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Abstract

The paper studies the extension of one of the basic issues of
classical statistics to interval probability. It is concerned with the
Generalized Neyman-Pearson problem, i.e. an alternative testing
problem where both hypotheses are described by interval probabi-
lity. First the Huber-Strassen theorem and the literature based on
it is reviewed. Then some results are presented indicating that the
restrictive assumption of C-probability (two-monotonicity) under-
lying all that work can be overcome in favor of considering general
interval probability in the sense of Weichselberger (1999A). So the
full expressive power, which is provided by interval probability, can
also be utilized in testing hypotheses.
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1 Introduction

Objections have been raised to the paradigm, all situations under un-
certainty could adequately be described by a single classical probability,
i.e. by a (0—)additive and normalized set-function. In theoretical, as well
as in applied work, a frequent complaint is that the concept of classical
probability requires a much higher degree of precision and internal consis-
tency of the information than that which is available in many situations.
Modeling such situations nevertheless with classical probability may lead
to deceptive conclusions. Therefore, the need for a generalized concept of
probability has become more and more obvious.

Such a substantial extension of classical probability is provided by the
theory of interval probability. In this concept intervals [L(A), U(A)] are
used instead of single real numbers p(A) to describe the probability of
an event A. This allows for an appropriate modeling of more general as-
pects of uncertainty. Though the idea to use interval-valued probabilities
has a long history and can be traced back at least to the middle of the
nineteenth century, the main steps towards a comprehensive theory have
been achieved only recently. Based on a certain generalized betting in-
terpretation, Walley (1991) developed a Neobayesian theory extending de
Finetti’s concept of probability to imprecise previsions. An interpretation-
independent theory of interval probability generalizing Kolmogorov’s ax-
ioms has been developed by Weichselberger (1999A). — For reviews and
references on the emergence of interval probability see especially Walley,
1991, chapters 1 and 5, Weichselberger, 1999A, chapter 1, and de Cooman
and Walley, 1999.

In the last years the interest in statistical application of interval proba-
bility and related concepts has mainly concentrated on generalized Bayes-
ian inference, cf. for instance Walley, 1996, Bernard, 1999, and the survey
by Wassermann, 1997. Nevertheless, interval probability also proves to
be quite important for the non-Bayesian (‘objective/ frequentist’) point of
view. Moreover, this topic has a — nowadays mostly forgotten — prominent
tradition. Some twenty-five years ago, Huber and Strassen (1973) studied
the generalization of the Neyman-Pearson alternative testing problem to
the situation where both hypotheses are described by interval probabi-
lity. Their results as well as all the work following their seminal paper,
however, kept restricted to quite a special type of interval probability.
Moreover, a so-called ‘necessity-theorem’ was — erroneously (see below) —
understood to make it impossible to allow for more expressive classes of



interval probabilities.

This paper surveys the ‘Huber-Strassen theory’ and then extends some
of the main results to general interval probability. Section 2 states some
basic definitions from Weichselberger’s concept of interval probability
(F-probability), which underlies this work. Also the special case of C-prob-
ability is considered, which contains two-monotone capacities and pseudo-
capacities and therefore also the neighborhood models commonly used in
robust statistics. It turns out that nevertheless the condition of being
C-probability is too restrictive to serve as basis for a general theory. Sec-
tion 3 looks at the generalized testing problem and the concept of (glob-
ally) least favorable least pairs to construct (level-a-)maximin-tests. The
Huber-Strassen theorem, which ensures the existence of globally least fa-
vorable pairs for typical C-probabilities, as well as the literature following
that result, is reviewed in section 4. — The next two sections show that
it is not necessary to restrict the consideration to the narrow class of
C-probabilities as has been done up to now. In section 5 the so-called ‘ne-
cessity theorem for C-probability’ is toned down by characterizing some
situations of F-probability not being C-probability, where globally least fa-
vorable pairs exist. Furthermore a ‘decomposition-theorem’ is developed
allowing for handling more complex neighborhood models by studying
‘least favorable neighborhoods’. Section 6 briefly sketches the concept
of locally least favorable pairs. Some directions for further research are
indicated in the concluding remarks in section 7.

2 Some basic aspects of interval probability

2.1 F-probability, structure

This paper is based on the interpretation-independent theory of inter-
val probability developed by Weichselberger (1999A), for selected as-
pects cf. also Weichselberger and P6hlmann, 1990, Weichselberger, 1995A
19958, 1996, 1999B. His concept is founded on the following generaliza-
tion of Kolmogorov’s axioms:

Definition 2.1 (The axioms of interval probability) Let (©2,.4) be
a measurable space.

o A function p(-) on A fulfilling the azioms of Kolmogorov is called
K-probability or classical probability. The set of all classical prob-
abilities on (Q, A) will be denoted by K (Q, A).



e A function P(-) on A is called R-probability with structure M, if
1. P(:) is of the form

2. The set

18 not empty.
o R-probability with structure M is called F-probability, if

) (i)rlefMp(A) = L(A)
sup p(4) =U(4) vdeA. (2)
p(-)EM

The following convention is made for the sake of clarity: Throughout the
paper capital-letter P is used for interval-valued assignments, while small
letters (p,q,...) stand for classical probability.

For every F-probability L(-) and U(-) are conjugate, i.e. L(A) =1 —
U(A%), VA € A. The other way round, presupposing conjugacy, every
F-probability is uniquely determined either by L(-) or either by U(-) alone.
Therefore one obtains for its structure M :

M = {p() e K(Q,A) | L(A) <p(A), VA€ A} = 3
= {p() €K(Q,A) | p(4) SU(A), VA€ A}.

Here L(-) is used throughout, and F = (Q, A, L(-)) is called an F-prob-
ability field. Specifying an F-probability field (2,4, L(+)), it is implicitly
assumed that the conjugate set-function U(-) = 1 — L(-“) describes the
upper interval-limit.

Weichselberger’s theory relies on countable additive classical probabil-
ity. So the interval-limits of an F-probability are lower and upper prob-
abilities in the sense of Huber and Strassen (1973), but these terms are
avoided here because they are also used in the literature in several other
meanings. Furthermore, F-probability is strongly related to coherence in



the setting of Walley (1991) and to the concept of envelopes in the fre-
quentist theory developed by Fine and students (e.g. Walley and Fine,
1982, or Papamarcou and Fine, 1991).

The relation between interval probabilities and non-empty sets of clas-
sical probabilities expressed by the concept of the structure (see (1))
proves to be quite important for the whole theory. It indicates how to
extend concepts of classical probability to interval probability. For in-
stance, generalizing expectation is straightforward:

Definition 2.2 (Expectation with respect to an F-probability field)
For every F-probability field F = (Q, A, L(+)) with structure M a random
variable X on (Q, A) is called M-integrable, if X is p-integrable for each
element p(-) of M. Then

de

<

EuX € [LEMX,UEX]
def .
= inf E,X, sup E,X (4)
L, pO)EM ]
g [—O0,00]

is called (interval-valued) expectation of X (with respect to F).

2.2 Prestructures

Not every set of classical probabilities is a structure of an F-probability,
but every non-empty set of classical probabilities can be used to construct
an unique, narrowest F-probability field corresponding to it.

Remark 2.3 (Prestructure)(Weichselberger, 1999A) Let V # 0 be a

set of classical probabilities on a measurable space (2, A). Then Py(-) =
[Ly(-), Uy ()] with
def . def
L) it p4) A Un(A) Y sup p(a) (5)

p(-)€V p(-)EV

is F-probability, and V is called prestructure of Fy = (Q, A, Ly(+)).

For the structure My, of Fy, the relation My, DOV holds. Furthermore,
every F-probability field F = (Q, A, L(-)) with structure M also fulfilling
M DV is weaker than Fy = (Q, A, Ly(+)) in the sense that L(A) < Ly (A)
for all A € A.



Mainly two applications of this concept will be used in what follows:

Definition 2.4 (Independent product of F-probability fields, com-
pare Walley and Fine, 1982, p. 745, Weichselberger, 1999A, chapter 7,
and the ‘sensitivity analysis definition’ in Walley, 1991, chapter 9.1.) Let
a finite number of F-probability fields F; = (Q, Ai, Li(+)) with structures
My, 1=1,...,n, be given. Then the F-probability field

5 <>< . & AI;L(')> ,
=1 =1 =1

which has "

x M;

=1

as its prestructure, is called the independent product of the F-probability
fields F;,l=1,...,n.

Definition 2.5 (Parametricly constructed F-probability fields)
Consider a (strictly) parametric set Q@ = {py(:) | § € ©}, © C R™, of
classical probabilities on a measurable space (2, A). An F-probability field
F(O) = (Q,A,L(")) with structure M is called parametricly constructed
with respect to Q, if there exists a

0 =1[07,07] x [65.69] x ... x [0L, 671 C ©

m’Ym

in such a way, that
def

Q(0) = {ps() |6 €0}
is a prestructure of M. Then 0 is called parameter of F(0) (with respect
to Q).

One interpretation of such concepts defined via prestructures is to take
them as a robustification of the classical concepts (e.g. of independence
or parametric distributions). In general, the structures of the resulting
F-probability fields are richer than the sets used for construction. The
structure of the independent product also contains ‘slightly dependent’
classical probabilities ‘lying between’ the independent ones. In the second
case in particular all the mixtures of the distributions corresponding to a
parameter value inside @ belong to the structure as well.

Prestructures are also often helpful in easily verifying certain prop-
erties. In section 5 it will be used that the existence of a dominated



prestructure is sufficient for the structure to be dominated. — To exclude
misunderstandings it may be noted at this point that the expression ‘dom-
inated’ is used here in its measure-theoretic meaning and not in the sense
of ‘dominated lower and upper probabilities’ as for instance in Papamar-
cou and Fine, 1986.

Lemma 2.6 (Dominated (pre)structures) The structure M of an
F-probability field is dominated by a o— finite measure A(-), iff there exists
any prestructure V, which is dominated by A(-).

Proof: Since according to remark 2.3 M DO V one direction is triv-
ially fulfilled. Now let A(-) be a o—finite measure dominating V. For
every A € A with A(4) = 0 one has p(4) = 0 for all p(-) € V implying
supy(.yey P(A) = 0. The claim now immediately follows from the fact that

for every prestructure sup,.yey p(A) = supp(.yeam P(A). O

2.3 C-probability

In this subsection a special case of F-probability is considered, called
C-probability with Weichselberger (1999A, chapter 5). It provides a su-
perstructure upon neighborhood models commonly used in robust statis-
tics (see below) and additionally contains the so-called Dempster-Shafer
belief-functions (e.g. Yager, Fedrizzi and Kacprzyk, 1994.).

Definition 2.7 (C-probability) Let (Q2,A) be a measurable space.
F-probability P(-) = [L(-),U(-)] is called C-probability, if L(-) is two-
monotone, i.e., if

L(AUB)+ L(ANB) > L(A)+ L(B), VA,Be A. (6)
Then the F-probability field C = (2, A, L(+)) is called a C-probability field.

For the property of two-monotonicity many different names are common,
too. In particular it is also called ‘(strong) superadditivity’, ‘supermodu-
larity’ or ‘convexity’.

Two related types of set-functions leading to C-probability have been
extensively studied in the literature. The first one, the class of two-
monotone capacities, was introduced by Choquet (1954) in the context
of potential theory. The members of the second branch share most of
the properties and are therefore called ‘pseudo-capacities’ (Buja, 1986) or
‘special capacities’ (e.g. Bednarski, 1981).



Remark 2.8 (Typical examples of C-probability fields) Assume
(Q,A) to be a Polish measurable space, i.e. Q is a complete, separable
and metrizable space, and A the corresponding Borel o-field (e.g. Q =
R", A=B).

e Two-monotone (Choquet-)capacities: Fvery set-function L(-) on A
with L() =1 and (6) additionally obeying the condition

(Ap)new TA, A, open,n € N = lim L(A,)=L(A4), (7)

n—roo

and the condition

(A)new LA, A, e A,ne N = ILm L(A,) = L(A)
leads, together with the corresponding conjugate upper limit U(-) >
L(+), to F-probability and therefore to C-probability (Huber and Stras-
sen, 1973, lemma 2.5, p. 254).

e Pseudo-capacities: Let f(-) : [0,1] — [0,1] be a convex function
with f(0) = 0 and let p(-) be a classical probability on (2, A) (called
central distribution in this context). Then

def

P()= [(fop(),1-(fop) ()]
with (f @ p)() =1 and

(Fop)A) Y fma), vAeA\{q},

is C-probability. The corresponding structure will be denoted by
M(f@p).

Some models often used in robust statistics naturally fit into this frame-
work. Perhaps the most prominent pseudo-capacity — which is also a two-
monotone capacity, if  is compact — is the (e,d)-contamination-model
(0 < €,d,e+ 6 < 1) containing the contamination model in the narrow
sense (0 = €) and the total-variation model (¢ = 0). There f(-) has the
form f(y) =max((1—¢€)-y—9,0).

C-probability is a distinguished special case of F-probability possess-
ing some mathematical elegance, but it is not comprehensive enough to
provide an exclusive, neat basis for a theory of interval-valued probability.



In the meantime Walley’s conclusion that there is not “[...] any ‘rational-
ity” argument for 2-monotonicity, beyond its computational convenience”
(Walley, 1981, p. 51) has experienced a good deal of additional support. It
turned out that the expressive power of the concept of interval probability
is mainly due to the extension of the calculus to arbitrary F-probability
fields. To mention just one argument, on which it will be recurred later
(for a detailed argumentation on this topic see: Augustin, 1998, chap-
ter 1.2.3.): The generalization of the usual parametric families to interval
probability (like the F-normal distribution) along the lines of definition 2.5
leads to F- but not to C-probability.

3 (Level-a-)Maximin tests and (globally) least
favorable pairs

In this section the testing problem studied will be precisely stated and a
method for obtaining optimal tests will be described.

3.1 Neyman-Pearson testing between interval prob-
abilities

Formulating the Generalized Neyman-Pearson Problem is straightforward.

Just as in classical Neyman-Pearson theory, one probability is tested ver-

sus another one, without any (non-vacuous) prior knowledge which one

of the hypotheses is the true one. But now the hypotheses may consist of
F-probabilities instead of classical probabilities:

Problem 3.1 (Generalized Neyman-Pearson Problem) Consider
two F-probability fields Fo = (Q, A, Lo(+)) and F1 = (Q, A, L1(-)) on a
measurable space (Q, A) with disjoint structures My and M. Based on
the observation of a certain singleton {w} =: E, which has the probability
Py(E) = [Lo(E),Uo(E)] or Pi(E) = [L1(E),U1(E)] to occur, an optimal
decision via a test has to be made between the two hypotheses H; : “The
‘true’ probability field is F;”, i € {0,1}.

For technical reasons the formulation of problem 3.1 uses sample size
1. Of course, situations with sample size n are included by considering
the independent products (see definition 2.4) of the F-probability fields
describing the hypotheses. By stating problem 3.1 also two regularity



conditions are implied, which are assumed to hold throughout the paper:
To have an alternative-problem in the narrow sense, it is supposed that
My and M have a positive distance with respect to an appropriate met-
ric. Furthermore, to have the problem well defined, the set {w} is taken
to be measurable for every w € . This condition is very mild. It is, in
particular, fulfilled by all Polish spaces.

Since the concept of randomization is based on an idealized random-
experiment without any non-probabilistic uncertainty, it should be de-
scribed by classical probability. Therefore, it is — even in the area of
interval probability — consistent to allow only for precise (i.e. not interval-
valued) probabilities for rejecting Hy. So the concept of a test remains
the same as in classical statistics, the set ® of all tests still is the set of
all measurable functions ¢(-) : Q@ — [0, 1].

As Huber and Strassen (1973) and the work following them did, also
the present paper exclusively considers the case where only the upper
limits of the error probability are taken into account. Then the Neyman-
Pearson principle ‘Minimize the probability of the error of the second
kind (i.e. IEar, (1 — ¢)) while controlling for the error of the first kind
(i.e. Ea,p) leads to a complex, nonparametric (not ‘easily parametriz-
able’) (level-a-)maximin-problem between the structures.

Definition 3.2 (Level-a-maximin-criterion under F-probability)
Let a level of significance o € (0,1) be given. A test ¢*(-) € @ is called
a level-a-maximin-test (for Fo versus Fi), if ©*(-) respects the level of
significance, i.e.

UEy* < a, (8)

and p*(-) has mazimal power among all tests under consideration, i.e.

VY €® [UEm,Y < a= LEMm % < LEM 9" ] . (9)

3.2 (Globally) least favorable pairs

To get a proper principle for constructing optimal tests, the following idea
is helpful: “If one succeeds in convincing the hardliners of two parties, one
has convinced all their members”. Therefore, one may try to construct
level-a-maximin-tests by searching for two elements go(:) and ¢ (+) of the
structures, where the testing is most difficult. In the spirit of Huber and
Strassen (1973) and the work related to it this ‘being least favorable’ can
be formalized as follows.

10



Definition 3.3 (Globally least favorable pairs) Consider problem 3.1.
A pair (qo(+),q1(+)) of classical probabilities is called a globally least fa-
vorable pair (for Fy against Fi ), if

1. (20();q1(-)) € Mo x My, (10)

2. there is a version w(-) of the likelihood ratio of qo(-) and q1(-) with

Vi >0, Vpo () € Mo: po({w|m(w) > 1}) < go ({wlr(w) >1})  (11)
and

Vt>0,Vpi (1) e My pr({wlr(w) > 1}) 2 ¢ ({wln(w) > £}) . (12)

The heuristics given above can be formally supported. It is not hard to
prove that globally least favorable pairs indeed lead to level-a-maximin-
tests:

Proposition 3.4 (Globally least favorable pairs and level-a-maxi-
min-tests) If (qo(-),q1(-)) is a globally least favorable pair for Fy versus
Fi, then there exists a best level-a-test for testing the hypothesis Hy :
{qo (")} versus the hypothesis Hy : {q1(-)}, which is a level-a-mazimin-test
for Fo versus F1, too.

It should be remarked that in the literature it is usage to call (go(+), q1())
just a “least favorable pair”. The term ‘globally’ is added here to make
a distinction to ‘locally least favorable pairs’, which will be introduced
later.

Definition 3.3 immediately implies that for every globally least favor-
able pair (go(+),q1(+)) for every nonnegative ¢ the following holds:

g ({wlr(w) >t}) = Uo({wlr(w) >t})
@ ({wlr(w) >1}) = Li({wlr(w) >t} .

From this it is directly deduced that it is suffices to check the conditions
for globally least favorable pairs on any arbitrary prestructure. Since
this conclusion helps to systematize some well-known results and plays an
important role in the proofs of the extensions discussed in section 5 it is
for ease of reference formulated as a separate lemma.

(13)

11



Lemma 3.5 (Globally least favorable pairs and prestructures) A
pair (go(+),q1(+)) of classical probabilities with (qo(-),q1(-)) € Mo x M; is
a globally least favorable pair for Fy versus Fi, if there exist prestructures
Vo and Vi of Fo and F; in such a way that for a suitable version (-)
of the likelihood-ratio relations (11) and (12) hold for V; instead of M,
ie{0,1}.

The property of being globally least favorable does not depend on the level
of significance. This makes globally least favorable pairs ‘independent of
the sample size’:

Proposition 3.6 (Product-theorem for globally least favorable
pairs) Let q(n)(-) and .7-'1("), i € {0,1}, denote the n-dimensional indepen-

i
dent products of q;(-) and F;, respectively. If (qo(-),q1(-)) is globally least
favorable for Fy versus Fi, then (q(()n)(')a Q§n)()) is globally least favorable

for fén) versus \7_-1(n).

Sketch of the proof: In principle, the core of this proposition was al-
ready mentioned informally by Huber and Strassen (1973, corollary 4.2,
p. 257) without having a clear independence concept for interval proba-
bility. A proof of proposition 3.6 is given in Augustin (1998, p. 223ff). It
is mainly based on results taken from Witting (1985, Satz 2.57, p. 237f)

and on lemma 3.5. ]

4 Huber-Strassen theorem and the ‘neces-
sity’ of C-probability

4.1 The main theorems

The fame of the work of Huber and Strassen (1973) is first and foremost
due to the fact that they succeeded in showing that a globally least favor-
able pair always exists for two-monotone capacities:

Proposition 4.1 (Huber-Strassen theorem) (Huber and Strassen, 1973,
theorem 4.1, p. 257) Consider problem 3.1 on a Polish space (2, A), and
let Fo and Fi be C-probability fields fulfilling (7). Then there exists a
globally least favorable pair for Fo versus Fi.

12



An extension to F-probability had not been considered so far, appar-
ently because the following result was misunderstood to show the impos-
sibility of a generalization:

Proposition 4.2 (‘Necessity theorem’) Consider a finite space Q, the
corresponding power set P(Q), and an F-probability field Fo = (Q, P(), Lo(+))
with structure Mg. If there exists for any classical probability pi(-) with
p1(+) & Mo a classical probability po(-) € My in such a way that (po(-),p1(-))

is a globally least favorable pair for Fo versus Fy = (Q,P(Q),p1(-)), then
Fo must be a C-probability field.

The consequence has been an exclusive concentration on models pro-
ducing C-probability. For instance, Lembcke (1988) entitles his article,
where he introduces his generalization of proposition 4.2, “The necessity
of [...C-probability] for Neyman-Pearson minimax tests”, and Huber him-
self calls relation (6) “the crucial [property...] to obtain a neat theory”
(Huber, 1973, p. 182). Though - as mentioned in section 2.3 — this is
rather unsatisfactory with regard to the expressive power of modeling,
the restriction on C-probability has seemed to be the inevitable price one
has to pay for Neyman-Pearson testing under interval probability.

4.2 A short survey of the work following the Huber-
Strassen theorem

The Huber-Strassen theorem has two different roots, each connected with
one of the authors. Already in 1964 Strassen formulated proposition 4.1
for totally monotone C-probability on finite spaces (Strassen, 1964, Satz 2.1,
p- 282). One year later he recognized (Strassen, 1965, p. 431) that indeed
two-monotonicity is sufficient. On the other side, based on heuristic ar-
guments Huber (1965) managed to derive a globally least favorable pair
for contamination neighborhood models.

The synthesis leading 1973 to proposition 4.1 induced a great deal of
work, which is mainly concentrated on two aspects. Since on non-compact
Q, e.g. 2 = IR, the usual neighborhood models do not fulfill (7) (with re-
spect to the standard topology), the first branch was concerned with the
existence of globally least favorable pairs in such situations. Important
steps towards a solution were obtained among others by Rieder (1977)
and by Bednarski (1981), while Buja (1986) succeeded in giving a gen-
eral and comprehensive answer. Using a general result from topological

13



measure theory (Kuratowski isomorphism theorem) he showed that on
Polish spaces pseudo-capacities not fulfilling (7) for the usual topology
must nevertheless obey this condition for some non-standard topology.
Conditions, which are sufficient to extent proposition 4.1 to non-Polish
spaces, are given in Hummitzsch (1978, see especially Satz 6.4, p. 30).

The other main topic is initiated by the fact that the Huber-Strassen
theorem is a general existence result without providing a method for
the construction of least favorable pairs. Rieder (1977) presented a so-
lution for most of the (g,d)-contamination models. Bednarski (1981,
p- 402f) derived sufficient conditions for pseudo-capacities under which the
likelihood-ratio of a globally least favorable pair is a monotone function of
the likelihood-ratio of the central distributions and described special cases,
where the construction can be done by differentiating. Of particular inter-
est in this context are the contributions of Osterreicher and Hafner. Start-
ing with Osterreicher (1978) the leitmotif of their work is to use model-
specific characteristics of the generalized risk-function for constructing
the likelihood-ratio of a globally least favorable pair. (Cf. Hafner, 1992,
for summarizing some aspects.) For several neighborhood models they
managed to find that transformation, which leads to the risk-function of
a globally least favorable pair (e.g. for the Prohorov model see: Hafner,
1982). Furthermore, Hafner was able to show that similar methods can
also be used for models defined via lower and upper density functions or
via lower and upper distribution functions (Hafner, 1987, 1993). — All
these methods elegantly use particular properties of the special models
considered. Additionally, as a byproduct of the considerations in Au-
gustin (1998, chapter 5), for models on finite spaces a general algorithm
for calculating globally least favorable pairs via linear programming can be
developed, which does not assume a certain type of models (see Augustin,
1998, Korollar 5.12, p. 196f).

There are many other problems, where the solutions essentially are
based on the Huber-Strassen theorem. Two examples for this are the ex-
tension to dependent random variables (Bednarski, 1986) and the develop-
ment of asymptotic (level-a-)maximin-tests under sequences of shrinking
neighborhood models (cf. for instance: Rieder, 1978, Bednarski, 1985, and
Rieder, 1994, chapter 5.4 and the references therein).

14



5 Globally least favorable pairs under gen-
eral interval probability

In section 2.3 it was discussed that C-probability is too restrictive to serve
as an exclusive and indispensable minimal condition for a powerful theory
of interval probability. For an extension of Neyman-Pearson theory to
F-probability allowing for much more flexible and comprehensive models
firstly note that the ‘necessity’ stated in proposition 4.2 might be toned
down! Its premise is rather artificial. If the existence of a globally least
favorable pair for all possible alternative hypotheses is to be guaranteed,
then C-probability is indeed necessary. Surprisingly it has often been
overlooked that this does not exclude the existence of a globally least
favorable pair in one concrete testing problem, where neither 7y nor F;
are C-probability fields. This is of particular interest, because it will
turn out that there is a plenty of relevant models, where both hypotheses
are not described by C-probability fields, but nevertheless globally least
favorable pairs exist. One example is provided by F-probability fields,
which are parametricly constructed (cf. definition 2.5) with respect to a
family with monotone likelihood-ratio. Using lemma 3.5 and the relation
between monotone likelihood-ratio and stochastically ordered classes of
distributions one obtains

Proposition 5.1 (Existence in the case of monotone likelihood-
ratio) Consider a (strict) parametric family Q = {py(:) | 6 € ©}, © C
R, of (mutually absolutely continuous) classical probabilities on (IR, B)
with monotone likelihood-ratio in 6. If the F-probability fields Fo(6o) and
F1(61) are parametricly constructed with respect to Q with parameters
0o = [0L,0Y] C © and 6, = [0F,0V] C ©, 8Y < 6F, then

(Do (), o ()

is a globally least favorable pair for testing Fo(6o) versus F1(61).

An enrichment gained by allowing for F-probability is the study of
generalized pseudo-capacities. Usual, (not generalized) pseudo-capacities
are based on the ‘convex distortion’ of a single classical probability used as
central distribution (see remark 2.8). This can substantially be extended
by considering interval-valued central distributions. In particular this
leads to neighborhood models of F-probabilities.
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Proposition 5.2 (Generalized pseudo-capacities) Let F = (0, A, L(+))
be an F-probability field with structure M and f(-) : [0,1] — [0,1] a convex
function with f(0) = 0. Then the generalized pseudo-capacity

de f

(foP)() Z (fol)(),1-feL)(9)]
with (f ® L)(Q) =1 and

(oL Y L), Aca\{l,

is F-probability (with its structure denoted by M(f ® L)).
Furthermore, with M(f ® p) as defined in remark 2.8,

ME ) M(Fep) (14)

p(-)EM

is a prestructure of the F-probability field (f @ F) = (Q,A (feL))).
Proof: First of all it should be noted that the conditions imposed on
f(-) guarantee that f(-) is not decreasing. This implies

Vp(-) € K(, A) ,VA e A[p(4) 2 L(A) = (fep)(4) = (f© L)(A)(]~ |
15
The proof now consists of three steps:

i) Firstly it is shown that M is not empty: For this one uses that
the structure M of the central distribution is not empty and takes
any p(-) € M. The corresponding set-function (f ® p)(-) is the
lower interval limit of a pseudo-capacity with a non-empty structure

M(f@p)().
ii) The second step proves the relation M C M(f ® L) where

M(foL) = {p() e K A) |
(f@L)(A) <p(4) < (1 - foL)(A), VA€ A}

{p() € K(QA) | (f® L)(A) <p(A), VA € A}.

By the definition of M according to (14) there is for every () € M
a p(-) in M so that p(-) is an element of the structure M (f®p) of the
(not generalized) pseudo-capacity [(f ®p)(-), (1 — f®p)(-9)]. Since
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this is F-probability one has p(A4) > (f ®p)(A) for all A € A. Using
the monotonicity formulated in (15) and the relation p(A) > L(A),
A € A gained from the fact that F is an F-probability field, it
can be concluded that p(A) > (f ® L)(A) for every A € A, ie.
P(-) € M(f ® L). In particular M(f ® L) # () and (f @ P)() is
R-probability with structure M(f ® L).

iii) To conclude the proof it is shown that for every A € A and every € >
0 there is a classical probability p(-) € M with p(A) < (f@L)(A)+e.
From this it is deduced together with the results from ii) and the
conjugacy in the definition of (f ® P(-)) that (f ® P)(-) is F-prob-
ability and M is a prestructure of the corresponding F-probability
field.

First consider an event A € A with L(A) = 1. F is an F-probability
field. Its structure M is not empty, and for every p(-) € M one
obtains p(A) = 1 = L(A). Now fix one such p(-). The pseudo-
capacity corresponding to (f®p)(-) is F-probability. Therefore there
is an () € M(f @ p) with p(4) < (f@p)(A) +e= (f @ L)(A) + e

In the case of an event A € A with L(A) < 1 one uses the continuity
of f(+) on [0, 1), which can be deduced from the upper semicontinuity
of f(-) on [0,1] (cf. e.g. Rockafellar (1972, theorem 10.2, p. 84)) and
from f(0) = 0 and f(-) > 0. Therefore, for every € > 0 there
exists a § > 0 so that |f(y) — f(L(A))| < €/2 for all y € [0,1)
with |y — L(A)| < §. Since F is an F-probability field there is
a p(-) € M with p(A) < L(A) + 4, which implies (f ® p)(4) <
(f ® L)(A) + €/2. Consider the pseudo-capacity corresponding to
(f®@p)(-). It is F-probability. So there is a p(-) € M(f ® p) with
B(A) < (F o p)(A) +¢/2 < (] & )(4) +e. O

To find least favorable pairs for testing two generalized pseudo-capa-
cities (fo ® Fo) and (fi ® F1) it may be promising to proceed in two
steps. One may try to reduce the testing problem firstly to a testing
problem between a so-to-say ‘least favorable pair of F-probabilities’. These
should be more easy to handle but nevertheless represent the whole testing
problem in the sense that globally least favorable pairs for testing between
them are also globally least favorable pairs for the complex problem.

It would be most functional, if one could calculate the least favorable
F-probabilities from the testing problem between the central-distributions.
In the rest of this section situations are described, where this convenient
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way of splitting up the complex problem into simpler ones proves to be
successful. Theorem 5.3 and theorem 5.5 will state sufficient conditions
under which the pair of ‘least favorable F-probabilites’ consists just of
the (usual, not generalized) pseudo-capacities around the elements of the
globally least favorable pair for testing between the central distributions
with the same ‘distortion functions’ fo(-) and fi(-). Then the following
procedure can be recommended to obtain globally least favorable pairs
for testing between generalized pseudo-capacities:

e Firstly search for a globally least favorable pair (go(+), 1 (+)) for test-
ing between the F-probability fields forming the central distribu-
tions.

e Secondly, if the first step proved successful, determine a globally
least favorable pair for testing between the (not generalized) pseudo-
capacities around go(-) and ¢; (-). Then it is a globally least favorable
pair for the problem (fy ® Fo) versus (f1 ® F1), too.

In these situations the efficient construction methods for (usual, not gen-
eralized) pseudo-capacities cited in section 4.2 can also be used without
any additional complication to obtain least favorable pairs in the complex
situations.

Theorem 5.3 (Least favorable pseudo-capacities I) Let (fo ® Fo)
and (f1 ® F1) be two generalized pseudo-capacities on a Polish space with
fi(zo) = 0 for an xo € (0,1), i € {0,1}. If there exists a globally least
favorable pair (qo(-),q1(+)) for Fo versus Fy fulfilling the three conditions

a) qo(+) and q1(-) are mutually absolute continuous,

b) for every a € (0,1) there is a best level-a-test for {qo(-)} versus
{q1(:)}, which is non-randomized,

c) there are prestructures Vo and Vi of Fo and Fy, which are dominated
by qo(-),
then the following holds:

1) There exists a globally least favorable pair for (fo® Fo) versus (fi ®
F1).

2) ((fo®q0)(*), (f1 ® q1)(+)) is a pair of least favorable pseudo-capaci-
ties in the following sense: If (Go(-),q1(-)) is a globally least favorable
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pair for (Q,A, (fo ® qo)(+)) versus (A, (fr ® q1)(+)), then it is a
globally least favorable pair for (fo ® Fo) versus (f1 ® F1), too.

Proof: According to Buja (1986) (cf. section 4.2) there always exists a
globally least favorable pair for testing the two (not generalized) pseudo-
capacities (2, A, (fo®qo)(-)) and (2, A, (f1®¢1)(-)). So the first statement
follows from the second one.

To verify that every globally least favorable pair (go,q:) for testing
(A, (fo®qo)(+)) and (2, A, (f1 ®q1)(+)) is also a globally least favorable
pair for the complex problem (fy ® Fo) versus (fi1 ® F1), only condition
(12) will be shown more detailed. The proof of (11) is analogous, and (10)
is clear.

Firstly one follows the lines of the proof of theorem 5.1 in Bednarski
(1981, p. 402) to confirm that — under the condition a) and b) — there is
for every t € IR§ an w(t) with

{w]|T(w) >t} ={w|7(w) >w®)}, ¢()+a()as.

Here 7(+) and 7 () denote suitable versions of the likelihood-ratios of go(+)
and 1 (+) and of ¢o(+) and ¢ (-), respectively.

Then one uses that go(-) and — because of a) also — ¢;(+) dominate the
prestructures Vy and V; and therefore according to lemma 2.6 also the
structures Mg and Mj. So the relation {w | 7(w) > t} = {w | 7(w) >
w(t)} also holds p; (-) almost surely for any p; (-) in M;.

Together with the fact that (go(:),q1(+)) is a globally least favorable
pair for Fg versus F; this leads to

n({w|7w)>1}) = a({w|7rw)>wt)}) <
< p({w|n(w) >w®)}) =p1 ({w | 7(w) > t})
(16)
for every element p; (-) of the structure M; of F; and every t € IRy .
The function fi(-) is not decreasing (cf. the proof of proposition 5.2).
From this one concludes

(fiog){w|7w) >t}) <(frep){w|Tw) >1t}),  Vpi() e M.

The expression (fi1 ® q1) ({w | #(w) > t}) on the left hand side of this
inequality is — according to (13) — equal to q; ({w | T(w) > t}), because
(@0 (+), @ (+)) is a globally least favorable pair for (€2, A, (fo ®qo)(+)) versus
(Q,A, (fi ®q1)(+)). Therefore

@ ({w|7w)>t}) <(fhop){w|Tw) >t}),  Vpu() e My,
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Looking on the right hand side one uses that (fi ® p1)(-) is a pseudo-
capacity for every p;(-) € Mj. So for every element s;(-) in the corre-
sponding structure M(f; ® p;) one obtains

(frep) ({w]7T(w) > t}) < s ({w]|7(w) >t} .

Finally, the last two relations are brought together and the union of all
p1(-) € My is taken. This leads to

@ (fw | T(w) > t}) <s1(fw]7w) > ), Vsi() € My = [ M(fiepy).

p1EM1

Since, according to proposition 5.2, the set M is a prestructure of (fi®
F1), the claim is gained via lemma 3.5. ]

Example 5.4 (Generalized pseudo-capacities around F-normal
distributions) An important class of interval probabilities, where the
requirements of theorem 5.3 are usually fulfilled, consists of parametricly
constructed interval probabilities with respect to a family, which is ab-
solutely continuous with respect to the Lebesque-measure and possesses
monotone likelihood ratio. (These conditions, however, are not always
sufficient. A well-known counterexample is provided by the family of con-
tinuous uniform distributions.) In particular theorem 5.3 applies to gen-
eralized pseudo-capacities around F-normal distributions: According to
proposition 5.1 the classical probabilities qo(-) and q1(-) forming the glob-
ally least favorable pair are the normal-distributions corresponding to the
right and to the left border of the parameter intervals, respectively. They
are mutually absolutely continuous, for every level of significance the op-
timal test between them can be chosen to be non-randomized, and they
dominate the prestructures consisting of all normal distributions in the
parameter interval and therefore (cf. lemma 2.6) both structures.

Discussing the area of application of theorem 5.3 it should be stressed
that this theorem only is valid when a globally least favorable pair exists
for testing between the central distributions — indeed, this condition seems
to be indispensable for any related form of splitting up the testing prob-
lem. Given a globally least favorable pair, condition a) of theorem 5.3 is
fulfilled in most situations. From a practical point of view also the require-
ment b) is by far not so restrictive as it might look at a first glance. The
nonexistence of non-randomized optimal tests usually occurs on discrete
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spaces. But this is only a problem if the discrete space is really of infi-
nite cardinality. When the space is finite the reduction to least favorable
pairs of F-probabilities aimed at in theorem 5.3 is not necessary. In this
situation globally least favorable pairs can be obtained from parametric
linear optimization (Augustin, 1998, Proposition 5.11, p. 192f).

However, for not parametricly constructed interval probability the
third condition, which in particular forces the structures of the central
distributions to be dominated, is to some degree demanding. In several
situations modeling with interval probability naturally leads to undomi-
nated structures. (For example most neighborhood-models can produce
undominated structures.)

Especially for such cases a variate of theorem 5.3 is of interest, which
implicitly slightly restricts the form of the ‘distortion functions’ fo(-) and
f1(+) in favor of the possibility to handle undominated structures and to
do also without the other conditions just discussed.

Studying the results of the construction techniques reviewed in sec-
tion 4.2 one recognizes that — in the notation needed below — nearly for
all common pseudo-capacities around two classical probabilities go(-) and
q1(-) with likelihood ratio 7(-) the likelihood ratio 7(-) of every globally
least favorable pair is of the form

t m(w) > tmax
7lw) =< h(n(w)) if  7(w) € [tmin, tmax) (17)
t m(w) < tmin

with a non-decreasing function h(-) and appropriate quantities %, tpqz, 2,
tmin. Additional support for this form can be gained from Bednarski
(1981, theorem 5.1, p. 402) and also by following the original heuristic
(cf. e.g. Huber, 1965) behind robust testing of the two classical prob-
abilities go(-) and ¢1(-): Their likelihood ratio 7 (-) is very sensitive to
observations with very small likelihood so that one outlier can nearly
determine the whole product I, 7(z;) of a sample (z1,...,2,). To al-
leviate this unwanted effect one transforms and truncates the likelihood
ratio to restrict the influence of extreme observations.

If () is not only non-decreasing but strictly increasing, the two (not
generalized) pseudo-capacities around the components of the least favor-
able pair for testing the central distributions can be again shown to form
a pair of least favorable F-probabilities.
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Theorem 5.5 (Least favorable pseudo-capacities II) Let (fo ® Fo)
and (fi1 ® F1) be two generalized pseudo-capacities on a Polish space
and assume that there exists a globally least favorable pair (qo(-),q1(-))
for Fo versus Fi. If (Go(-),q1(:)) is a globally least favorable pair for
(Q, A, (fo®qo)(-)) versus (2, A, (f1 ® ¢1)(:)), whose likelihood ratio m(-)
is of the form (17) with a strictly increasing function h(-), then the fol-
lowing holds:

1) There exists a globally least favorable pair for (fo® Fo) versus (f1 ®

F1).

2) (Go(-),q1 () is a globally least favorable pair for (fo @ Fo) versus
(fl ®-7:1); too.

Proof: Just as in the proof of theorem 5.3 according to Buja’s (1986)
general existence result the first statement follows from the second one.

For the second part one observes that the additional assumption f;(xo)
0 for a number zg € (0,1), i € {0,1} and the conditions a), b), and c) for-
mulated in theorem 5.3 were only needed to establish relation (16). The
rest of the proof of theorem 5.3 does not recur on them. So that proof
literally carries over to any situation, where one succeeds in deducing (16)
in a different way.

To verify (16) in the case considered here one uses the special form of
7(+) and the fact that, because h(-) is strictly monotone, its inverse h=1()
exists. Therefore for every ¢ € Ra'

0 t>1
{w]rw) >t} = Q if 1<t
{w|m(w) >h71(t)} telt,t)

For every t € [t, t) and for every element p;(-) of the structure M; of F;
one therefore obtains, using the fact that (go(-),q1()) is a globally least
favorable pair for Fy versus Fi,

o ({w|7w) >t}) = a({w|nw) >hr#)}) <
< p({wln(w) >p7(0)}) =p (w | 7(w) > 1}).

Since ¢1 ({w | T(w) > t}) trivially equals p; ({w | T(w) > t}) for ¢ outside
the interval [t, t), relation (16) is confirmed and the proof is complete. O

It remains to emphasize that requiring h(-) to be strictly monotone
is not very restrictive. For instance for the practically important class of
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proper (e,0)—contamination models it is well-known that this is indeed
always guaranteed (see e.g. Rieder, 1977, p. 914f., or Hafner 1992, p. 153,
who also give formulas for calculating the quantities £, tmaz, £, tmin)- There-
fore in this case, as long as there exists a globally least favorable pair for
testing the central distributions, there always exists a pair of least fa-
vorable F-probabilities for testing between the generalized pseudo-capaci-
ties — not depending on whether the structures of the central distributions
are dominated or not.

6 Locally least favorable pairs

It turned out that for many situations of practical interest with F- but
not C-probability underlying globally least favorable pairs exist. Even
in situations where no globally least favorable pair exists, one can often
profit from the vivid possibility of a reduction to least favorable elements
of the structure. The concept of globally least favorable pairs can be
modified in a way that the main argument of the proof of proposition 3.4
remains valid. If the level of significance « is given and fixed (as usual in
Neyman-Pearson-theory), it is only of importance to find classical prob-
abilities, which are least favorable for that concrete level of significance
(‘locally’) . This is a much weaker condition, but it will nevertheless prove
to be sufficient for formulating equivalents to the propositions 3.4 and 4.1.

Definition 6.1 (Locally least favorable pairs) Consider problem 3.1,
and let a level of significance a € (0,1) be given. A pair (qo(-),q1(-)) of
classical probabilities is called a (level-a-)locally least favorable pair (for
Fo versus Fi1 ), if (go(+), q1(+)) € Mox M1, and there exists a best test p*(+)
for {qo(-)} versus {q1(-)} with UE sp,9* < a and IEy, ¢* = LIEp, ¢*.

It is straightforward to prove that locally least favorable pairs still lead
to level-a-maximin-tests.

Proposition 6.2 (Locally least favorable pairs and level-a-maxi-
min-tests) If (go(:),q1(+)) is a level-a-locally least favorable pair for Fo
versus JFi, then there exists a best level-a test for testing the hypothesis
Hy : {qo(-)} versus the hypothesis Hy : {q:(")}, which is a level-a-mazi-
min-test for Fo versus Fi, too.

Also the existence of locally least favorable pairs can be guaranteed under
quite general conditions. (Note, however, that condition (18) is a bit
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stronger than its pendant (7), because it refers to arbitrary measurable
sets, and not only to the open ones. The topological properties, which are
induced by these conditions on the structures, are compared in Augustin,
1998, chapter 3.3.4.).

Theorem 6.3 (Existence of locally least favorable pairs) If 7y and
Fi1 are fulfilling the condition

(A)new TA, ne N = ILm L;(A,)=L;(A), ie{0,1}, (18)
then there exists for every given a € (0,1) a level-a-locally least favorable
pair for Fo versus JFi.

Sketch of the proof: (Cf. Augustin, 1998, Proposition 2.11, p. 76 and
Satz 3.14, p. 113.) From Ganssler (1971) it can be derived that condi-
tion (18) is sufficient for the compactness of Mg and M; (in an appro-
priate weak-star-topology). Since furthermore every structure is convex,
theorem 6.3 can be shown by adopting results from Baumann (1968). U

7 Concluding remarks

The ‘local perspective’ of section 6, which concentrates on a fixed level
of significance, enables one to develop universally applicable algorithms
for calculating level-a-maximin-tests and locally least favorable pairs on
finite sample spaces (Augustin, 1998, chapter 4 and 5). In general, by
comparing globally and locally least favorable pairs one recognizes that
both provide elegant means to reduce the testing problem to a much sim-
pler one. The main disadvantage of locally least favorable pairs, however,
is that no equivalent to proposition 3.6 has been proved. For the proof of
proposition 3.6 it is essential that the relations (11) and (12) hold for ev-
ery t meaning that the least favorable position is global. So it seems as if
in the case of independent repetitions a reduction to the one-dimensional
case were not possible. Efficient procedures for relating locally least fa-
vorable pairs for testing the n-dimensional product to simpler situations
are open for further research.

In section 5 generalized pseudo-capacities were introduced as an ex-
tension of the usual neighborhood-models. The results on reducing the
complex testing problem to the task of testing between least favorable
pseudo-capacities around single classical probabilities allow for the study
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of neighborhood models of interval probabilities in an efficient way. Fur-
thermore, generalized pseudo-capacities look quite promising to provide
means for an extension of problem 3.1 to the Generalized Composite Ney-
man Pearson Problem, where Hy and H; consist of several interval-valued
hypotheses. — The level-a-maximin-criterion considers exclusively the
maximal error. Research on optimal tests and equivalents to least favor-
able pairs in situations, where other interval orderings are used to judge
the probability of error would be highly desirable, but is rather rare.
For a symmetric Hurwitz-like criterion some substantial results have been
gained by Jaffray and Said (1994).

Another topic deserving detailed investigation should only be briefly
and informally mentioned here: If one gives up the requirement underly-
ing the axioms that every (generalized) probability assignment should be
completely described by the (interval-valued) probability of the events,
one can go a step further and consider interval-valued expectation as the
basic concept (see, under neglecting the difference between countable and
finite additivity for a moment, especially the theory of Walley (1991). Pro-
ceeding along these lines sets of classical probabilities (‘imprecise proba-
bilities’) arising from an equivalent to (1) may be of a more general form
than structures can be (see Walley, 1991, section 2.7.3, p. 82ff, for an
example). If one uses such sets as prestructures to obtain correspond-
ing F-probability fields, one remains in the framework just described.
However, if one is worried that (too) much information might be lost by
proceeding from prestructures to structures, one can also try to study the
Neyman Pearson problem between two imprecise probabilities themselves.

The present work was motivated by the insight that C-probability
is too restrictive to serve as an exclusive basis for interval probability.
Therefore further research should additionally provide some answer to the
question, whether the results gained here are also of importance beyond
the Neyman-Pearson approach, e.g. for robust Bayesian analysis. For
instance, is it possible to extend the results gained there on pseudo-capa-
cities as models for prior belief to the more flexible and expressive class
of generalized pseudo-capacities along the lines of proposition 5.2 and
theorem 5.37
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