 0 = male), age, body mass
index (BMI; kg/m?) smoking habits (1 = smoking, 0 = else), marital status (1 =
married, 0 = else), immigration to Israel (1 = yes, 0 = no) and current sport ac-
tivity (1 = yes, 0 = no) was available for 1226 individuals in 401 families. The
core data set for apoB included one additional family. The size of pedigrees
varied from 1 to 14 individuals, representing complex 3 generation pedigrees
(Livshits, Schettler, Graff, Blettner, Wahrendorf and Brunner, 1996). The first
generation consisted of 369 individuals (52.3% female) comprising either partic-
ipants who already took part in the 1964 study or their spouses (Table 1). The
largest group was formed by 523 individuals (49.3% females) from the second
generation, while 333 individuals were from the third generation (Table 1). Ta-
ble 2 displays the numbers of specific (blood) relative pairs of whom apoAl and
apoB, respectively, were measured.



Table 1: Cross table of gender versus generation for apolipoprotein A1 and
apolipoprotein B
Generation Apolipoprotein A1 Apolipoprotein B

Female Male Female Male
1 193 176 193 176
2 258 266 258 266
3 164 169 164 170

Table 2: Number of (blood) relative pairs for apolipoprotein A1l and apolipopro-
tein B

Familial relationship Number of pairs
Parent-offspring 802
Sibling 235
Grandparent - grandchild 229
Uncle/aunt - nephew /niece 198
First Cousin 104
Couple 287

3 Generalised Estimating Equations for mean
and association structures

Marginal models for the mean structure, termed GEE1, are increasing in popu-
larity since they have been implemented in several standard software packages
(Ziegler and Gromping, 1998). Our aim, however, is the consistent estimation
of both the mean and the association structure. An appropriate measure of the
association is the correlation coefficient which should not be subject to range
restrictions for continuous response variables. An advantage of this measure
of association is its simple and straight forward interpretation. Alternatives
for continuous response variables are the covariance and the second ordinary
moments. If they are used, the joint estimating equations for the mean and
the association structure are more complicated and need to be solved simulta-
neously. Furthermore, the interpretation is not as simple as if the correlation
coefficient is used (Ziegler et al., 1998). Therefore, we decided to apply the
GEE2 of Prentice, i.e. using the correlation coefficient as the measure of asso-
ciation (Prentice, 1988).

For the derivation of these estimating equations and the asymptotic covari-
ance matrix of the parameter estimates we require some notation. Let y;; be the

response of individual ¢, t = 1,... ,7T;, from family ¢, ¢ = 1,...n. For each y;; a
vector of covariates x;; is available, which possibly contains an intercept. The
data are summarised to y; = (yi1,-..,¥%r;) and X; = (2}y,...,2j7,)" . The

pairs (y;, X;) are assumed to be independent. In our application we focus on
continuous responses. Therefore, we use the identity link function to connect
the conditional mean of y;; given X; and the p x 1 parameter vector § of the
mean structure:

it = B(yi| Xi) = E(yie|zie) = v3,8 - (1)

We furthermore assume that the correlation coefficient is a function of the ¢ x 1



parameter vector a of the association structure but independent of the mean
structure parameter 8. We choose the area tangens hyperbolicus as association
link function (Ziegler et al., 1998) so that for ¢ # ¢/

exp{k(Zi, T ) a} — 1
exp{k(:ﬁit,fit/)’a} + 1 ’

pite = Corr(yit, yir | Xi) = (2)
Equation (2) guarantees that the correlation coefficient does not exceed 1 in
absolute values. k is a function that describes the relationship between the ex-
planatory variables for the association structure Z;; and Z;» and the correlation
coefficient (Lipsitz, Laird and Harrington, 1991).

The GEE proposed by Prentice (1988) are given by

N (BYSs~(Di 0N (Vi 0N mimpm)_
where p; is the T; x 1 vector of the u; and p; is the T;(T; — 1) /2 x 1 vector of the
pitt - z; is the corresponding vector of the product of the standardised residuals
Ziw = (Yit — pat) Wir — pav)/oioiw with o = Var(yi|X;). D; = Opi/op’
and E; = 0p;/0a’ are the first derivatives, while V; and W; are the conditional
working covariance matrices of y; and z; given X;, respectively. Usually, W; is
chosen as the working matrix for applications (Ziegler et al., 1998) so that W;
is a T;(T; — 1)/2 dimensional identity matrix.

The GEE (3) for 8 and a may be solved separately by an alternating modified
Fisher scoring algorithm because they can be partitioned in two independent
estimating equations. Equation (3) can be derived from the generalised method
of moments (Ziegler, 1995). Thus, £= (B’, &')' is a strongly consistent estimator
of £ = (', ') under suitable regularity conditions (Hansen, 1982), if equations
(1) and (2) are correctly specified. Furthermore, 3 and & are jointly asymptotic
normal. The robust variance matrix, also termed Huber or sandwich variance
matrix, is given e.g. by Prentice (1988).

In the framework of GEE1, Paik (1988) recommended to use jackknife es-
timators of variance instead of the robust variance matrix in small samples
because the robust variance matrix yielded biased estimates. Lipsitz and col-

leagues (Lipsitz, Laird and Harrington, 1990; Lipsitz, Dear and Zhao, 1994)
showed for the GEE1 that the unweighted deletion-1 jackknife estimator of

(“5) X (o) (5e-5)

i=1

is asymptotically equivalent to the corresponding robust variance matrix. This
property can be easily extended to the GEE2 of equation (3). Here, £ is
replaced by %. Furthermore, the jackknife now involves both g and «.
Deletion-1 jackknife estimators are usually obtained by a modified Fisher scoring
with starting value ¢ = (B’,d’ )", where each family is successively omitted in
a loop. Instead of the fully iterated (FLJ) jackknife estimator, a ”one-step”
approximation (1-SJ) might be used by stopping the algorithm after one Fisher
scoring step (Lipsitz et al., 1990). For GEEl, the ”one-step” approximation
gave better coverage probabilities than the fully iterated jackknife estimator in
Monte-Carlo simulations (Lipsitz et al., 1990).



The jackknife estimator of variance can also be approximated without suc-
cessively leaving out each cluster during the calculations as shown by Ziegler
(1997) for GEE1. This generally increases the computation speed. The ap-
proximation of the jackknife estimator of variance (AJS) for Prentice’s GEE2 is
derived in the Appendix.

All three proposed jackknife estimators are implemented in MAREG which
is a freely available menu-driven software package for the analysis of marginal
regression models (Kastner, Fieger and Heumann, 1997). In this program, the
F1J and the 1-SJ are calculated via a modified Fisher scoring algorithm. The
classical robust variance estimator of Prentice and the AJS are available as a
standard.

4 Simulation Study

To compare the properties of the three jackknife estimators with the usual ro-
bust estimator of variance we performed a simulation study using a continuous
response variable, the identity link function and the area tangens hyperbolicus
association link function.

In previous studies, the jackknife was shown to be superior to the classic
robust variance for small sample sizes (Paik, 1988; Lipsitz et al., 1990). Thus,
50 clusters (families) of size 3 were simulated with 1,000 replicates for each
model. The simulation proceeded as follows. First, the design matrix X was
generated for each cluster. Second, the response vector y was simulated for each
cluster using a multivariate normal distribution. The pseudo random numbers
were generated using DRANDA48, which is supplied by SUNOS 5.5 (SunOS,
1995, Pages(3C)) as a C-library function. The estimation is done by MAREG
(Kastner et al., 1997). Details on the generation process are described in Kastner
and Ziegler (1999).

Mancl and Leroux (1996) have shown that the efficiency of GEE estimates
is quite sensitive to the between- and within-cluster variation of the explana-
tory variables. Thus, we chose eight different models that specifically focused
on this aspect in our simulations. They all included one non-random binary
and one non-random continuous explanatory variable for the mean structure.
The latter was generated from the frequency distribution of a grouped vari-
able. The covariates were subject to variation as they were chosen to be either
cluster-constant or non mean-balanced cluster-specific. This resulted in four
different configurations for the parameters of the mean structure. In any case
the theoretical parameters for the explanatory variables were 8y = 1 (regression
constant), 6, = 3 (binary variable) and 6, = —0.2 (continuous variable).

Our aim was to estimate quite complex association structures using the
GEE2 for the apolipoprotein data. Therefore, we used two different association
structures—exchangeable and unstructured—for the Monte-Carlo simulations.
Parameters for the unspecified correlation structure were chosen to be 83 = 0.5,
0y = 1 and 05 = 0.7 resulting in correlation coefficients of 0.245, 0.462 and
0.336 for the pairs 1-2, 1-3 and 2-3, respectively. The parameter value for the
exchangeable correlation structure was set to 63 = 0.7.

Tables 3 and 4 summarise the relevant results from the Monte-Carlo sim-
ulations with time-varying covariates using the four different approaches for
estimating or approximating the robust variance matrix. Table 3 presents the



Table 3: Simulation results with mean-unbalanced within cluster varying bi-
nary and continuous explanatory variables and unspecified correlation structure.
AJS: approximation of the jackknife estimator of variance, 1-JS: one-step ap-
proximation of the jackknife estimator of variance, F1J: fully iterated jackknife
estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the

estimate mean  Prentice AJS 1-SJ  FIJ]
fo 1 0.998 0.244 0.239 0.241 0.240 0.246
0, 3 2.997 0.152 0.147 0.147 0.146 0.150
62 —0.2 -0.200 0.040 0.039 0.040 0.039 0.041
03 0.5 0.460 0.280 0.376 0.286 0.265 0.274
04 1 0.974 0.319 0.494 0.376 0.301 0.309
05 0.7 0.681 0.305 0.383 0.322 0.283 0.292

Table 4: Simulation results for mean-unbalanced within cluster varying binary
and continuous explanatory variables and exchangeable correlation structure.
AJS: approximation of the jackknife estimator of variance, 1-JS: one-step ap-
proximation of the jackknife estimator of variance, F1J: fully iterated jackknife
estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the
estimate mean  Prentice AJS  1-SJ  FIJ]
0o 1 1.000 0.245 0.243 0.249 0.2480 0.250
0, 3 3.000 0.163 0.162 0.164 0.162 0.165
0 —-0.2 -0.200 0.040 0.040 0.041 0.041 0.041
05 0.7 0.646 0.204 0.333 0.241 0.192 0.202

results for the unspecified correlation structure, whereas Table 4 shows the ex-
changeable correlation structure. Both tables display the mean parameter esti-
mate and the standard error of the mean from the 1,000 replicates in addition
to the theoretical parameter values and the different estimates of the standard
erTor.

Obviously, with either of the four approaches for estimating or approximat-
ing the robust variance matrix, the standard error of the mean was well approxi-
mated for the parameter estimates of the mean structure, i.e. 6y, 6, and 6. This
is in line with the findings of Lipsitz and colleagues (Lipsitz et al., 1990; Lip-
sitz et al., 1994) and Ziegler (1997). However, the results differed substantially
with respect to the association structure. The standard errors using the usual
robust variance matrix according to Prentice (1988) were far too large, result-
ing in conservative tests. On the other side, the 1-SJ was too liberal for all
eight models. The AJS generally was conservative for the simulated models.
The best approximation to the true standard error of the mean was obtained
with the F1J. Therefore, we decided to apply more complex Wald tests to the
apolipoprotein data using the FILJ.



5 Results

For the analysis of the apolipoprotein data, we first applied forward and back-
ward model selection procedures for the mean structure separately for apoAl
and apoB by ignoring the intra-familial correlation. Second, a fine-modelling of
the mean structure was performed using the independence estimating equations
(IEE; Ziegler et al., 1998). Third, the association structure was systematically
evaluated using the six familial relationships that are displayed in Table 2. Fur-
thermore, the following explanatory variables were used to model the association
structure: absolute age difference of a pair, mean age of a pair, difference in gen-
erations of a pair (0, 1, 2), gender similarity (same gender = 1, different gender
= 0) and standard deviation of the BMI within a family.

The final models for apoAl and apoB are displayed in Tables 5 and 6, re-
spectively. The upper part of these Tables show the explanatory variables of
the mean structure with a nominal p-value < 0.05 obtained after model selec-
tion. The lower part of Tables 5 and 6 presents the regression coefficients of
the association structure. The final model included explanatory variables for
the association structure that revealed nominal p-values < 0.05 as well as coefhi-
cients of all pairs listed in Table 2. The final models for the mean structure were
different for apoA1l and apoB: While the model for apoA1 included age, gender,
smoking and the interaction between age and smoking, p-values < 0.05 emerged
in the apoB model for age and its squared, gender and their respective inter-
actions. Smoking was not significant at the 5% test level for apoB. No other
variables of the core data set yielded nominal p-values < 0.05 using a single
variable Wald test. These findings might be due to the very basic information
that was obtained in the questionnaire. The coefficient of determination was
16.3% and 30.8% for the apoAl and the apoB model, respectively.

Table 5: Parameter estimates and p-values for apolipoprotein A1. AJS: approx-
imation of the jackknife estimator of variance, 1-JS: one-step approximation of
the jackknife estimator of variance, FI1J: fully iterated jackknife estimator of

variance
Variable Parameter p-value

estimate Prentice  AJS 1-SJ FI1J

Mean structure

Intercept 106.750 < 0.001 < 0.001 < 0.001 < 0.001
Sex 11418 < 0.001 < 0.001 < 0.001 < 0.001
Age 0.076 0.014  0.009 0.013 0.012
Smoke 5.297 0.002 0.002  0.003  0.002
AgexSmoke 0.116 0.021 0.020  0.022 0.021
Association structure

Parent-offspring 0.348 0.105 < 0.001 0.002 0.001
Sibling 0.695 0.228  0.001 0.009  0.009
Grandparent - grandchild 0.619 0.164 0.016 0.017 0.018
Uncle/aunt - nephew /niece 0.278 0.255  0.076  0.091  0.076
First Cousin 0.230 0.512 0.453 0.450 0.449
Couple 0.368 0.079  0.005  0.002 0.002
Gender similarity 0.237 0.141 0.018  0.011 0.010




Table 6: Parameter estimates and p-values for apolipoprotein B. AJS: approx-
imation of the jackknife estimator of variance, 1-JS: one-step approximation of
the jackknife estimator of variance, FI1J: fully iterated jackknife estimator of

variance
Variable Parameter p-value

estimate Prentice  AJS 1-SJ FI1J

Mean structure

Intercept 31.052 < 0.001 <0.001 <0.001 <0.001
Sex 19.861 < 0.001 < 0.001 < 0.001 < 0.001
Age 1.705 < 0.001 < 0.001 <0.001 < 0.001
Age square —1.218 < 0.001 < 0.001 < 0.001 < 0.001
AgexSex —0.957 < 0.001 < 0.001 <0.001 < 0.001
Age squarexSex 0.991 < 0.001 <0.001 <0.001 <0.001
Association structure

Parent-offspring 1.210 0.034  0.005  0.003  0.003
Sibling 0.574 0.012 <0.001 <0.001 < 0.001
Grandparent - grandchild 0.026 0.813 0.803 0.807 0.816
Uncle/aunt - nephew /niece 0.266 0.086 0.026  0.035  0.034
First Cousin —0.195 0.507 0.424 0.448 0.471
Couple 0.216 0.099 0.067 0.057  0.059
Age diff. Parent-offspring —0.027 0.101 0.053  0.046  0.050*

*more precise p-value: 0.04998

The association structure for apoA1l showed moderate parent-offspring and
high sibling associations. The final model also included an association parameter
for equal gender, i.e. individuals of the same gender had more similar apoAl
levels than those of different gender (p = 0.010). For example, the correlation of
either female or male sibling pairs was 0.43, whereas that of siblings of different
gender was 0.33. The association structure also contained a significant couple
association (p = 0.18, p = 0.002). The only pairs that revealed no significant
association at the 5% test level were uncle/aunt-nephew/niece pairs (p = 0.14
for same gender; p = 0.25 for different gender; p = 0.076) and first cousin pairs
(p = 0.11 for same gender; p = 0.23 for different gender; p = 0.449) most likely
due to the relative low number of pairs. No other explanatory variable for
the association structure revealed nominal p-values < 0.05 for any of the four
estimates of the robust variance matrix.

In order to test whether associations of different pairs of relatives decrease
with increasing genetic distance, we also performed more complex Wald tests.
According to their genetic distance, parent-offspring and sibling pairs should
share approximately the same amount of genetic material. Thus, if familial
aggregation of apoAl arose on a genetic basis, the correlation p between these
pairs should be similar. In addition, the correlation of grandparent-grandchild
pairs and uncle/aunt-nephew/niece pairs should be approximately % p. Further-
more, first cousins share approximately 12.5% of their genetic material so that
the association should be ip. Finally, couples should share no genetic mate-
rial so that p = 0, if no environmental effect is present. Therefore, we carried
out three different tests using the correlation coefficients. Association parame-
ters a were transformed to correlation coefficients p by the multivariate Delta



method (Rao, 1973). The first test included all six relations jointly. Second,
we performed a Wald test for the five relative pairs that share genetic material.
Third, we surmised that the shared and non-shared environment was similar for
parent-offspring and sibling pairs. Thus, we tested the equality of the respective
correlation parameters. The first hypothesis was rejected at the 5% test level
(p = 0.009). The second and third hypothesis were not rejected at the 5% test
level (p = 0.291 and p = 0.166, respectively). Thus, the rejection of the first hy-
pothesis was mainly due to the relatively high correlation between spouses. We
conclude that the results can not be explained by genetic effects only. Shared
environment influenced familial aggregation.

In contrast to the Monte-Carlo simulations presented in the last section,
the p-values of the 1- SJ and the FI1J were very similar for the apoA1l models
(Table 5). The usual robust variance matrix, however, yielded no p-value < 0.05
for any of the association parameters of the final model. The latter result
coincides well with the findings of section 4 where the classic robust variance
estimator was too conservative for the simulated models. They can be explained
by badly-conditioned (Belsley, Kuh and Welsch, 1980) covariance matrices: The
condition number of both the Fisher information matrix (see Appendix) and the
outer product gradient (OPG; Ziegler, 1995) was approximately 16. The robust
variance matrix, however, which is the sandwich product of these matrices had
a condition number of 99.

Table 6 shows that the results of the association structure for apoB are
different from those for the apoA1 data. The final model included the coefficients
for the relative pairs in addition to an age difference for parent-offspring pairs.
The highest correlation was obtained for pairs of siblings (p = 0.279; p < 0.001).
Interestingly, both the grandparent-grandchild correlation (p = 0.013; p = 0.816)
and the first cousin correlation (p = -0.097; p = 0.471) were low. Instead, the
uncle/aunt-nephew /niece pairs revealed some correlation (p = 0.132; p = 0.034).

When interpreting the correlation of parent-offspring pairs, one should bear
in mind that this association followed a regression with a simple linear predic-
tor and the inverse of the area tangens hyperbolicus as association response
function. Thus, the similarity of parent-offspring pairs decreased with their age
difference. Nevertheless, the p-values for this continuous variable differed rele-
vantly for the four variance estimators shown in Table 6. While the F1J and the
1-SJ revealed nominal p-values < 0.05, the classical robust variance estimator
and the AJS resulted in p-values > 0.05. Since the decision about the final
model was made upon use of the F1J (cp. Section 4), we retained the variable
in the model.

Figure 1 displays this relationship between the age difference and the corre-
lation coefficient bounded by minimum (16 years) and maximum (53 years) age
difference. Figure 1 also shows the 95% prediction interval for the correlation
coefficient. The correlation between parent-offspring pairs was negative if the
age difference was larger than 41 years. For the mean age difference of parent-
offspring pairs observed in this sample (ca. 30 years), the correlation was 0.151.
In analogy to the apoAl data, we tested the three more complex hypotheses
about the association structure. For parent-offspring pairs, we used the typical
association which was defined by the mean age difference which was 30 years.
None of the three tested hypotheses was significant at the 5% test-level (p =
0.153 for hypothesis 1; p = 0.287 for hypothesis 2; p = 0.231 for hypothesis 3).
Thus, the correlations were consistent with those expected from a genetic model
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after adjustments for age difference in parent-offspring pairs.
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Figure 1: Correlation coefficient and 95% prediction interval of apolipoprotein
B for parent-offspring pairs in relationship to their age difference.

6 Discussion

In this paper, we have analysed familial aggregation of apolipoproteins by mod-
elling both the mean and the association structure with the GEE2 of Prentice
(1988). In the analysis, we used the fully iterated jackknife estimator, its one-
step approximation and an approximation to the jackknife estimator of variance
in addition to the usually applied robust variance estimator. We carried out a
Monte-Carlo simulation study to investigate the different variance estimators by
using cluster-varying explanatory variables that were not mean-balanced. While
the standard errors of the different variance estimators were similar for the pa-
rameters of the mean structure, they varied substantially for the parameters
of the association structure. In accordance with the studies of Paik (1988) and
Lipsitz and colleagues (Lipsitz et al., 1990; Lipsitz et al., 1994) who investigated
jackknife estimators for the mean structure, we found that the usually applied
robust variance matrix was biased for the parameters of the association struc-
ture. Furthermore, in all simulated models the robust variance matrix was too
conservative. The most appropriate estimator for the variance of the association
parameters was the FIJ. This estimator is, however, CPU time consuming. For
the analysis of the real data, the estimation process of one model took about
75min on a Pentium II computer with 266MHz and 128MB RAM. The AJS
or the 1-SJ seem to be satisfactory alternatives for the model building stage if
CPU time is limited. Furthermore, they are readily available.

When the method was applied to the apolipropotein data set, several new
and interesting results were obtained. First, we found that individuals of the
same gender had more similar apoAl levels than individuals of different gen-
der. Second, we demonstrated that the similarity of apoB levels decreased with
increasing age difference of parent-offspring pairs. To our knowledge, these asso-
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ciations have not been discussed in the literature before. We furthermore carried
out quite complex hypothesis tests about the familial aggregation of apoAl and
apoB with classical Wald tests. They showed that the correlation between fam-
ily members can not be explained solely be shared genetics but that there is also
a non-negligible environmental contribution. The relatively high correlation be-
tween spouses is an indicator for this. Interestingly, for apoB, the correlation
decreases with increasing age difference between the pairs which also can be
interpreted as an environmental effect. This association had not been found in
the previous analysis when mixed models were applied in complex segregation
analyses (Livshits et al., 1995).

The advantage of the current data set is that a large number of families was
available for the analysis, although for some families not all family members
could be included in the study. Also, only some basic information was avail-
able on other important cofactors. While an indicator for smoking habits was
available and used in the analysis, no information on diet or other risk factors
influencing lipid were available.

All analyses were easily carried out by MAREG which is a menu-driven
freely available stand- alone computer program for marginal regression models
(Kastner et al., 1997). Specific association structures can be estimated by setting
up an ASCII ”design matrix” Z for the association structure which is similar
to the usual X matrix of explanatory variables. The only difference between Z
and X is that the families — or more generally clusters — have an additional row
that contains the number of pairs that are used for the association structure.
Thus, the Z file can generally be created from the X matrix using macros.

For the data analysis, we performed a two step approach. First the mean
structure was modelled and the results of variable selection was then used to
model the correlation. The mean structure was modelled without taking into
account the correlation between subjects. We used this two-step procedure since
no software was available for model building of correlated continuous variables.
Furthermore, we believe that the model for the mean structure would not change
in our data.

Summing up, our analyses using GEE2 revealed association structures that
would have not been seen by other models. Therefore, they may be used in
addition to other classical approaches to the analyses of family data, like segre-
gation analysis. These analyses would benefit from the implementation of model
selection procedures and standard regression diagnostic tools. Further research
may be needed to investigate the stability of the estimators.
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An Approximation to the Jackknife estimator of
variance for Generalised Estimating Equations

Ziegler (1997, equation (10)) has shown for the GEE1 that an application of the
update formula for symmetric matrices can be used to obtain an asymptotically
equivalent formulation of the jackknife estimator of variance

z": {Fi'f(ivi_lm(yz’ — ) (yi — )"V}~ L2 g F’}

i=1

n—p
n

A AT, @)

where F; =V~ Y2D; ~ Tyxpand K; = Iryxr + (I, — BEA ED) T BALE.
Here, Iy, x7; is the T, dimensional identity matrix, Vil/g is a root of V, satisfying
Vi = %1/2‘71'1/2 . In MAREG (Kastner et al., 1997) the Cholesky decomposition

is used to obtain f/il/ * . Furthermore, A7 is the inverse of the upper left block
of the Fisher information matrix:
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The approximation (4) may be extended to the GEE2 for T; > 2:

s> (non ) (o) i)
Zi = Pi Zi — pi

i=1

n_(p+Q)A—1
n

A—l

Here, F} is the (T; + T;(T; — 1)/2) x (p + q) block diagonal matrix of V 12p is

W_1/2E Analogously, V; ~1/2 i5 the block diagonal matrix of (V 1/2, Wi_1/2)
and finally, K; = I, 1 7,(T,—1) /2 x T4 To(Ti—1) /2 + IT 4 To(Ty —1) J2x T To(Ti—1) J2 —
FA- LEN - 1R A= 1R

For T; = 1, the estimation can be performed by letting z; — p; = 0 and
adding a row and column of 0 to F; so that

= _(E 0
Fz_(o 0).
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