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Statistical Modelling 2008; 8(2): 169-198

Bayesian semiparametric multi-state models

Thomas Kneib! and Andrea Hennerfeind'
! Department of Statistics, Ludwig-Maximilians-University, Germany

Abstract: Multi-state models provide a unified framework for the description of the evolution of
discrete phenomena in continuous time. One particular example is Markov processes which can be
characterised by a set of time-constant transition intensities between the states. In this paper, we will
extend such parametric approaches to semiparametric models with flexible transition intensities based
on Bayesian versions of penalised splines. The transition intensities will be modelled as smooth functions
of time and can further be related to parametric as well as nonparametric covariate effects. Covariates
with time-varying effects and frailty terms can be included in addition. Inference will be conducted either
fully Bayesian (using Markov chain Monte Carlo simulation techniques) or empirically Bayesian (based
on a mixed model representation). A counting process representation of semiparametric multi-state
models provides the likelihood formula and also forms the basis for model validation via martingale
residual processes. As an application, we will consider human sleep data with a discrete set of sleep
states such as REM and non-REM phases. In this case, simple parametric approaches are inappropriate
since the dynamics underlying human sleep are strongly varying throughout the night and individual-
specific variation has to be accounted for using covariate information and frailty terms.

Key words: frailties; martingale residuals; multi-state models; penalised splines; time-varying effects;
transition intensities
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1 Introduction

Multi-state models are a flexible tool for the analysis of time-continuous phenomena
that can be described by a discrete set of states. Such data structures naturally
arise when observing a discrete response variable for several individuals or objects
continuously over time. Some common examples are depicted in Figure 1 in terms
of their reachability graphs for illustration. For recurrent events (Figure 1 (a)), the
individual observations evolve through time, moving repeatedly between a fixed set
of states. Our application on sleep research will be of this type, where the states are
given by the sleep states awake, REM and Non-REM; compare also Figure 2 which
shows two exemplary realisations of such sleep processes. Other model classes involve
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absorbing states, for example, disease progression models (Figure 1 (b)), that are used
to describe the chronological development of a certain disease. If the severity of this
disease can be grouped into Q — 1 ordered stages of increasing severity, a reasonable
model might look like this: Starting from disease state ‘q’, an individual can only
move to contiguous states, that is, either the disease gets worse and the individual
moves to state ‘g + 1°, or the disease attenuates and the individual moves to state
‘g — 1. In addition, death is included as a further, absorbing state ‘Q’, which can be
reached from any of the disease states. A model with several absorbing states is the
competing risks model (Figure 1 (c)) where, for example, different causes of death
are analysed simultaneously.
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Figure 1  Reachability graphs of some common multi-state models
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Figure 2 Realisations of two individual sleep processes and corresponding nocturnal cortisol secretion
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As Figure 1 suggests, multi-state models can be described in terms of transitions
between the states. The most simple model of this type are discrete Markov processes,
where each of the transitions is associated with one time-constant transition intensity
AW > 0, with h = 1,..., H, indexing the set of possible transitions. Of course,
such a purely parametric model is only appropriate if the dynamics underlying the
transitions do not change over time. This assumption, however, does not apply to
numerous real data applications. For example, in our application we will analyse
human sleep data. It is well known that the dynamics of human sleep are strongly
changing throughout the night with, for example, an increased propensity to switch
to the REM state at the end of the night.

More flexible multi-state models have been introduced within two different
frameworks: Aalen et al. (2004) considered dynamic versions of multi-state models
based on Aalen‘s additive risk model. Such models rely heavily on the embracing
framework of counting processes, (compare Andersen et al. 1993), and estimation is
based on martingale theory. Fahrmeir and Klinger (1998) and Yassouridis ez al. (1999)
modelled the transition intensities in a Cox-type manner with smoothing splines for
time-varying effects. In their approach, estimation is based on a backfitting scheme
with internal smoothing parameter selection by AIC optimisation.

In this article, we extend the ideas by Fahrmeir and Klinger (1998) and propose
? general semiparametric class of multi-state models that comprises the following
eatures:

e Flexible modelling of baseline transition intensities in terms of penalised splines,

e Inclusion of parametric, time-varying and nonparametric covariate effects,

e Inclusion of frailty terms (that is, subject-specific random effects) to account for
unobserved heterogeneity.

Estimation is based on a unified Bayesian formulation that incorporates penalised
splines and random effects into one general framework. Inference can be conducted
either fully Bayesian, based on Markov chain Monte Carlo (MCMC) simulation
techniques, or empirically Bayesian, based on a mixed model representation.
Both inferential procedures borrow from the time-continuous duration time
models presented in Hennerfeind et al. (2006) and Kneib and Fahrmeir (2007),
and allow for the simultaneous determination of all effects and smoothing
parameters. Implementations are available in the free software package BayesX (visit
http://www.stat.uni-muenchen.de/bayesx for further information).

As an illustration of our approach, we will analyse data on human sleep collected
at the Max-Planck Institute for Psychiatry in Munich as part of a larger study on
sleep withdrawal. Our major concern is to obtain a valid description of the sleeping
process of healthy participants of the study while accounting for possible covariate
effects (for example, nocturnal hormonal secretion) and patient-specific individual
sleeping habits. The performance of the developed models is assessed using martingale
residuals and compared to parametric Markov process models. The data and code for
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reproducing our results will be made available in the Statistical Modelling Archives
(see http://stat.uibk.ac.at/SMIJ/).

The structure of the paper is as follows: Section 2 describes the specification of
hazard rates for the transitions and the corresponding prior assumptions. In Section 3
we introduce a counting process representation of the model that provides us with the
likelihood formula for multi-state models. In addition, martingale residual processes
can be derived from counting process theory, forming the basis for some of the model
validation tools considered in Section 4. Section 5 outlines inferential schemes while
Sections 6 and 7 contain the results of our application and of a small simulation study,
respectively. The concluding Section 8 comments on directions of future research.

2 Specification of multi-state models in terms of hazard rates

A multi-state model is fully described by a set of (possibly individual-specific) hazard
rates )ngh) (t) where h, h = 1,..., H, indexes the type of the transition and i, i =

1,...,n, indexes the individuals. Since the hazard rates describe durations between
transitions, we specify them in analogy to hazard rate models for continuous time

survival analysis. To be more specific, )»fh) (¢) is modelled in a multiplicative Cox-type
way as

kgh)(t) = exp(n,(h)(l)),

where

L K
() =g 0+ g Oua®) + Y £ @) +ui@)y® + 5 (2.1)
=1 k=1

is an additive predictor consisting of the following components:

e A time-varying, nonparametric baseline effect géh)(t) common for all
observations.

o Covariates u;;(¢t) with time-varying effects gl(h) (¢). In our application, u;;(¢) will
represent the current level of a certain hormone; hence u;;(¢) by itself is time-
varying but its effect is also varying throughout the night.

e Nonparametric effects fk(h) (xix (1)) of continuous covariates x;¢ (). For example,
we might also include the hormonal level in a nonparametric way.

e Parametric effects y ™ of covariates v; (7).

e Frailty terms bi(h) to account for unobserved heterogeneity.

For each individual, we assume that a full transition path is observed consisting
of the following parts: A set of ordered time points 0 = S;p < S;1 < ... < Sir

Statistical Modelling 2008; 8(2): 169- 198
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< ... < Sim, indicating the time points of transitions for individual i, the states
Yi(Siy), r = 0,...,m;, the individual moves to at the end of a time interval, and

indicators 8[.(}') (¢) for type h transitions at time ¢. From the time points of transitions,
we can deduce the duration time in the rth state as 7;, = S;, — S; ,—1,r =1,...,m;.

After reindexing, the predictor vectors n® = (ngh)(Sl,o),...,nﬁh)(SLml),...,

n,(,h)(Sn,o), . n,(lh)(Sn,mn)/ can be represented in generic notation as

h) e (h h) e (h
n™ = vPe 4+ 4 vPeD 4 vty (2.2)

where V" corresponds to the usual design matrix of fixed effects. The construction
of the design matrices Vl(h), cees V](h) for time-varying, nonparametric and random
effects will be described in the following discussion of prior assumptions.

To model time-varying and nonparametric effects, we employ penalised splines,
a parsimonious yet flexible approach to represent smooth functions. For the sake
of simplicity, we will drop the transition and the covariate index in the following
discussion. The basic idea of penalised splines (Eilers and Marx, 1996) is to represent
a function f(x) (or g(¢)) of a smooth covariate x (or of time #) as a linear combination
of a large number of B-spline basis functions, that is,

M
)= EnBu(x).

m=1

Instead of estimating the resulting regression coefficients & = (&1,...,&m)
unrestricted, a penalty term is added to the likelihood to enforce smoothness of the
estimated function. From a Bayesian perspective, this corresponds to a smoothness
prior for & (Brezger and Lang, 2006). Since the derivatives of B-splines are determined
by the magnitude of the differences in adjacent parameter values, a sensible prior
distribution can be obtained by assuming a Gaussian distribution with appropriate
variance for these differences. This corresponds to a random walk prior for the
sequence of regression coefficients, that is,

ém:‘é;:m—l_'_gm: m:Z,...,M, (23)
for a first order random walk or
éjm :ng—l _%_m—z—’_gma m :39"-:M5 (2'4)

for a second order random walk and Gaussian error terms &, ~ N (0, t2). In addition,
noninformative, flat priors are assigned to the initial values. The variance parameter
of the error term can now be interpreted analogously to a smoothing parameter. For
large variances, the random walk prior allows for ample deviations in the differences

Statistical Modelling 2008; 8(2): 169- 198
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of adjacent parameters while a small variance enforces smaller differences and, as a
consequence, smoother function estimates are obtained.

In vector-matrix notation, penalised splines lead to the following representation
for the function evaluations defining predictor (2.1): The baseline hazard rate can be

expressed as g(()h)(t) = v(h)(t) §(h) where v(h)(t) = (B(h)(t), B(h) (1)) and §(h)
(55?), e ,é(h))/ Similarly, we obtain g " (Ou (1) = v(h)(t) éj(h) for the time-varying
effects Wlth U(h)(l) (ul(l‘)B(h)(l-), Ml(l‘)B(h)(l‘)) and fk(h)(xk(t)) — v(h)(l.) g(h)

for nonparametric effects with v(h)(t) = (B(h)(xk(t)), ) B(h) (xx(1)))". The design
matrices in (2.2) are then obtalned by stacklng the demgn vectors. In all cases, the
vectors of regression coefficients follow a multivariate Gaussian prior derived from
the random walk assumptions. The density of these distributions can be expressed as

1
p(E|T?) oc exp (—ﬁs’Ps) (2.5)

where the precision matrix P = D’'D is defined by the crossproduct of appropriate
difference matrices D. Note that in general, distribution (2.5) is improper since P
does not have full rank due to the improper distributions of the initial values in the
random walk definition.

To complete the Bayesian model formulation, we assign noninformative, flat

priors to the fixed effects, that is, p(y) o const, and i.i.d. Gaussian priors
bl@ ~ N(O, r}%) with transition-specific variances to the frailty terms. Note that these

random effects distributions can also be cast into the multivariate form (2.5) by simply

collecting all the random effects for one transition in the vector & = (bgh), . ,bﬁf’))/

and defining P = I,,. The design matrix for random effects is given by a 0/1-incidence
matrix which ties together a specific individual and its random effect. Note that
the possibility to cast both random effects and penalised splines into one general
framework considerably facilitates implementation of inferential procedures since
the same algorithms can be used for both penalised splines and random effects.

Finally, for the variance parameters t2 determining the variability of either
nonparametric function estimates or random effects, we will consider two situations:
In the first case, the variances are treated as fixed unknown constants, that are to
be estimated from their marginal posterior. This corresponds to empirical Bayes
estimation and will be further discussed in Section 5.1. In the second case, additional
inverse gamma-type hyperpriors are assigned to the variances. This corresponds to a
fully Bayesian approach and will be described in Section 5.2.

Statistical Modelling 2008; 8(2): 169- 198
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3 Counting process representation and likelihood contributions

For each individual i, i = 1,...,n, the likelihood contribution in a multi-state model
can be derived from a counting process representation of the multi-state model. Let

Nl.(h)(t), h =1,...,H, be a set of counting processes, counting transitions of type &
for individual i. Consequently, & = 1,..., H, indexes the observable transitions in
the model under consideration and the jumps of the counting processes Nl.(h) (1) are
defined by the transition times S;,, r = 1,...,m; of the corresponding multi-state

process for individual i.
From the classical counting process theory (see for example, Andersen et al., 1993,

Ch. VII.2), the intensity processes ozl.(h) (¢) of the counting processes N l.(h) (t) are derived
as the product of the hazard rate for type A transitions )th) (1) and a predictable at-risk

indicator process Il.(h)(t) (a sufficient condition for Ii(h)(t) to be predictable is that the
paths are continuous from the left), that is,

h h h
a0y = 102" @),

where the hazard rates are constructed in terms of covariates as described in Section 2.
The at-risk indicator 1;”(¢) takes the value one if individual i is at risk for a type A
transition immediately before time ¢, and zero otherwise. For example, in the multi-
state model of Figure 1(a), an individual in state 2 is at risk for both transitions to
state 1 and state 3. Hence, the at-risk indicators for both the transitions ‘2 to 1” and
‘2 to 3” will be equal to one as long as the individual remains in state 2.

Under mild regularity conditions, the individual log-likelihood contributions can
now be obtained from counting process theory as

H

Sim; Siym;
=Y logW™ (1)d N (1) — Wiy @ydr |, (3.1)
0 0

h=1

where S; ,,; denotes the time until which individual i has been observed. The likelihood
contributions can be interpreted similarly as with hazard rate models for survival
times (and in fact coincide with these in the case of a multi-state process with only
one transition to an absorbing state). The first term corresponds to contributions
at the transition times since the integral with respect to the counting process in fact
equals a simple sum over the transition times. Each of the summands is then given by
the log-intensity for the observed transition evaluated at this particular time point.
In survival models, this term simply equals the log-hazard evaluated at the survival
time for uncensored observations. The second term reflects cumulative intensities
integrated over accordant waiting periods between two successive transitions. The
integral is evaluated for all transitions the corresponding person is at risk at during

Statistical Modelling 2008; 8(2): 169- 198
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the current period. In survival models, there is only one such transition (the transition
from ‘alive’ to ‘dead’) and the integral is evaluated from the time of entrance to the
study to the survival or censoring time.

These considerations yield an alternative representation of the likelihood, where
each of the individual contributions is expressed in terms of the transition indicators

51.(h) (r) and observed transition times S;,, r = 0,...,m;. The indicators 61@ (1) take
the value one if a transition of type 4 is observed at time 7 for individual i, and zero

otherwise, while the S;, are defined by the times at which the corresponding individual
experiences a transition. This leads to the alternative log-likelihood formula

m; H
=YY" [85’1)(5”) log(:\" (Sir)) — 1 (Sir) /S

Sir
r=1h=1 =1

k;h)(t)dt:| , (3.2)

which reveals more clearly the connection to the commonly known likelihood of
hazard rate models in case of continuous survival times.

Under the usual assumption of conditional independence, the complete log-
likelihood is given by the sum of the individual contributions. Note that the first
integral in (3.1) reduces to a sum as shown in Equation (3.2) while the second integral
has to be evaluated. When using splines of degree zero or one, explicit formulae for
the integral can be derived. In general, however, some numerical integration technique
has to be applied. In our implementation, we utilise the trapezoidal rule due to its
simplicity but, of course, more sophisticated methods could also be used if required.

4 Model Validation

The counting process formulation of multi-state models also provides a possibility
for model checking based on martingale residuals (compare Aalen et al. (2004)
for a similar approach in the additive risk model). Since every counting process
is a submartingale by construction, we can apply the Doob-Meyer decomposition

(Andersen et al., 1993, Chapter 11.3) to Nl.(h) (1) and obtain
NP = AP0 + M @)

t
— / o™ (uydu + MM (1),
0

where Ml.(h)(t) is a martingale and Algh)(t) is a predictable process called the

compensator of Ni(h)(t). The compensator can be represented as the integral over

the intensity process and is therefore also called the cumulative intensity process. The
Doob-Meyer decomposition can be interpreted analogously to the decomposition

Statistical Modelling 2008; 8(2): 169- 198
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of a times series into a trend (the compensator) and an error component (the
martingale). Hence, replacing the compensator process with an estimate Al@ (1)
obtained from the model under consideration, yields estimated residual processes
N l.(h)(t) — Agh)(t). If the model is valid, the estimated residuals should (approximately)

have martingale properties. For example, their expectation should be zero and
increments in non-overlapping intervals should be uncorrelated (Hall and Heyde,
1980, Sec. 1.6).

In addition to computing the residual processes for the estimation data, out-of-
sample validation is also a useful tool that naturally avoids the risk of overfitting the
data. Besides looking at residual paths in the validation data, it is also possible to
compare predicted transitions to the actually observed ones. Given the sequence of
transition times S;,, the likelihood for a transition of type & at time S;,, according to
the estimated model, is given by

~(h
&M (S
~(h' :
A"

Therefore, the most likely transition at time S;, is the transition with maximum
intensity process at this time. Based on the sequence of most likely transitions,
we propose to compare the actually observed path with the predicted one and to
summarise the deviation in terms of some misclassification measure.

A more direct approach for model checking would be to test, for example,
smooth effects of some covariates against linear alternatives. This idea is particularly
attractive in our model, since such a test can be based on testing a single parameter,
namely the variance component of a smooth function. When using second order
random walk priors for a nonparametric effect, the limiting case > — 0 yields
exactly the linear model. Hence, it might be tempting to test the alternatives

p"(Siy) =

H():‘L'2>0 VS. H1:‘L’2=O

using, for example, a likelihood ratio test. However, the parameter 72 is on the

boundary of the parameter space under the null hypothesis and, as a consequence,
standard asymptotics do no longer apply. Although great efforts have been spent to
extend the likelihood ratio theory in this direction (compare for example, Crainiceanu
et al. (2005) or Greven et al. (forthcoming)), the methodology currently available is
not readily applicable in our model class.

The Bayesian analogon to the aforementioned likelihood ratio test would be to
modify the inverse Gamma prior of 72 to a mixture of a point mass in zero and
the original inverse Gamma distribution. This allows for a positive a posteriori
probability of a zero variance corresponding to a linear effect of the respective
covariate. However, when naively implementing this approach, mixing problems
are usually encountered due to the dependency between the sampled (non-negative)

Statistical Modelling 2008; 8(2): 169- 198
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values of 72 and the point mass in zero. These problems can be solved in normal
models by marginalisation (compare for example, Smith and Kohn (2002) or
Fruehwirth-Schnatter & Tuchler (forthcoming)) but are more difficult to handle in
non-Gaussian models. Therefore, model validation in the application in Section 6
will be restricted to the consideration of martingale residuals.

5 Bayesian Inference

Based on the likelihood introduced in Section 3, we are now prepared to discuss
Bayesian inference in multi-state models. In the following, we will differentiate
between two perspectives on the estimation problem: In an empirical Bayes approach,
the variance parameters of the smoothness priors (2.5) will be treated as unknown
constants which are to be estimated from their marginal posterior. This will be
facilitated by a mixed model representation of the predictor defining the transition
hazards; see Section 5.1. In a fully Bayesian treatment of multi-state models,
all parameters, including the variances, will be treated as random and estimated
simultaneously using MCMC simulation techniques; see Section 5.2. Both inferential
procedures borrow from approaches that have been recently developed for continuous
time survival models (compare Kneib and Fahrmeir (2007) for the empirical Bayes
version and Hennerfeind et al. (2006) for the fully Bayesian approach) and extend
them to the more general setup of multi-state models.

5.1 Empirical Bayes inference

In an empirical Bayes approach, we differentiate between parameters of primary
interest (the regression coefficients in our model) and hyperparameters (the variance
parameters). While prior distributions are assigned to the former, the latter are treated
as unknown constants which are to be estimated by maximising their marginal
posterior. Plugging these estimates into the posterior and maximising the resulting
expression with respect to the regression coefficients then yields posterior mode
estimates (as compared to the empirical mean estimates obtained from MCMC
simulation averages).

Empirical Bayes estimation in semiparametric regression models has been
considerably facilitated by the insight that regression models with smoothness priors
of the form (2.5) can be represented as mixed models with i.i.d. random effects
(compare, for example, Fahrmeir et al. (2004) or Ruppert et al. (2003)). This
representation has the advantage that partially improper priors can be split into
an improper and a proper part, therefore enabling the application of mixed model
methodology for estimation of the variance parameters.

Statistical Modelling 2008; 8(2): 169- 198
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To be more specific, let & be the vector of regression coefficients describing a
model term with r = rank(P) < dim(¢) = d, where P is the prior precision matrix
corresponding to £. Our aim is to express & in terms of an r-dimensional vector of
random effects b and a (d — r)-dimensional vector of fixed effects 8. This can be
achieved by applying the decomposition

E=XB+7Zb (5.1)

with suitably chosen design matrices X and Z of dimensions (d x d —r) and (d x r),
respectively. The following conditions are assumed for the transformation in (5.1):

(i) The compound matrix (X Z) has full rank to make (5.1) a one-to-one
t;ansformation.
(ii) X'P = 0 yielding a flat prior for 8, that is, B can be interpreted as a vector of
fixed effects.

(iii) Z'PZ = I, yielding an i.i.d. Gaussian prior for b, that is, b ~ N(0, t21,) can

be interpreted as a vector of i.i.d. random effects Wlth variance 72,

Correspondingly the vector of function evaluations transforms to
VE=V(XB+Zb)=XB+ Zb

with X = VX and Z = VZ. Applying this decomposition to all nonparametric
effects in the model leads to a variance components mixed model representation for
each of the transition intensities. Note that additional identifiability restrictions have
to be imposed on the reparametrisation to obtain a valid model formulation; also
compare the discussion in Kneib and Fahrmeir (2007). Each of the nonparametric
effects in a transition intensity yields a column of ones in the design matrix X which
models the overall level of the corresponding function. To obtain a valid model
specification, we include an intercept in each of the transition intensity models and
delete the superfluous columns from the reparameterisation. This has a similar effect
as imposing centering restrictions on nonparametric functions, which is a common
strategy to obtain identifiable additive models. Note that we do not have to impose
centering restrictions on time-varying effects g;(¢).

We will now briefly outline mixed model based estimation of multi-state models.
Since each of the transition intensities can, in fact, be considered a hazard rate in a
time-continuous duration time model, we will not discuss every step in full detail but
refer to the complete description in Kneib and Fahrmeir (2007).

In mixed model formulation, the log—posterior for all parameters is given by

1,(B,b, %) = Zz —ZZ bhjbhj, (5.2)

hl—l

where 8, b and 2 are vectors collecting all fixed effects, random effects and variances,
respectively. The first term in (5.2) corresponds to the sum of likelihood contributions
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obtained from Equation (3.1) while the second term consists of sums over all prior
distributions in the model. Since (5.2) has the form of a penalised likelihood, the
regression coefficients can be obtained as penalised maximum likelihood estimates.
This corresponds to the determination of posterior mode estimates for given variance
parameters. Actual maximisation can be achieved by a Newton-Raphson-type
algorithm that extends the algorithm presented in Kneib and Fahrmeir (2007).

The variances themselves are to be obtained from the marginal posterior, that is,
by maximising (5.2) after integrating out all regression coefficients:

Lnarg (T%) = f 1,(B,b, t*)dBdb — max.
T

Of course, this integral can hardly be solved analytically or numerically in practice,
since B and b will typically be high-dimensional. Therefore, we apply a Laplace
APProxXimation to e (t2), similar in spirit to the approach in Breslow and Clayton
(1993), vyielding an approximate solution to the integral depending on current

estimates B and b. Computing the score function and expected Fisher information
of the approximate marginal posterior allows to devise a Fisher-scoring scheme for
the estimation of 72. Since now the estimation scheme of the regression coefficients
depends on the variances and vice versa, we update both quantities in turn until
convergence is reached.

5.2 Fully Bayesian inference

In contrast to the empirical Bayes approach, a fully Bayesian approach is based upon
the assumption that both the parameters of primary interest and the hyperparameters
(the variance parameters) are random. Prior distributions are not only assigned to the
former but, in a further stage of the hierarchy, also to the latter. We routinely assign
inverse Gamma priors G (a;b)

1 b
p('L'Z) X (-L-Z)—a-i-l exXp <_'[_2) (53)

to all variances. They are proper for a > 0, b > 0, and we use a = b = 0.001 as
a standard choice for a weakly informative prior. Note that uniform priors for the
variance (a = —1, b = 0) or the standard deviation (a = —0.5, b = 0) are special
(improper) cases of prior (5.3), still leading to proper posteriors under regularity
assumptions (see Fahrmeir and Kneib (forthcoming) for a detailed discussion). The
Bayesian model specification is completed by assuming that all priors for parameters
are (conditionally) independent.

Again, since each of the transition intensities can be considered a hazard rate
in a time-continuous duration time model, we will only briefly comment on fully
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Bayesian inference for multi-state models and refer to Hennerfeind et al. (2006) for
more details. Let & denote the vector of all regression coefficients (in the original
parameterisation) and 72 the vector of all variance parameters. Fully Bayesian
inference is based on the entire posterior distribution

p(&,7% | data) oc L(E, %) p(§,72),

where L denotes the likelihood (given by the product of the individual likelihood
contributions) and p(&,1%) denotes the joint prior, which may be factorised due
to the (conditional) independence assumption. Since the full posterior distribution
is numerically intractable, we employ an MCMC simulation method that is based
on updating full conditionals of single parameters or blocks of parameters (each

with parameters corresponding to the same transition rate )Ll(h) (1)), given the rest of
the parameters and the data. Convergence of the Markov chains to their stationary
distributions is assessed by inspecting the sampling paths and autocorrelation
functions of the sampled parameters, which are used to estimate characteristics of
the posterior distribution like means and standard deviations via their empirical
analogues.

For updating the parameter vectors corresponding to time-independent functions

fk(h), as well as fixed effects yV and frailty terms b, we use a slightly modified
version of the Metropolis—Hastings algorithm based on iteratively weighted least
squares (IWLS) proposals, developed for fixed and random effects in generalised
linear mixed models by Gamerman (1997) and adapted to generalised additive mixed
models in Brezger and Lang (2006). Suppose we want to update a certain parameter
vector &, with current value £¢ of the chain. Then a new value &7 is proposed by
drawing a random vector from a (high-dimensional) multivariate Gaussian proposal
distribution ¢ (£¢,&7), which is obtained from a quadratic approximation to the
posterior by a second order Taylor expansion with respect to &€, in analogy to IWLS
iterations in generalised linear models. More precisely, the goal is to approximate the
posterior by a Gaussian distribution, obtained by accomplishing one IWLS step in
every iteration of the sampler. Then, random samples have to be drawn from a high
dimensional multivariate Gaussian distribution with precision matrix and mean

- 1 -
P=V'WE)W + 5P, 1= PTYWVWEDG - 7).

Here, 7 = n— V& is the part of the linear predictor for the transition corresponding to
& associated with all remaining effects, and W (§¢) = diag(w11, ..., Winmys---» Wam,)
is the weight matrix for IWLS with weights calculated from the current state £¢ as

Wi = fSSi":il L;w)Ai(w)du for r = 1,...,m;, i = 1,...,n. The vector of working

observations y is given by
y=WlEDA —T+0
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with A = (81(S11),...,8n (Snm,,))/- The proposed vector £7 is accepted as the new
state of the chain with probability

a(£¢,£P) = min (1 pE? | .)q(ép’50)>

P& | )q(<,&P)

where p(& | -) is the full conditional for & (that is, the conditional distribution of &
given all other parameters and the data).

For the parameters corresponding to the functions g(h)(t), oy 8] o) depending
on time ¢, we adopt the computationally faster MH- algorlthm based on conditional
prior proposals Unlike the algorithm based on IWLS proposals, this algorithm only
requires evaluation of the log-likelihood, not of derivatives (see Fahrmeir and Lang
(2001) for details). Note that the evaluation of derivatives would be particulary time-
consuming for these parameters since further integrals are involved that have to be
approximated numerically.

As the full conditionals of the variance parameters are (proper) inverse Gamma
distributions, updating of hyperparameters can be done by simple Gibbs steps.

6 Application: Human sleep data

In this application, we analyse data on human sleep collected at the Max-Planck
Institute for Psychiatry in Munich as a part of a larger study on sleep withdrawal.
The part of the data we will consider is utilised to obtain a reference standard of the
participants’ sleeping behaviour at the beginning of the study. Therefore, the major
goal is to obtain a valid description of the dynamics underlying the sleep process of
the 70 participants of the study. For each of the patients, information on exactly one
night is available.

Originally, the sleep process is recorded by electroencephalographic (EEG)
measurements which are afterwards classified into the three states: awake, Non-REM
and REM. The Non-REM state could be further differentiated but since our data set
is comparably small, we will restrict ourselves to a three-state model. In addition
to EEG measures taken every 30 seconds throughout the night, blood samples are
taken from the patients approximately every 10 minutes, providing measurements
on the nocturnal secretion of certain hormones, for example, cortisol. Including
this covariate information in multi-state models allows to validate hypotheses
about the relationship between the hormonal secretion level and changes in the
transition intensities. For example, we will investigate whether an increased level of
cortisol affects the transition intensities between Non-REM and REM-sleep phases,
a relationship that has been found in exploratory correlation and variance analyses.

The general model structure we will consider is schematically represented in
Figure 3. To obtain a somewhat simplified transition space, we aggregated the
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Sleep e (f)

Non-REM REM
ARN(T)

Figure 3 Schematic representation of sleep stages and the transitions of interest

transitions from awake to Non-REM and to REM, as well as the reverse transition
into the single transitions awake to sleep and sleep to awake, respectively. Based on the
previous considerations, we chose the following specification for the four remaining
transition hazards:

Aasi(t) = exp _8(()AS)(t)+b§AS)},
Asai(t) = exp :géSA) (1) + beA)] ,
ANRi(f) = exp :géNR)m+c,-(t)g§”)(r)+b§”)],
rna® = exp [0 + g0 + bV

Each of the transitions is described in terms of a baseline effect g(()h> (t) and a transition-

specific frailty term blgh). In addition, we included time-varying effects gih)(t) of high
cortisol secretion for the transition rates between Non-REM and REM, where ¢; (1) is
a dichotomised binary indicator for a high level of cortisol, that is, ¢; (¢) takes the value
one if the cortisol level exceeds 60 n mol/l at time ¢ and zero otherwise. Therefore,
the transition models between REM and Non-REM consist of two different intensity

functions for a low level of cortisol (g(()h)(t)) and a high level of cortisol (g(()h)(t) +
gih) (1)), respectively.
All time-varying effects gl(h)(t), [ = 0,1 are modelled as cubic P-splines with

second order difference penalty and 40 inner knots. We chose a relatively large
number of knots to ensure enough flexibility of the time-varying functions. The
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transition- and patient-specific random effects bfh) are assumed to be i.i.d. Gaussian
with b ~ N(0, ).

As a reference point we considered a purely parametric Markov model, where each
of the transitions is assigned a time-constant rate not depending on any covariates. In
this case, the maximum likelihood estimates of the transition intensities have a closed
form and can be computed as the inverse of the average waiting time for a specific
transition.

Estimated results for the time-varying baseline effects g(()h) (t) together with
(logarithmic) time-constant rates estimated from the parametric Markov model are
displayed in Figure 4. Empirical Bayes inference and fully Bayesian inference lead
to highly comparable results—with the transition from awake to sleep as a sole
exception, where empirical Bayes inference yields a lower effect. Altogether we
conclude that the transition rates are clearly varying over night with cyclic patterns
for the transitions between awake and sleep, and the transition from Non-REM to
REM. As was to be expected, the tendency to fall asleep again is particularly low for
patients who wake up at the end of the night, that is, more than seven hours after
sleep onset. In contrast, the tendency to wake up is roughly u-shaped and rather high
in the beginning and especially high at the end of the night.

Concerning the transitions between Non-REM and REM sleep, the log-baseline

effects g(()h) (¢) represent the effects for a low level of cortisol, while the g%h) (t) (compare

Figure 5) describe deviations from these effects if the level of cortisol is high, that
is, exceeds 60 n mol/l. In case of a low cortisol level, the intensity for a transition
from Non-REM to REM is initially very low, but steeply increasing within the first
hour after sleep onset followed by some ups and downs. In contrast, the intensity
for the reverse transition from REM to Non-REM is highest immediately after sleep
onset and afterwards decreases almost linearly. Figure 5 exhibits some additional
time-variation for the transition rate from Non-REM to REM in case the level of
cortisol is high. The additional effect of the reverse transition is less pronounced.
Finally, frailty terms are identified for all transitions when applying fully Bayesian
inference, while frailty terms are only identified for the transition from REM to
Non-REM when applying empirical Bayes inference (results not shown).

The performance of the developed models is assessed using martingale residuals
and compared to the parametric Markov process model. Figure 6 exemplarily
displays martingale residuals for the transition from Non-REM to REM. Although the
presentation as a time series plot is not very elucidating due to the accumulation of 70
individual processes, it allows to identify extreme outliers and to draw some general
conclusions: The Markov model tends to overestimate the number of transitions
(especially for the first hour after sleep onset), while the flexible, semiparametric
models yield residuals with a relatively symmetric distribution about zero. In addition,
the overall magnitude of the martingale residual processes is considerably smaller
when inference is conducted fully Bayesian. This is due to the fact that the fully
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Figure 4 Estimated time-varying log-baseline transitions (together with 80% and 95% pointwise credible
intervals) resulting from empirical Bayes (left panel) and fully Bayesian (right panel) inference. Horizontal grey
lines mark time-constant estimates resulting from the Markov model
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Figure 5 Estimated time-varying effects of high cortisol (together with 80% and 95% pointwise credible
intervals) resulting from empirical Bayes (left panel) and fully Bayesian (right panel) inference

Bayesian frailty term estimates account for subject-specific differences which are
ignored by the empirical Bayes estimates.

To gain additional insight into the distribution of the martingale residuals, Figure 7
displays kernel density estimates of the martingale residuals at selected time points.
This illustration further supports the conclusion that semiparametric modelling of
the transition intensities improves upon a purely parametric model. Overall, the
fully Bayesian approach seems to perform best, with residual distributions which are
mostly symmetric about zero. In contrast, the residual distributions for the parametric
model are considerably shifted to either a positive or negative value, indicating
under- and overestimation of the expected number of transitions, respectively.
Results obtained with the empirical Bayes approach are somewhere in between fully
Bayesian and parametric estimates. An exception is the transition from REM to Non-
REM, where frailty terms are identified for both fully Bayesian and empirical Bayes
inference, and hence both flexible models perform equally well. In summary, Figure 7
gives a further hint that individual-specific variation should be accounted for when
modelling the transition intensities.
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Figure 6 Martingale residuals for the transition from Non-REM to REM
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Figure 8 Autocorrelation functions for the Markov model (solid lines), empirical Bayes inference (dashed
lines) and fully Bayesian inference (dotted lines)

Finally, Figure 8 shows empirical autocorrelation functions for 30 second
increments of the residual processes. According to martingale theory, these increments
should be (approximately) uncorrelated. Of course, it would be too strict to expect
exactly uncorrelated residual processes but autocorrelations should die out quickly
for a well-chosen model. Unfortunately, none of the models considered fully fulfills
this requirement. In particular, the transitions from awake to sleep and from REM to
Non-REM exhibit long-time autocorrelation and show only small differences between
the three inferential procedures. In contrast, there is a clear improvement with the
flexible model for the two remaining transitions. For the transition from Non-REM
to REM, autocorrelations die out relatively quickly, especially for fully Bayesian
estimates.

In summary, flexible models seem to improve upon the simple Markov model
but are still not able to capture all of the essential features influencing the sleep
process. However, since our data set only contains very little information about the
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participants of the sleep study, it probably is not very realistic to expect the model
to fully explain the underlying dynamics. At least parts of the individual-specific
variation are captured by the frailty effects which also proved to be important in the
analysis of residual processes.

Of course, looking at the martingale residuals alone bears the risk to adjust the
model too close to the observed data. Therefore, it would be useful to perform some
out-of-sample prediction as discussed in Section 4. Since, however, our data set is
quite small anyway, this strategy is not applicable in our case.

To investigate the sensitivity of MCMC-based estimates with respect to the prior
assumptions, we recomputed our estimates with different hyperparameter settings for
the inverse gamma priors of the variance parameters. More precisely, we considered
the following combinations of hyperparameters: @ = b = 0.001 (the default), a =
b=0.0001,a =b=0.00001,d=1and b= 0.001,a =—-1and b =0, a = —0.5
and b = 0. The latter two correspond to flat priors on the variance and the standard
deviation, respectively. Note that in the limiting case, where a = b = € — 0, the
posterior is no longer proper. For small, positive values of €, the posterior is still
proper from a theoretical perspective but in general, results tend to be too smooth.
In contrast, relatively wiggly results are to "be expected with the flat priors witha < 0.

Figure 9 shows some selected results from the sensitivity analysis: Log-baseline
effects and time-varying effects for the default (¢ = b = 0.001) and the three most
extreme hyperparameter settings (¢ = b = 0.00001,a = 1 and » = 0.001, a = —1,
b = 0) are displayed on the same scale as estimates in Figures 4 and 5. From the results
we can conclude the following: For the baseline effect for the transition between
awake and sleep, there is some uncertainty about the heights of the maximal and
minimal values of the effect. However, the differences are relatively small compared
to the overall range of the effect and are also to be expected with priors enforcing a
larger amount of smoothness. For the baseline of the transition intensity from Non-
REM to REM, all results almost coincide except for the very end of the time-period.
This simply reflects the fact that less transitions of this type are observed at this time.
For the two further baseline effects and the random effects, results are qualitatively
similar and no larger differences are observed. The most notable deviations between
the prior specifications are to be found for the time-varying effects. For the transition
from REM to Non-REM, there is uncertainty at the beginning of the night, due to
the fact that the cortisol level is typically low at this time point. For the transition
from Non-REM to REM, uncertainty in the estimates even leads to additional local
minima and maxima for some special choices of hyperparameters allowing for more
variation. Note that this sensitivity is adequately reflected in the credible intervals
of the original estimates in Figure 5. For priors favouring smooth estimates, the
time-varying effects are very close to straight lines.

In summary, although some sensitivity with respect to prior assumptions has been
found for the time-varying effect, the results obtained with the standard choices seem
to be quite reasonable. This conjecture is also supported by the results obtained with
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Figure 9  Selected results for the sensitivity analysis with hyperparameter settings a= b= 0.001(—), a= b=
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the mixed model approach, which is inherently free from hyperparameter sensitivity
(although it corresponds to one specific prior).

7 A small simulation study

Since the database in our application is quite small, we conducted a small simulation
study to investigate the dependency of estimation results on the sample size. We
considered a multi-state process that is build in analogy to the human sleep process,
that is, the transition structure is given by the reachability graph in Figure 3.

Before discussing the set-up and the results of the simulation study in detail, we
first present a simulation algorithm for general multi-state models. To simulate a
multi-state model with a given set of hazard rates )ngh) t),h=1,...,H,i=1,...,n,
we require the following quantities:
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(i) The cumulative distribution function of the (r+1)th transition time, conditional
on the current state Y;, and the rth transition time S;,:

Fr(t) = P(Si,r+l < Sir + 1| Yir, Sir)
= P(Ti,r—',—l =t | Yir, Sir)

Sir+t
=1—exp (—f o; (t)dt)
Sir

=1 —exp (—[Ai(Sir +1) — Ai(Sir)]) (7.1)
where
H H
a0y =Y o' =" 1" 01" @), Sir <t < Sir,
h=1 h=1
and

t
Ai(I)Z/ o; (u)du.
0

Note that expression (7.1) extends the well-known formula for survival times
that relates the cumulative distribution function F(¢) to the (cumulative) hazard
rate A(t) via F(r) = 1 — exp(—A(z)). In fact, «;(¢) corresponds to the hazard
rate in such a duration time model except for the fact that we have to account for
the time point already reached by the process and the current state. The current
state is only needed to ensure that the sum over the intensity processes involves
only processes corresponding to transitions which are currently observable.
Note that this is automatically accounted for in the aforementioned formula
since the definition of the intensity processes includes the corresponding risk
processes.

Inversion sampling allows to draw a random number from distribution
(7.1). If U ~ U[0, 1], it follows that

F-Yw)~F,.

Expressing the cumulative distribution function in terms of A;,(¢) and solving
for ¢ yields

Tipy1 = A;, [~ log(1 = U) + Air(Si)] — Sir-

Note that it is not required that the inverse of A;.(r) is available in closed
form. For the simulation algorithm, numerical inversion will be sufficient. In
fact, A;» () may also be approximated using numerical integration and inverted
numerically in a second step.
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(i) The conditional probabilities
pl.(h)(t) = P(the transition from Y;, to Y; .41 is of type h | Yiy, Siy41 =1)
o/ (1)
IR

These probabilities are simply proportional to the values of the intensity

processes ocl.(m(t) at Sj+1 = t, that is, the higher the intensity for a transition,
the higher is the corresponding probability.

Based on these quantities, the simulation algorithm for the path of individual i up to
a prespecified time fmax proceeds as follows:

(i) Generate an initial state Y;q, either from external knowledge about the process
or from an appropriate starting distribution.
(ii) Simulate the duration in the current state as

S J+1 = ( 10g(1 —U)+ Air(Sir)),

where U ~ U[0,1]. If S,-,,H > Imax, truncate S; 41 to fmax and terminate the
algorithm. Otherwise go to step iii.

(iii) Simulate the transition at time S;,4+1 from the set of transitions based on the
probabilities

h
o" (Sir11)

(h)
p' (t) = /’l/ bl
’ Y ™S

h=1,...,H.

and go back to step (ii).

For the baseline hazard rates, we employed the following specifications:

(AS) 1.2cos(t) +2.5 t<m (SA) 1.25sin(¢) +2 ¢t <2m
@ = 113 t> 0 =1, t> 2
AéNR)(t) = 2.5sin(1.51) +3.5 ngM (1) = 2cos(t2/4.5) +2.5

To speed up and to simplify the simulation study, we did not consider time-varying
effects. Based on the simulation algorithm, we generated 20 simulated data sets for
different situations. First, we considered three different sample sizes, namely n = 50,
n = 100 and n = 200. Based on the results from the 20 replications, we computed
average point estimates. Figure 10 visualises the results for small and large sample
sizes and the two estimation approaches (results for n = 100 are intermediate and
therefore omitted). Note that we simulated the data on an hourly basis while the real
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Figure 10  Simulation results for sample sizes n = 50 (left panel) and n = 200 (right panel). Mixed model based
estimates are visualised as dashed line, MCMC based estimates as dotted line. The true values are included as
solid line.
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data in Section 6 were measured on a 30-seconds basis. Therefore, the magnitude of
the baseline effects is different between the simulation data and the real data, but this
does not affect the validity of our results.

Obviously, the differences between the sample sizes are not too large, although
some improvement in the fit can be observed with n = 200. The differences between
the mixed model based approach and the MCMC-based approach turn out to be
larger: While both types of estimates reproduce the functional form of the hazard
rate relatively well, the mixed model-based approach seems to have difficulties in
capturing the overall level of the function. Note that this is consistent with the results
for the transition from awake to sleep that we found in the application.

For all four transitions, the estimates reproduce quite well the functional form and
the location of minima and maxima in the hazard rates. However, they also show
the expected problems when abrupt changes in the curvature occur (transition from
sleep to awake) or for highly fluctuating curves (transitions from REM to Non-REM
and from Non-REM to REM). Still, the overall quality seems to be satisfactory when
taking the complexity of the model and the small sample size into account.

In some further simulations we investigated the impact of random effects.
The results confirmed our findings from the application: The mixed model-based
approach typically is not able to detect individual-specific variability while the
MCMC-based approach correctly identifies individual-specific effects. We also
considered situations with a generally increased level of the hazard rates but this
had only minor effect on the general quality of the estimation results.

8 Discussion

We have presented a computationally feasible semiparametric approach to the
analysis of multi-state duration data motivated by an application to human sleep.
Transition intensities are specified in a multiplicative manner in analogy to the Cox
model, allowing for the inclusion of flexible nonparametric and time-varying effects.
All parameters, including smoothing parameters, are estimated jointly using either
an empirical Bayes or a fully Bayesian approach, therefore circumventing the need
for subjective judgements. Some helpful tools for model validation and comparison
have been considered on the basis of martingale residual processes.

When comparing the relative merits of the two proposed inferential procedures,
MCMC-based estimation has the advantage of being structured modularly, thereby
applying a divide-and-conquer strategy to the estimation problem. Dividing the full
estimation problem in smaller parts allows to modify some of these parts without
having the need to change the remaining ones, too. In large problems, this will
also help to keep the computing time at a moderate level, However, in our small
data set with a relatively simple structure of the transition intensities, the empirical
Bayes approach was still much faster since it is not based on samphng techniques.
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Thereby, it also avoids the necessity to validate mixing and convergence of a Markov
chain, a task that becomes particularly cumbersome in complex models with a
huge number of parameters. Since no priors have to be specified for the variance
components in the empirical Bayes approach, the usual issue of sensitivity to the prior
assumptions is also not present here. A drawback of mixed model-based empirical
Bayes estimation is that parts of it rely on normal approximations. While these are
usually not too problematic in the approximate marginal likelihood estimation of
variance parameters, credible intervals for regression coefficients rely heavily on the
assumption of asymptotic normality. In contrast, MCMC works with the posterior
itself and therefore obtains more reliable interval estimates, provided that the Markov
chain has converged. Therefore, MCMC seems to be better suited to small sample
problems such as our sleep study. Here we also found that MCMC yielded somewhat
preferable estimates, in particular with respect to individual-specific frailties where
the database is even smaller than for the remaining regression effects.

The presented multi-state framework is easily extendable to different situations
requiring more complicated modelling of covariate effects, such as spatial effects
or interactions between covariates. In the future, apphcatlon to such complicated
data structures will be of particular interest to investigate the capabilities of Bayesian
multi-state models. Of course, such extensions will require a larger database than in
our application to make the effects well-identified.

A methodological extension will be the consideration of coarsened observations in
analogy to interval censored survival data. This phenomenon is frequently observed
in practice, in particular in medical applications where patients can be examined only
at a prespecified, fixed set of time-points. In this case, the likelihood will in general not
be available in analytic form, leading to additional numerical difficulties. In a fully
Bayesian approach, the augmentation of true transition times in a data imputation
step seems to be a promising alternative that avoids the computation of the exact
likelihood.

Another direction of future research might be the consideration of different types
of priors that, for example, allow for jumps or more abrupt changes in the log-
baseline functions. Some of the estimates obtained in our application might suggest
the necessity of such additional flexibility. Lang & Brezger (2004) present a modified
prior, where an additional weight is introduced for the variance of the error terms of
the random walk priors (2.3) and (2.4). This leads to varying amounts of smoothness
over the co-domain of the modelled covariate. As an alternative, priors that mimic
current regularisation penalties such as the LASSO may be considered.
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