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Abstract

The paper studies the extension of one of the basic issues of
classical statistics to interval probability� It is concerned with the
Generalized Neyman�Pearson problem� i�e� an alternative testing
problem where both hypotheses are described by interval probabi�
lity� First the Huber�Strassen theorem and the literature based on
it is reviewed� Then some results are presented indicating that the
restrictive assumption of C�probability �two�monotonicity� under�
lying all that work can be overcome in favor of considering general
interval probability in the sense of Weichselberger �����A�� So the
full expressive power� which is provided by interval probability� can
also be utilized in testing hypotheses�
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� Introduction

Objections have been raised to the paradigm� all situations under un	
certainty could adequately be described by a single classical probability�
i�e� by a ���
additive and normalized set	function� In theoretical� as well
as in applied work� a frequent complaint is that the concept of classical
probability requires a much higher degree of precision and internal consis	
tency of the information than that which is available in many situations�
Modeling such situations nevertheless with classical probability may lead
to deceptive conclusions� Therefore� the need for a generalized concept of
probability has become more and more obvious�
Such a substantial extension of classical probability is provided by the

theory of interval probability� In this concept intervals �L�A
� U�A
� are
used instead of single real numbers p�A
 to describe the probability of
an event A� This allows for an appropriate modeling of more general as	
pects of uncertainty� Though the idea to use interval	valued probabilities
has a long history and can be traced back at least to the middle of the
nineteenth century� the main steps towards a comprehensive theory have
been achieved only recently� Based on a certain generalized betting in	
terpretation� Walley �
��

 developed a Neobayesian theory extending de
Finetti�s concept of probability to imprecise previsions� An interpretation	
independent theory of interval probability generalizing Kolmogorov�s ax	
ioms has been developed by Weichselberger �
���A
� � For reviews and
references on the emergence of interval probability see especially Walley�

��
� chapters 
 and �� Weichselberger� 
���A� chapter 
� and de Cooman
and Walley� 
����
In the last years the interest in statistical application of interval proba	

bility and related concepts has mainly concentrated on generalized Bayes	
ian inference� cf� for instance Walley� 
���� Bernard� 
���� and the survey
by Wassermann� 
���� Nevertheless� interval probability also proves to
be quite important for the non	Bayesian ��objective� frequentist�
 point of
view� Moreover� this topic has a � nowadays mostly forgotten � prominent
tradition� Some twenty	�ve years ago� Huber and Strassen �
���
 studied
the generalization of the Neyman	Pearson alternative testing problem to
the situation where both hypotheses are described by interval probabi	
lity� Their results as well as all the work following their seminal paper�
however� kept restricted to quite a special type of interval probability�
Moreover� a so	called �necessity	theorem� was � erroneously �see below
 �
understood to make it impossible to allow for more expressive classes of
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interval probabilities�
This paper surveys the �Huber	Strassen theory� and then extends some

of the main results to general interval probability� Section � states some
basic de�nitions from Weichselberger�s concept of interval probability
�F	probability
� which underlies this work� Also the special case of C	prob	
ability is considered� which contains two	monotone capacities and pseudo	
capacities and therefore also the neighborhood models commonly used in
robust statistics� It turns out that nevertheless the condition of being
C	probability is too restrictive to serve as basis for a general theory� Sec	
tion � looks at the generalized testing problem and the concept of �glob	
ally
 least favorable least pairs to construct �level	�	
maximin	tests� The
Huber	Strassen theorem� which ensures the existence of globally least fa	
vorable pairs for typical C	probabilities� as well as the literature following
that result� is reviewed in section �� � The next two sections show that
it is not necessary to restrict the consideration to the narrow class of
C	probabilities as has been done up to now� In section � the so	called �ne	
cessity theorem for C	probability� is toned down by characterizing some
situations of F	probability not being C	probability� where globally least fa	
vorable pairs exist� Furthermore a �decomposition	theorem� is developed
allowing for handling more complex neighborhood models by studying
�least favorable neighborhoods�� Section � brie�y sketches the concept
of locally least favorable pairs� Some directions for further research are
indicated in the concluding remarks in section ��

� Some basic aspects of interval probability

��� F�probability� structure

This paper is based on the interpretation	independent theory of inter	
val probability developed by Weichselberger �
���A
� for selected as	
pects cf� alsoWeichselberger and P�ohlmann� 
���� Weichselberger� 
���A�

���B� 
���� 
���B� His concept is founded on the following generaliza	
tion of Kolmogorov�s axioms�

De�nition ��� �The axioms of interval probability� Let ���A
 be
a measurable space�

� A function p��
 on A ful�lling the axioms of Kolmogorov is called
K	probability or classical probability� The set of all classical prob�
abilities on ���A
 will be denoted by K ���A
�
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� A function P ��
 on A is called R	probability with structure M� if

�� P ��
 is of the form

P ��
 � A � Z�
def
� f�L�U � j� � L � U � 
g

A �� P �A
 � �L�A
� U�A
� �

�� The set

M
def
� f p��
 � K���A
 j

L�A
 � p�A
 � U�A
� �A � Ag
�



is not empty�

� R�probability with structure M is called F	probability� if

inf
p����M

p�A
 � L�A


sup
p����M

p�A
 � U�A


��
� �A � A � ��


The following convention is made for the sake of clarity� Throughout the
paper capital	letter P is used for interval	valued assignments� while small
letters �p� q� � � �
 stand for classical probability�
For every F	probability L��
 and U��
 are conjugate� i�e� L�A
 � 
 �

U�AC
� �A � A� The other way round� presupposing conjugacy� every
F	probability is uniquely determined either by L��
 or either by U��
 alone�
Therefore one obtains for its structureM �

M � fp��
 � K���A
 j L�A
 � p�A
 � �A � Ag �

� fp��
 � K���A
 j p�A
 � U�A
 � �A � Ag �
��


Here L��
 is used throughout� and F � ���A� L��

 is called an F�prob�
ability �eld� Specifying an F	probability �eld ���A� L��

� it is implicitly
assumed that the conjugate set	function U��
 � 
 � L��C
 describes the
upper interval	limit�
Weichselberger�s theory relies on countable additive classical probabil	

ity� So the interval	limits of an F	probability are lower and upper prob	
abilities in the sense of Huber and Strassen �
���
� but these terms are
avoided here because they are also used in the literature in several other
meanings� Furthermore� F	probability is strongly related to coherence in
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the setting of Walley �
��

 and to the concept of envelopes in the fre	
quentist theory developed by Fine and students �e�g� Walley and Fine�

���� or Papamarcou and Fine� 
��

�

The relation between interval probabilities and non	empty sets of clas	
sical probabilities expressed by the concept of the structure �see �



proves to be quite important for the whole theory� It indicates how to
extend concepts of classical probability to interval probability� For in	
stance� generalizing expectation is straightforward�

De�nition ��� �Expectation with respect to an F�probability �eld�
For every F�probability �eld F � ���A� L��

 with structure M a random
variable X on ���A
 is called M	integrable� if X is p�integrable for each
element p��
 of M� Then

IEMX
def
� �LIEMX�UIEMX �

def
�

�
inf

p����M
IEpX � sup

p����M

IEpX
�

	 ��
�
�

��


is called �interval	valued
 expectation of X �with respect to F
�

��� Prestructures

Not every set of classical probabilities is a structure of an F	probability�
but every non	empty set of classical probabilities can be used to construct
an unique� narrowest F	probability �eld corresponding to it�

Remark ��	 �Prestructure�	Weichselberger� �


A� Let V �� � be a

set of classical probabilities on a measurable space ���A
� Then PV��

def
�

�LV��
� UV��
� with

LV�A

def
� inf

p����V
p�A
 
 UV�A


def
� sup

p����V

p�A
 ��


is F�probability� and V is called prestructure of FV � ���A� LV��

�
For the structureMV of FV the relationMV � V holds� Furthermore�

every F�probability �eld F � ���A� L��

 with structure M also ful�lling
M� V is weaker than FV � ���A� LV��

 in the sense that L�A
 � LV�A

for all A � A�

�



Mainly two applications of this concept will be used in what follows�

De�nition ��
 �Independent product of F�probability �elds� com�
pare Walley and Fine� �
��� p� 
��� Weichselberger� �


A� chapter 
�
and the �sensitivity analysis de�nition� in Walley� �

�� chapter 
���� Let
a �nite number of F�probability �elds Fl � ��l�Al� Ll��

 with structures
Ml� l � 
� � � � � n� be given� Then the F�probability �eld

n
�
l��

Fl
def
�

�
n
�
l��
�l�

n
�
l��

Al� L��


�
�

which has
n
�
l��

Ml

as its prestructure� is called the independent product of the F	probability
�elds Fl� l � 
� � � � � n�

De�nition ��� �Parametricly constructed F�probability �elds�
Consider a 	strictly� parametric set Q � fp���
 j � � �g� � 	 IRm� of
classical probabilities on a measurable space ���A
� An F�probability �eld
F��
 � ���A� L��

 with structure M is called parametricly constructed
with respect to Q� if there exists a

� � ��L� � �
U
� �� ��

L
� � �

U
� �� � � �� ��Lm� �

U
m� 	 �

in such a way� that

Q��

def
� fp���
 j � � �g

is a prestructure of M� Then � is called parameter of F��
 �with respect
to Q
�

One interpretation of such concepts de�ned via prestructures is to take
them as a robusti�cation of the classical concepts �e�g� of independence
or parametric distributions
� In general� the structures of the resulting
F	probability �elds are richer than the sets used for construction� The
structure of the independent product also contains �slightly dependent�
classical probabilities �lying between� the independent ones� In the second
case in particular all the mixtures of the distributions corresponding to a
parameter value inside � belong to the structure as well�

Prestructures are also often helpful in easily verifying certain prop	
erties� In section � it will be used that the existence of a dominated
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prestructure is su cient for the structure to be dominated� � To exclude
misunderstandings it may be noted at this point that the expression �dom	
inated� is used here in its measure	theoretic meaning and not in the sense
of �dominated lower and upper probabilities� as for instance in Papamar	
cou and Fine� 
����

Lemma ��
 �Dominated �pre�structures� The structure M of an
F�probability �eld is dominated by a ���nite measure ���
� i� there exists
any prestructure V� which is dominated by ���
�

Proof� Since according to remark ��� M � V one direction is triv	
ially ful�lled� Now let ���
 be a ���nite measure dominating V � For
every A � A with ��A
 � � one has p�A
 � � for all p��
 � V implying
supp����V p�A
 � �� The claim now immediately follows from the fact that
for every prestructure supp����V p�A
 � supp����M p�A
� t

��� C�probability

In this subsection a special case of F	probability is considered� called
C	probability with Weichselberger �
���A� chapter �
� It provides a su	
perstructure upon neighborhood models commonly used in robust statis	
tics �see below
 and additionally contains the so	called Dempster	Shafer
belief	functions �e�g� Yager� Fedrizzi and Kacprzyk� 
����
�

De�nition ��� �C�probability� Let ���A
 be a measurable space�
F�probability P ��
 � �L��
� U��
� is called C	probability� if L��
 is two	
monotone� i�e�� if

L�A � B
 ! L�A � B
 � L�A
 ! L�B
� �A�B � A � ��


Then the F�probability �eld C � ���A� L��

 is called a C�probability �eld�

For the property of two	monotonicity many di"erent names are common�
too� In particular it is also called ��strong
 superadditivity�� �supermodu	
larity� or �convexity��
Two related types of set	functions leading to C	probability have been

extensively studied in the literature� The �rst one� the class of two	
monotone capacities� was introduced by Choquet �
���
 in the context
of potential theory� The members of the second branch share most of
the properties and are therefore called �pseudo	capacities� �Buja� 
���
 or
�special capacities� �e�g� Bednarski� 
��

�

�



Remark ��� �Typical examples of C�probability �elds� Assume
���A
 to be a Polish measurable space� i�e� � is a complete� separable
and metrizable space� and A the corresponding Borel ���eld 	e�g� � �
IRn�A � B��

� Two	monotone �Choquet	
capacities� Every set�function L��
 on A
with L��
 � 
 and 	�� additionally obeying the condition

�An
n�IN � A� An open� n � IN �� lim
n��

L�An
 � L�A
 � ��


and the condition

�An
n�IN � A� An � A� n � IN �� lim
n��

L�An
 � L�A


leads� together with the corresponding conjugate upper limit U��
 �
L��
� to F�probability and therefore to C�probability 	Huber and Stras�
sen� �

�� lemma ���� p� �����

� Pseudo	capacities� Let f��
 � ��� 
� � ��� 
� be a convex function
with f��
 � � and let p��
 be a classical probability on ���A
 	called
central distribution in this context�� Then

P ��

def
�
�
�f � p
��
� 
� �f � p
��C


�
with �f � p
��
 � 
 and

�f � p
�A

def
� f �p�A

 � �A � A n f�g �

is C�probability� The corresponding structure will be denoted by
M�f � p
�

Some models often used in robust statistics naturally �t into this frame	
work� Perhaps the most prominent pseudo	capacity � which is also a two	
monotone capacity� if � is compact � is the ��� �
�contamination�model
�� 	 �� �� � ! � 	 

 containing the contamination model in the narrow
sense �� � �
 and the total�variation model �� � �
� There f��
 has the
form f�y
 � max ��
� �
 � y � � � �
�

C	probability is a distinguished special case of F	probability possess	
ing some mathematical elegance� but it is not comprehensive enough to
provide an exclusive� neat basis for a theory of interval	valued probability�

�



In the meantime Walley�s conclusion that there is not #����� any �rational	
ity� argument for �	monotonicity� beyond its computational convenience$
�Walley� 
��
� p� �

 has experienced a good deal of additional support� It
turned out that the expressive power of the concept of interval probability
is mainly due to the extension of the calculus to arbitrary F	probability
�elds� To mention just one argument� on which it will be recurred later
�for a detailed argumentation on this topic see� Augustin� 
���� chap	
ter 
�����
� The generalization of the usual parametric families to interval
probability �like the F	normal distribution
 along the lines of de�nition ���
leads to F	 but not to C	probability�

� �Level����Maximin tests and �globally� least
favorable pairs

In this section the testing problem studied will be precisely stated and a
method for obtaining optimal tests will be described�

��� Neyman�Pearson testing between interval prob�
abilities

Formulating the Generalized Neyman�Pearson Problem is straightforward�
Just as in classical Neyman	Pearson theory� one probability is tested ver	
sus another one� without any �non	vacuous
 prior knowledge which one
of the hypotheses is the true one� But now the hypotheses may consist of
F	probabilities instead of classical probabilities�

Problem 	�� �Generalized Neyman�Pearson Problem� Consider
two F�probability �elds F� � ���A� L���

 and F� � ���A� L���

 on a
measurable space ���A
 with disjoint structures M� and M�� Based on
the observation of a certain singleton f
g �� E� which has the probability
P��E
 � �L��E
� U��E
� or P��E
 � �L��E
� U��E
� to occur� an optimal
decision via a test has to be made between the two hypotheses Hi � �The
�true� probability �eld is Fi�� i � f�� 
g�

For technical reasons the formulation of problem ��
 uses sample size

� Of course� situations with sample size n are included by considering
the independent products �see de�nition ���
 of the F	probability �elds
describing the hypotheses� By stating problem ��
 also two regularity
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conditions are implied� which are assumed to hold throughout the paper�
To have an alternative	problem in the narrow sense� it is supposed that
M� andM� have a positive distance with respect to an appropriate met	
ric� Furthermore� to have the problem well de�ned� the set f
g is taken
to be measurable for every 
 � �� This condition is very mild� It is� in
particular� ful�lled by all Polish spaces�
Since the concept of randomization is based on an idealized random	

experiment without any non	probabilistic uncertainty� it should be de	
scribed by classical probability� Therefore� it is � even in the area of
interval probability � consistent to allow only for precise �i�e� not interval	
valued
 probabilities for rejecting H�� So the concept of a test remains
the same as in classical statistics� the set % of all tests still is the set of
all measurable functions ���
 � �� ��� 
��
As Huber and Strassen �
���
 and the work following them did� also

the present paper exclusively considers the case where only the upper
limits of the error probability are taken into account� Then the Neyman	
Pearson principle �Minimize the probability of the error of the second
kind �i�e� IEM�

�
 � �

 while controlling for the error of the �rst kind
�i�e� IEM�

�
� leads to a complex� nonparametric �not �easily parametriz	
able�
 �level	�	
maximin	problem between the structures�

De�nition 	�� �Level���maximin�criterion under F�probability�
Let a level of signi�cance � � ��� 

 be given� A test ����
 � % is called
a level	�	maximin	test 	for F� versus F��� if �

���
 respects the level of
signi�cance� i�e�

UIE�� � � � ��


and ����
 has maximal power among all tests under consideration� i�e�

���%
�
UIEM�

� � �� LIEM�
� � LIEM�

��
�
� ��


��� �Globally	 least favorable pairs

To get a proper principle for constructing optimal tests� the following idea
is helpful� #If one succeeds in convincing the hardliners of two parties� one
has convinced all their members$� Therefore� one may try to construct
level	�	maximin	tests by searching for two elements q���
 and q���
 of the
structures� where the testing is most di cult� In the spirit of Huber and
Strassen �
���
 and the work related to it this �being least favorable� can
be formalized as follows�


�



De�nition 	�	 �Globally least favorable pairs� Consider problem ����
A pair �q���
� q���

 of classical probabilities is called a globally least fa	
vorable pair 	for F� against F��� if

�� �q���
� q���

 � M� �M� � �
�


�� there is a version 
��
 of the likelihood ratio of q���
 and q���
 with

�t � �� �p� ��
 �M� � p� �f
 j
�

 � tg
 � q� �f
 j
�

 � tg
 �




and

�t � �� �p� ��
 �M� � p� �f
 j
�

 � tg
 � q� �f
 j
�

 � tg
 � �
�


The heuristics given above can be formally supported� It is not hard to
prove that globally least favorable pairs indeed lead to level	�	maximin	
tests�

Proposition 	�
 �Globally least favorable pairs and level���maxi�
min�tests� If �q���
� q���

 is a globally least favorable pair for F� versus
F�� then there exists a best level���test for testing the hypothesis H� �
fq���
g versus the hypothesis H� � fq���
g� which is a level���maximin�test
for F� versus F�� too�

It should be remarked that in the literature it is usage to call �q���
� q���


just a #least favorable pair$� The term �globally� is added here to make
a distinction to �locally least favorable pairs�� which will be introduced
later�
De�nition ��� immediately implies that for every globally least favor	

able pair �q���
� q���

 for every nonnegative t the following holds�

q� �f
 j
�

 � tg
 � U� �f
 j
�

 � tg


q� �f
 j
�

 � tg
 � L� �f
 j
�

 � tg
 �
�
�


From this it is directly deduced that it is su ces to check the conditions
for globally least favorable pairs on any arbitrary prestructure� Since
this conclusion helps to systematize some well	known results and plays an
important role in the proofs of the extensions discussed in section � it is
for ease of reference formulated as a separate lemma�







Lemma 	�� �Globally least favorable pairs and prestructures� A
pair �q���
� q���

 of classical probabilities with �q���
� q���

 � M��M� is
a globally least favorable pair for F� versus F�� if there exist prestructures
V� and V� of F� and F� in such a way that for a suitable version 
��

of the likelihood�ratio relations 	��� and 	��� hold for Vi instead of Mi�
i � f�� 
g�

The property of being globally least favorable does not depend on the level
of signi�cance� This makes globally least favorable pairs �independent of
the sample size��

Proposition 	�
 �Product�theorem for globally least favorable

pairs� Let q
�n�
i ��
 and F

�n�
i � i � f�� 
g� denote the n�dimensional indepen�

dent products of qi��
 and Fi� respectively� If �q���
� q���

 is globally least

favorable for F� versus F�� then �q
�n�
� ��
� q

�n�
� ��

 is globally least favorable

for F
�n�
� versus F

�n�
� �

Sketch of the proof� In principle� the core of this proposition was al	
ready mentioned informally by Huber and Strassen �
���� corollary ����
p� ���
 without having a clear independence concept for interval proba	
bility� A proof of proposition ��� is given in Augustin �
���� p� ���"
� It
is mainly based on results taken from Witting �
���� Satz ����� p� ���f

and on lemma ���� t

� Huber�Strassen theorem and the �neces�
sity	 of C�probability


�� The main theorems

The fame of the work of Huber and Strassen �
���
 is �rst and foremost
due to the fact that they succeeded in showing that a globally least favor	
able pair always exists for two	monotone capacities�

Proposition 
�� �Huber�Strassen theorem�	Huber and Strassen� �

��
theorem ���� p� ��
� Consider problem ��� on a Polish space ���A
� and
let F� and F� be C�probability �elds ful�lling 	
�� Then there exists a
globally least favorable pair for F� versus F��


�



An extension to F	probability had not been considered so far� appar	
ently because the following result was misunderstood to show the impos	
sibility of a generalization�

Proposition 
�� ��Necessity theorem�� Consider a �nite space �� the
corresponding power set P��
� and an F�probability �eld F� � ���P��
� L���


with structure M�� If there exists for any classical probability p���
 with
p���
 �� M� a classical probability p���
 � M� in such a way that �p���
� p���



is a globally least favorable pair for F� versus F�
def
� ���P��
� p���

� then

F� must be a C�probability �eld�

The consequence has been an exclusive concentration on models pro	
ducing C	probability� For instance� Lembcke �
���
 entitles his article�
where he introduces his generalization of proposition ���� #The necessity
of ����C	probability� for Neyman	Pearson minimax tests$� and Huber him	
self calls relation ��
 #the crucial �property���� to obtain a neat theory$
�Huber� 
���� p� 
��
� Though � as mentioned in section ��� � this is
rather unsatisfactory with regard to the expressive power of modeling�
the restriction on C	probability has seemed to be the inevitable price one
has to pay for Neyman	Pearson testing under interval probability�


�� A short survey of the work following the Huber�
Strassen theorem

The Huber	Strassen theorem has two di"erent roots� each connected with
one of the authors� Already in 
��� Strassen formulated proposition ��

for totally monotone C	probability on �nite spaces �Strassen� 
���� Satz ��
�
p� ���
� One year later he recognized �Strassen� 
���� p� ��

 that indeed
two	monotonicity is su cient� On the other side� based on heuristic ar	
guments Huber �
���
 managed to derive a globally least favorable pair
for contamination neighborhood models�
The synthesis leading 
��� to proposition ��
 induced a great deal of

work� which is mainly concentrated on two aspects� Since on non	compact
�� e�g� � � IR� the usual neighborhood models do not ful�ll ��
 �with re	
spect to the standard topology
� the �rst branch was concerned with the
existence of globally least favorable pairs in such situations� Important
steps towards a solution were obtained among others by Rieder �
���

and by Bednarski �
��

� while Buja �
���
 succeeded in giving a gen	
eral and comprehensive answer� Using a general result from topological


�



measure theory �Kuratowski isomorphism theorem
 he showed that on
Polish spaces pseudo	capacities not ful�lling ��
 for the usual topology
must nevertheless obey this condition for some non	standard topology�
Conditions� which are su cient to extent proposition ��
 to non	Polish
spaces� are given in Hummitzsch �
���� see especially Satz ���� p� ��
�
The other main topic is initiated by the fact that the Huber	Strassen

theorem is a general existence result without providing a method for
the construction of least favorable pairs� Rieder �
���
 presented a so	
lution for most of the ��� �
	contamination models� Bednarski �
��
�
p� ���f
 derived su cient conditions for pseudo	capacities under which the
likelihood	ratio of a globally least favorable pair is a monotone function of
the likelihood	ratio of the central distributions and described special cases�
where the construction can be done by di"erentiating� Of particular inter	
est in this context are the contributions of �Osterreicher and Hafner� Start	
ing with �Osterreicher �
���
 the leitmotif of their work is to use model	
speci�c characteristics of the generalized risk	function for constructing
the likelihood	ratio of a globally least favorable pair� �Cf� Hafner� 
����
for summarizing some aspects�
 For several neighborhood models they
managed to �nd that transformation� which leads to the risk	function of
a globally least favorable pair �e�g� for the Prohorov model see� Hafner�

���
� Furthermore� Hafner was able to show that similar methods can
also be used for models de�ned via lower and upper density functions or
via lower and upper distribution functions �Hafner� 
���� 
���
� � All
these methods elegantly use particular properties of the special models
considered� Additionally� as a byproduct of the considerations in Au	
gustin �
���� chapter �
� for models on �nite spaces a general algorithm
for calculating globally least favorable pairs via linear programming can be
developed� which does not assume a certain type of models �see Augustin�

���� Korollar ��
�� p� 
��f
�
There are many other problems� where the solutions essentially are

based on the Huber	Strassen theorem� Two examples for this are the ex	
tension to dependent random variables �Bednarski� 
���
 and the develop	
ment of asymptotic �level	�	
maximin	tests under sequences of shrinking
neighborhood models �cf� for instance� Rieder� 
���� Bednarski� 
���� and
Rieder� 
���� chapter ��� and the references therein
�


�




 Globally least favorable pairs under gen�
eral interval probability

In section ��� it was discussed that C	probability is too restrictive to serve
as an exclusive and indispensable minimal condition for a powerful theory
of interval probability� For an extension of Neyman	Pearson theory to
F	probability allowing for much more �exible and comprehensive models
�rstly note that the �necessity� stated in proposition ��� might be toned
down& Its premise is rather arti�cial� If the existence of a globally least
favorable pair for all possible alternative hypotheses is to be guaranteed�
then C	probability is indeed necessary� Surprisingly it has often been
overlooked that this does not exclude the existence of a globally least
favorable pair in one concrete testing problem� where neither F� nor F�

are C	probability �elds� This is of particular interest� because it will
turn out that there is a plenty of relevant models� where both hypotheses
are not described by C	probability �elds� but nevertheless globally least
favorable pairs exist� One example is provided by F	probability �elds�
which are parametricly constructed �cf� de�nition ���
 with respect to a
family with monotone likelihood	ratio� Using lemma ��� and the relation
between monotone likelihood	ratio and stochastically ordered classes of
distributions one obtains

Proposition ��� �Existence in the case of monotone likelihood�
ratio� Consider a 	strict� parametric family Q � fp���
 j � � �g� � 	
IR� of 	mutually absolutely continuous� classical probabilities on �IR�B

with monotone likelihood�ratio in �� If the F�probability �elds F����
 and
F����
 are parametricly constructed with respect to Q with parameters
�� � ��

L
� � �

U
� � � � and �� � ��

L
� � �

U
� � � �� �

U
� 	 �L� � then

�p�U
�

��
� p�L
�

��



is a globally least favorable pair for testing F����
 versus F����
�

An enrichment gained by allowing for F	probability is the study of
generalized pseudo�capacities� Usual� �not generalized
 pseudo	capacities
are based on the �convex distortion� of a single classical probability used as
central distribution �see remark ���
� This can substantially be extended
by considering interval	valued central distributions� In particular this
leads to neighborhood models of F	probabilities�


�



Proposition ��� �Generalized pseudo�capacities� Let F � ���A� L��


be an F�probability �eld with structureM and f��
 � ��� 
�� ��� 
� a convex
function with f��
 � �� Then the generalized pseudo	capacity

�f � P 
��

def
� ��f � L
��
� �
� f � L
��C
�

with �f � L
��
 � 
 and

�f � L
�A

def
� f �L�A

 � A � A n f�g �

is F�probability 	with its structure denoted by M�f � L
��
Furthermore� with M�f � p
 as de�ned in remark ����

'M
def
�

�
p����M

M�f � p
 �
�


is a prestructure of the F�probability �eld �f �F

def
� ���A� �f � L
��

�

Proof� First of all it should be noted that the conditions imposed on
f��
 guarantee that f��
 is not decreasing� This implies

�p��
 � K���A
 ��A � A � p�A
 � L�A
� �f � p
�A
 � �f � L
�A
 � �
�
�


The proof now consists of three steps�

i
 Firstly it is shown that 'M is not empty� For this one uses that
the structureM of the central distribution is not empty and takes
any p��
 � M� The corresponding set	function �f � p
��
 is the
lower interval limit of a pseudo	capacity with a non	empty structure
M�f � p
��
�

ii
 The second step proves the relation 'M	M�f � L
 where

M�f � L
 � fp��
 � K���A
 j
�f � L
�A
 � p�A
 � �
� f � L
�AC
 � �A � Ag

� fp��
 � K���A
 j �f � L
�A
 � p�A
 � �A � Ag �

By the de�nition of 'M according to �
�
 there is for every 'p��
 � 'M
a p��
 inM so that 'p��
 is an element of the structureM�f�p
 of the
�not generalized
 pseudo	capacity ��f � p
��
 � �
� f � p
��C
�� Since


�



this is F	probability one has 'p�A
 � �f �p
�A
 for all A � A� Using
the monotonicity formulated in �
�
 and the relation p�A
 � L�A
�
A � A gained from the fact that F is an F	probability �eld� it
can be concluded that 'p�A
 � �f � L
�A
 for every A � A� i�e�
'p��
 � M�f � L
� In particular M�f � L
 �� � and �f � P 
��
 is
R	probability with structureM�f � L
�

iii
 To conclude the proof it is shown that for every A � A and every � �
� there is a classical probability 'p��
 � 'M with 'p�A
 	 �f�L
�A
!��
From this it is deduced together with the results from ii
 and the
conjugacy in the de�nition of �f � P ��

 that �f � P 
��
 is F�prob�
ability and 'M is a prestructure of the corresponding F	probability
�eld�

First consider an event A � A with L�A
 � 
� F is an F	probability
�eld� Its structure M is not empty� and for every p��
 � M one
obtains p�A
 � 
 � L�A
� Now �x one such p��
� The pseudo	
capacity corresponding to �f�p
��
 is F	probability� Therefore there
is an 'p��
 �M�f � p
 with 'p�A
 	 �f � p
�A
 ! � � �f �L
�A
 ! ��

In the case of an event A � A with L�A
 	 
 one uses the continuity
of f��
 on ��� 

� which can be deduced from the upper semicontinuity
of f��
 on ��� 
� �cf� e�g� Rockafellar �
���� theorem 
���� p� ��

 and
from f��
 � � and f��
 � �� Therefore� for every � � � there
exists a � � � so that jf�y
 � f�L�A

j 	 ��� for all y � ��� 


with jy � L�A
j 	 �� Since F is an F	probability �eld there is
a p��
 � M with p�A
 	 L�A
 ! �� which implies �f � p
�A
 	
�f � L
�A
 ! ���� Consider the pseudo	capacity corresponding to
�f � p
��
� It is F	probability� So there is a 'p��
 � M�f � p
 with
'p�A
 	 �f � p
�A
 ! ��� 	 �f � L
�A
 ! �� t

To �nd least favorable pairs for testing two generalized pseudo	capa	
cities �f� � F�
 and �f� � F�
 it may be promising to proceed in two
steps� One may try to reduce the testing problem �rstly to a testing
problem between a so	to	say �least favorable pair of F�probabilities�� These
should be more easy to handle but nevertheless represent the whole testing
problem in the sense that globally least favorable pairs for testing between
them are also globally least favorable pairs for the complex problem�
It would be most functional� if one could calculate the least favorable

F	probabilities from the testing problem between the central	distributions�
In the rest of this section situations are described� where this convenient


�



way of splitting up the complex problem into simpler ones proves to be
successful� Theorem ��� and theorem ��� will state su cient conditions
under which the pair of �least favorable F	probabilites� consists just of
the �usual� not generalized
 pseudo	capacities around the elements of the
globally least favorable pair for testing between the central distributions
with the same �distortion functions� f���
 and f���
� Then the following
procedure can be recommended to obtain globally least favorable pairs
for testing between generalized pseudo	capacities�

� Firstly search for a globally least favorable pair �q���
� q���

 for test	
ing between the F	probability �elds forming the central distribu	
tions�

� Secondly� if the �rst step proved successful� determine a globally
least favorable pair for testing between the �not generalized
 pseudo	
capacities around q���
 and q���
� Then it is a globally least favorable
pair for the problem �f� �F�
 versus �f� �F�
� too�

In these situations the e cient construction methods for �usual� not gen	
eralized
 pseudo	capacities cited in section ��� can also be used without
any additional complication to obtain least favorable pairs in the complex
situations�

Theorem ��	 �Least favorable pseudo�capacities I� Let �f� � F�

and �f��F�
 be two generalized pseudo�capacities on a Polish space with
fi�x�
 � � for an x� � ��� 

� i � f�� 
g� If there exists a globally least
favorable pair �q���
� q���

 for F� versus F� ful�lling the three conditions

a� q���
 and q���
 are mutually absolute continuous�

b� for every � � ��� 

 there is a best level���test for fq���
g versus
fq���
g� which is non�randomized�

c� there are prestructures V� and V� of F� and F�� which are dominated
by q���
�

then the following holds�

�� There exists a globally least favorable pair for �f��F�
 versus �f��
F�
�

�� ��f� � q�
��
� �f� � q�
��

 is a pair of least favorable pseudo	capaci	
ties in the following sense� If �(q���
� (q���

 is a globally least favorable


�



pair for ���A� �f� � q�
��

 versus ���A� �f� � q�
��

� then it is a
globally least favorable pair for �f� �F�
 versus �f� �F�
� too�

Proof� According to Buja �
���
 �cf� section ���
 there always exists a
globally least favorable pair for testing the two �not generalized
 pseudo	
capacities ���A� �f��q�
��

 and ���A� �f��q�
��

� So the �rst statement
follows from the second one�
To verify that every globally least favorable pair �(q�� (q�
 for testing

���A� �f��q�
��

 and ���A� �f��q�
��

 is also a globally least favorable
pair for the complex problem �f� � F�
 versus �f� � F�
� only condition
�
�
 will be shown more detailed� The proof of �


 is analogous� and �
�

is clear�
Firstly one follows the lines of the proof of theorem ��
 in Bednarski

�
��
� p� ���
 to con�rm that � under the condition a
 and b
 � there is
for every t � IR�

� an w�t
 with

f
 j (
�

 � tg � f
 j 
�

 � w�t
g� q���
 ! q���
 a�s�

Here (
��
 and 
��
 denote suitable versions of the likelihood	ratios of (q���

and (q���
 and of q���
 and q���
� respectively�
Then one uses that q���
 and � because of a
 also � q���
 dominate the

prestructures V� and V� and therefore according to lemma ��� also the
structures M� and M�� So the relation f
 j (
�

 � tg � f
 j 
�

 �
w�t
g also holds p���
 almost surely for any p���
 inM��
Together with the fact that �q���
� q���

 is a globally least favorable

pair for F� versus F� this leads to

q� �f
 j (
�

 � tg
 � q� �f
 j 
�

 � w�t
g
 �
� p� �f
 j 
�

 � w�t
g
 � p� �f
 j (
�

 � tg


�
�

for every element p���
 of the structureM� of F� and every t � IR�

� �
The function f���
 is not decreasing �cf� the proof of proposition ���
�

From this one concludes

�f�� q�
 �f
 j (
�

 � tg
 � �f�� p�
 �f
 j (
�

 � tg
 � �p���
 � M� �

The expression �f� � q�
 �f
 j (
�

 � tg
 on the left hand side of this
inequality is � according to �
�
 � equal to (q� �f
 j (
�

 � tg
� because
�(q���
� (q���

 is a globally least favorable pair for ���A� �f�� q�
��

 versus
���A� �f� � q�
��

� Therefore

(q� �f
 j (
�

 � tg
 � �f� � p�
 �f
 j (
�

 � tg
 � �p���
 � M� �


�



Looking on the right hand side one uses that �f� � p�
��
 is a pseudo	
capacity for every p���
 � M�� So for every element s���
 in the corre	
sponding structureM�f� � p�
 one obtains

�f� � p�
 �f
 j (
�

 � tg
 � s� �f
 j (
�

 � tg
 �

Finally� the last two relations are brought together and the union of all
p���
 �M� is taken� This leads to

(q� �f
 j (
�

 � tg
 � s� �f
 j (
�

 � tg
 � �s���
 � 'M� �
�

p��M�

M�f��p�
 �

Since� according to proposition ���� the set 'M� is a prestructure of �f� �
F�
� the claim is gained via lemma ���� t

Example ��
 �Generalized pseudo�capacities around F�normal
distributions� An important class of interval probabilities� where the
requirements of theorem ��� are usually ful�lled� consists of parametricly
constructed interval probabilities with respect to a family� which is ab�
solutely continuous with respect to the Lebesgue�measure and possesses
monotone likelihood ratio� 	These conditions� however� are not always
su�cient� A well�known counterexample is provided by the family of con�
tinuous uniform distributions�� In particular theorem ��� applies to gen�
eralized pseudo�capacities around F�normal distributions� According to
proposition ��� the classical probabilities q���
 and q���
 forming the glob�
ally least favorable pair are the normal�distributions corresponding to the
right and to the left border of the parameter intervals� respectively� They
are mutually absolutely continuous� for every level of signi�cance the op�
timal test between them can be chosen to be non�randomized� and they
dominate the prestructures consisting of all normal distributions in the
parameter interval and therefore 	cf� lemma ���� both structures�

Discussing the area of application of theorem ��� it should be stressed
that this theorem only is valid when a globally least favorable pair exists
for testing between the central distributions � indeed� this condition seems
to be indispensable for any related form of splitting up the testing prob	
lem� Given a globally least favorable pair� condition a
 of theorem ��� is
ful�lled in most situations� From a practical point of view also the require	
ment b
 is by far not so restrictive as it might look at a �rst glance� The
nonexistence of non	randomized optimal tests usually occurs on discrete

��



spaces� But this is only a problem if the discrete space is really of in�	
nite cardinality� When the space is �nite the reduction to least favorable
pairs of F	probabilities aimed at in theorem ��� is not necessary� In this
situation globally least favorable pairs can be obtained from parametric
linear optimization �Augustin� 
���� Proposition ��

� p� 
��f
�
However� for not parametricly constructed interval probability the

third condition� which in particular forces the structures of the central
distributions to be dominated� is to some degree demanding� In several
situations modeling with interval probability naturally leads to undomi	
nated structures� �For example most neighborhood	models can produce
undominated structures�

Especially for such cases a variate of theorem ��� is of interest� which

implicitly slightly restricts the form of the �distortion functions� f���
 and
f���
 in favor of the possibility to handle undominated structures and to
do also without the other conditions just discussed�
Studying the results of the construction techniques reviewed in sec	

tion ��� one recognizes that � in the notation needed below � nearly for
all common pseudo	capacities around two classical probabilities q���
 and
q���
 with likelihood ratio 
��
 the likelihood ratio (
��
 of every globally
least favorable pair is of the form

(
�

 �

	
�

�

t 
�

 � tmax

h �
�


 if 
�

 � �tmin� tmax�

t 
�

 	 tmin

�
�


with a non	decreasing function h��
 and appropriate quantities t� tmax� t�
tmin� Additional support for this form can be gained from Bednarski
�
��
� theorem ��
� p� ���
 and also by following the original heuristic
�cf� e�g� Huber� 
���
 behind robust testing of the two classical prob	
abilities q���
 and q���
� Their likelihood ratio 
��
 is very sensitive to
observations with very small likelihood so that one outlier can nearly
determine the whole product )ni��
�xi
 of a sample �x�� � � � � xn
� To al	
leviate this unwanted e"ect one transforms and truncates the likelihood
ratio to restrict the in�uence of extreme observations�
If h��
 is not only non	decreasing but strictly increasing� the two �not

generalized
 pseudo	capacities around the components of the least favor	
able pair for testing the central distributions can be again shown to form
a pair of least favorable F	probabilities�

�




Theorem ��� �Least favorable pseudo�capacities II� Let �f� �F�

and �f� � F�
 be two generalized pseudo�capacities on a Polish space
and assume that there exists a globally least favorable pair �q���
� q���


for F� versus F�� If �(q���
� (q���

 is a globally least favorable pair for
���A� �f� � q�
��

 versus ���A� �f� � q�
��

� whose likelihood ratio 
��

is of the form 	�
� with a strictly increasing function h��
� then the fol�
lowing holds�

�� There exists a globally least favorable pair for �f��F�
 versus �f��
F�
�

�� �(q���
� (q���

 is a globally least favorable pair for �f� � F�
 versus
�f� �F�
� too�

Proof� Just as in the proof of theorem ��� according to Buja�s �
���

general existence result the �rst statement follows from the second one�
For the second part one observes that the additional assumption fi�x�
 �

� for a number x� � ��� 

� i � f�� 
g and the conditions a
� b
� and c
 for	
mulated in theorem ��� were only needed to establish relation �
�
� The
rest of the proof of theorem ��� does not recur on them� So that proof
literally carries over to any situation� where one succeeds in deducing �
�

in a di"erent way�
To verify �
�
 in the case considered here one uses the special form of

(
��
 and the fact that� because h��
 is strictly monotone� its inverse h����

exists� Therefore for every t � IR�

�

f
 j (
�

 � tg �

	
�

�

� t � t
� if t 	 t



 j 
�

 � h���t

�

t � �t � t


�

For every t � �t � t
 and for every element p���
 of the structureM� of F�

one therefore obtains� using the fact that �q���
� q���

 is a globally least
favorable pair for F� versus F��

q� �f
 j (
�

 � tg
 � q�
�


 j 
�

 � h���t


��
�

� p�
�


 j 
�

 � h���t


��
� p� �f
 j (
�

 � tg
 �

Since q� �f
 j (
�

 � tg
 trivially equals p� �f
 j (
�

 � tg
 for t outside
the interval �t � t
� relation �
�
 is con�rmed and the proof is complete� t

It remains to emphasize that requiring h��
 to be strictly monotone
is not very restrictive� For instance for the practically important class of

��



proper ��� �
�contamination models it is well	known that this is indeed
always guaranteed �see e�g� Rieder� 
���� p� �
�f�� or Hafner 
���� p� 
���
who also give formulas for calculating the quantities t� tmax� t� tmin
� There	
fore in this case� as long as there exists a globally least favorable pair for
testing the central distributions� there always exists a pair of least fa	
vorable F	probabilities for testing between the generalized pseudo	capaci	
ties � not depending on whether the structures of the central distributions
are dominated or not�

� Locally least favorable pairs

It turned out that for many situations of practical interest with F	 but
not C	probability underlying globally least favorable pairs exist� Even
in situations where no globally least favorable pair exists� one can often
pro�t from the vivid possibility of a reduction to least favorable elements
of the structure� The concept of globally least favorable pairs can be
modi�ed in a way that the main argument of the proof of proposition ���
remains valid� If the level of signi�cance � is given and �xed �as usual in
Neyman	Pearson	theory
� it is only of importance to �nd classical prob	
abilities� which are least favorable for that concrete level of signi�cance
	�locally�� � This is a much weaker condition� but it will nevertheless prove
to be su cient for formulating equivalents to the propositions ��� and ��
�

De�nition 
�� �Locally least favorable pairs� Consider problem ����
and let a level of signi�cance � � ��� 

 be given� A pair �q���
� q���

 of
classical probabilities is called a �level	�	
locally least favorable pair 	for
F� versus F��� if �q���
� q���

 �M��M�� and there exists a best test �

���

for fq���
g versus fq���
g with UIEM�

�� � � and IEq��
� � LIEM�

���

It is straightforward to prove that locally least favorable pairs still lead
to level	�	maximin	tests�

Proposition 
�� �Locally least favorable pairs and level���maxi�
min�tests� If �q���
� q���

 is a level���locally least favorable pair for F�

versus F�� then there exists a best level�� test for testing the hypothesis
H� � fq���
g versus the hypothesis H� � fq���
g� which is a level���maxi�
min�test for F� versus F�� too�

Also the existence of locally least favorable pairs can be guaranteed under
quite general conditions� �Note� however� that condition �
�
 is a bit

��



stronger than its pendant ��
� because it refers to arbitrary measurable
sets� and not only to the open ones� The topological properties� which are
induced by these conditions on the structures� are compared in Augustin�

���� chapter ������
�

Theorem 
�	 �Existence of locally least favorable pairs� If F� and
F� are ful�lling the condition

�An
n�IN � A� n � IN �� lim
n��

Li�An
 � Li�A
 � i � f�� 
g � �
�


then there exists for every given � � ��� 

 a level���locally least favorable
pair for F� versus F��

Sketch of the proof� �Cf� Augustin� 
���� Proposition ��

� p� �� and
Satz ��
�� p� 

��
 From G�anssler �
��

 it can be derived that condi	
tion �
�
 is su cient for the compactness of M� and M� �in an appro	
priate weak	star	topology
� Since furthermore every structure is convex�
theorem ��� can be shown by adopting results from Baumann �
���
� t

� Concluding remarks

The �local perspective� of section �� which concentrates on a �xed level
of signi�cance� enables one to develop universally applicable algorithms
for calculating level	�	maximin	tests and locally least favorable pairs on
�nite sample spaces �Augustin� 
���� chapter � and �
� In general� by
comparing globally and locally least favorable pairs one recognizes that
both provide elegant means to reduce the testing problem to a much sim	
pler one� The main disadvantage of locally least favorable pairs� however�
is that no equivalent to proposition ��� has been proved� For the proof of
proposition ��� it is essential that the relations �


 and �
�
 hold for ev�
ery t meaning that the least favorable position is global� So it seems as if
in the case of independent repetitions a reduction to the one	dimensional
case were not possible� E cient procedures for relating locally least fa	
vorable pairs for testing the n	dimensional product to simpler situations
are open for further research�
In section � generalized pseudo	capacities were introduced as an ex	

tension of the usual neighborhood	models� The results on reducing the
complex testing problem to the task of testing between least favorable
pseudo	capacities around single classical probabilities allow for the study

��



of neighborhood models of interval probabilities in an e cient way� Fur	
thermore� generalized pseudo	capacities look quite promising to provide
means for an extension of problem ��
 to the Generalized Composite Ney	
man Pearson Problem� where H� and H� consist of several interval	valued
hypotheses� � The level	�	maximin	criterion considers exclusively the
maximal error� Research on optimal tests and equivalents to least favor	
able pairs in situations� where other interval orderings are used to judge
the probability of error would be highly desirable� but is rather rare�
For a symmetric Hurwitz	like criterion some substantial results have been
gained by Ja"ray and Said �
���
�
Another topic deserving detailed investigation should only be brie�y

and informally mentioned here� If one gives up the requirement underly	
ing the axioms that every �generalized
 probability assignment should be
completely described by the �interval	valued
 probability of the events�
one can go a step further and consider interval	valued expectation as the
basic concept �see� under neglecting the di"erence between countable and
�nite additivity for a moment� especially the theory of Walley �
��

� Pro	
ceeding along these lines sets of classical probabilities ��imprecise proba	
bilities�
 arising from an equivalent to �

 may be of a more general form
than structures can be �see Walley� 
��
� section ������ p� ��"� for an
example
� If one uses such sets as prestructures to obtain correspond	
ing F	probability �elds� one remains in the framework just described�
However� if one is worried that �too
 much information might be lost by
proceeding from prestructures to structures� one can also try to study the
Neyman Pearson problem between two imprecise probabilities themselves�
The present work was motivated by the insight that C	probability

is too restrictive to serve as an exclusive basis for interval probability�
Therefore further research should additionally provide some answer to the
question� whether the results gained here are also of importance beyond
the Neyman	Pearson approach� e�g� for robust Bayesian analysis� For
instance� is it possible to extend the results gained there on pseudo	capa	
cities as models for prior belief to the more �exible and expressive class
of generalized pseudo	capacities along the lines of proposition ��� and
theorem ���*

��
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