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Abstract� The present article deals with the problem of estimation of param�
eters in a linear regression model when some data on response variable is missing
and the responses are equicorrelated� The ordinary least squares and optimal
homogeneous predictors are employed to �nd the imputed values of missing ob�
servations� Their e�ciency properties are analyzed using the small disturbances
asymptotic theory� The estimation of regression coe�cients using these imputed
values is also considered and a comparison of estimators is presented�

� Introduction

Let us consider the following linear regression model with equi�correlated dis�
turbances�

Yc � Xc� � ��c 	
�
�

where Yc is a n � 
 vector of n observations on the response variable� X is a
n �K full column rank matrix consisting of n observations on K explanatory
variables� � is a K � 
 vector of coe�cients� � is an unknown scalar and �c is a
n� 
 vector of disturbances�

It is assumed that disturbances follow a multivariate normal distribution
with mean � variances 
 and covariances or correlation coe�cients � so that we
can write

E	�c� � 

E	�c�
�

c� � �cc � 	
� ��In � �JnJ
�

n 	
���






where In is an identity matrix of order n� n� Jn denotes a column vector with
all n elements unity and � is assumed to be known and di�erent from zero�

Such a model provides an interesting framework for the analysis of data in
many applications� For example� when data contain measurements on symmet�
ric organs like eyes of persons� the observations are found to be equi�correlated�
see� e� g� M�unoz� Rosner and Carey 	
���� and Rosner 	
���� for details� Other
instances relate to familial data and survey data arising from cluster sampling�
see� e� g� � Christensen 	
����� King and Evans 	
���� and Srivastava 	
�����

For the estimation of model parameters� considerable attention has been paid
in the literature� see� e� g� Srivastava and Ng 	
��� and the references cited
therein for a brief review of estimation procedures� A stringent assumption
made in all the procedures is that the data has no missing observation� Such a
speci�cation may be violated in many practical situations and some observations
on the response variable may not be available for one reason or the other� If
Ymis denotes a m � 
 vector of m missing values in the response variable and
X� is a m � K matrix of m observations on the K explanatory variables� we
have

Ymis � X�� � ��� 	
���

where �� is a m�
 vector of disturbances having same distributional properties
as �c� i� e� �

E	���
�

�
� � ��� � 	
� ��Im � �JmJ

�

m 	
���

E	���
�

c� � ��c � �JmJ
�

n �

Estimation of � on the basis of 	n�m� incomplete observations is the subject
matter of this article� In Section �� we present three sets of inputed values for the
missing observations� Utilizing these imputed values� we repair the incomplete
data set and use it for the estimation of �� In Section �� we discuss the properties
of imputed values� In the same way� the e�ciency properties of estimators of �
are analyzed in Section ��

� Imputation of Missing Observations And Es�

timation of Coe�cients

Let us assume� following Shalabh 	
����� that the regression relationship con�
tains no intercept term and the observations on explanatory variables are taken
as deviations from their corresponding means so that X �

cJn and X �

�
Jm are null

vectors� An interesting consequence of this speci�cation is that ordinary least
squares and generalized least squares estimators of � from 	
�
� are identically
equal and given by

bc � 	X �

cXc�
��X �

cYc 	��
�

which clearly does not utilize the m incomplete observations at all� see Touten�
burg and Trenkler 	
���� for the case when intercept term is present�

A simple alternative for making use of m incomplete observations is to �nd
imputed values for missing observations on response variable and to substitute
them in place of missing observations so that the thus repaired data set resembles

�



the complete data set� Treating the problem of �nding the imputed values as
the problem of predicting the values of response variable outside the sample�
Goldberger 	
���� has presented the classical predictor of Ymis as

P� � X�bc 	����

and the optimal homogeneous predictor in the class of unbiased predictors of
Ymis as

P� � X�bc ���c�
��

cc 	Yc �Xcbc� 	����

� X�bc �
�J �nYc


 � 	n� 
��
Jm

which may be serve as the imputed values for missing observations on the re�
sponse variable� see also Bibby and Toutenburg 	
�����

If we relax the constraint of unbiasedness� the optimal homogeneous predic�
tor is given by

P �
��X �

c�
��

cc Yc

��X �

c�
��
cc Xc� � ��

X�� 	����

���c�
��

cc 	Yc �
��X �

c�
��
cc Yc

��X �

c�
��
cc Xc� � ��

Xc��

�
��XcYc

��X �

cXc� � ��	
� ��
X�� �

�J �nYc


 � 	n� 
��
Jm

see� e� g� �Rao and Toutenburg 	
���� Sec� �����
The predictor 	���� has no practical utility due to involvement of unknown

quantities �� and �� A simple way to obtain a feasible version is to replace
them by their unbiased estimators� Thus substituting bc in place of � and

s� �

�



n�K

�
	Yc �Xcbc�

����

cc 	Yc �Xcbc� 	����

in place of �� in 	����� we �nd a feasible predictor for Ymis as follows�

�P �
b�cX

�

cYc

b�cX
�

cXcbc � s�	
� ��
X�bc �

�J �nYc


 � 	n� 
��
Jm 	����

� P� �
s�	
� ��

b�cX
�

cXcbc � s�	
� ��
P�

which provides another set of imputed values for the missing observations on
the response variable�

If we apply the method of ordinary least squares or generalized least squares
to 	
�
� and 	
���� we get the estimator of � as

�� � 	X �

cXc �X �

�
X��

��	X �

cYc �X �

�
Ymis� 	����

which has no utility due to presence of Ymis� Replacing it by the vectors of

�



imputed values� we obtain the following estimators of ��

��� � 	X �

cXc �X �

�
X��

��	X �

cYc �X �

�
P�� 	����

� bc
��� � 	X �

cXc �X �

�
X��

��	X �

cYc �X �

�
P�� 	����

� bc
�� � 	X �

cXc �X �

�
X��

��	X �

cYc �X �

�

�P � 	��
�

�

�
Ik �

s�	
� ��

b�cX
�

cXcbc � s�	
� ��
	X �

cXc �X �

�
X��

��X �

�
X�

�
bc �

Thus we observe that the estimators of � employing the unbiased imputed
values speci�ed by 	���� and 	���� are identically equal to the least squares
estimator bc which ignores the incomplete observations� In other words� the
imputation procedure yielding unbiased imputed values does not serve any useful
purpose� Such is� however� not the case when biased imputed values given by
	���� are used� Here we obtain the estimator 	��
� that is clearly a shrunken
estimator arising from bc�

� Properties Of Imputed Values

From 	����� 	���� and 	����� it is easy to see that P� and P� are� but �P is generally
not� weakly unbiased for Ymis in the sense that

E	P� � Ymis� � E	P� � Ymis� �  	��
�

E	 �P � Ymis� ��  � 	����

Further� we have

V	P�� � E	P� � Ymis�	P� � Ymis�
� 	����

� ��	
� ��

�
Im �X�	X

�

cXc�
��X �

�
�

�


� �
JmJ

�

m

�
V	P�� � E	P� � Ymis�	P� � Ymis�

� 	����

� ��	
� ��

�
Im �X�	X

�

cXc�
��X �

�
�

�


 � 	n� 
��
JmJ

�

m

�

whence it is clearly seen that the variance covariance matrix of P� exceeds the
variance covariance matrix of P� by a non�negative semi�de�nite matrix� This
implies that P� is a better choice in comparison to P� for �nding the imputed
values of missing observations on the response variable�

Next� let us consider �P � The exact expression for the �rst and second order
moments of 	 �P � Ymis� can be derived but the resulting expressions will be
su�ciently complex and it will be hard to draw any clear inference regarding
the bias as well as the superiority of �P over P� and P� and vice�versa� We
therefore consider their approximations using the small disturbance asymptotic
theory� Such results are derived in Appendix and presented below�

Theorem � The asymptotic approximation for the bias vector of �P to order

�



O���� is given by

B	 �P � � E	 �P � Ymis� 	����

� ���
�


� �

��X �

cXc�

�
X��

while the di�erence matrix to order O���� is

D	P�� �P � � E	P� � Ymis�	P� � Ymis�
� � E	 �P � Ymis�	 �P � Ymis�

� 	����

� ��
	
� ���

��X �

cXc�
X�QX�

where

Q � �	X �

cXc�
�� �

�	n�K� � �

	n�K���X �

cXc�
��� �

Using Rao and Toutenburg 	
���� Theorem A��� p����� it is observed that Q
cannot be a nonnegative de�nite matrix so that it follows from 	���� that �P does
not dominate P� with respect to the criterion of mean squared error matrix to
the given order of approximation� Similarly� using Rao and Toutenburg 	
����
A���� p� ���� we �nd that 	�Q� cannot be nonnegative de�nite except in
the trivial case K � 
� This means that P� does not dominate �P � Thus �P
neither dominates P� nor is dominated by P� according to the mean squared
error matrix criterion� at least to the order of our approximation�

Next� let us employ a weak criterion� viz� � the trace of mean squared error
matrix� for the comparison of P� and �P �

trD	P�� �P � � ��
�	
� �����X �

�
X��

	��X �

cXc���

�
g �

�
�

�
�




n�K

��
	����

where

g �

�
��X �

cXc�

��X �

�
X��

�
tr	X �

cXc�
��X �

�
X� � 	����

Thus we observe that �P is better than P� when

g �

�
�

�
�




n�K

�
	����

while the opposite is true� i� e� � P� is better than �P when

g �

�
�

�
�




n�K

�
� 	��
�

The conditions 	���� and 	��
� are not attractive as they are hard to be veri�ed
in practice owing to involvement of � which is known�

If 	min and 	max denote the minimum and maximum eigenvalues of X �

�
X�

in the metric of X �

cXc and S is the sum of all the eignevalues� we observe that
the condition 	���� is satis�ed as long as

S

	max

�

�
�

�
�




n�K

�
	��

�

�



which is easy to verify in any given application�
Similarly� the condition 	��
� will hold true as long as

S

	min

�

�
�

�
�




n�K

�
	��
��

that is easy to check�
It is interesting to note that conditions 	�����	��
�� are free from values of

��

� Properties of Estimators of Coe�cients

For the estimation of �� we have two distinct estimators bc and �� speci�ed by
	��
� and 	��
� respectively�

It is easy to see that bc is unbiased for � while �� is generally biased� The
approximate expressions for analyzing the e�ciency properties of �� in relation
to bc are obtained in Appendix and presented below�

Theorem � The asymptotic approximation for the bias vector of �� to order
O���� is given by

B	 ��� � E	�� � �� 	��
�

� ���
�


� �

��X �

cXc�

�
W�

while the di�erence matrix to order O���� is

D	bc� ��� � E	bc � ��	bc � ��� � E	�� � ��	 �� � ��� 	����

�
��	
� ���

��X �

cXc�

�
W 	X �

cXc�
�� � 	X �

cXc�
��W �

�
�

��X �

cXc�
fW��� � ���W � �

�
n�K � �

�	n�K�

�
W���W �g�

where

W � 	X �

cXc �X �

�
X��

��X �

�
X� � 	����

From 	����� it is di�cult to draw any clear inference about the superiority of
�� over bc or vice�versa according to the criterion of mean squared error matrix
to the given order of approximation� We therefore consider trace of the mean
squared error matrix as the performance criterion� With respect to such a
criterion� the estimator �� is better than bc when

trW 	X �

cXc�
�� �

�
�

�
��W�

��X �

cXc�

�
�

�



�
�




n�K

�
��W �W�

��X �

cXc�

�
� 	����

If 
max is the maximum eigenvalue of W 	X �

cXc�
��� we have

��W�

��X �

cXc�
� 
max

��W �W�

��X �

cXc�
�

��W�

��X �

cXc�
� 
max �

�



Further� if T denotes the total of eigenvalues of W 	X �

cXc�
��� the inequality

	���� is satis�ed as long as

T �

�
�

�
�




n�K

�

max 	����

which is a su�cient condition for the superiority of �� over bc with respect to the
criterion of trace of mean squared error matrix to order O	���� In other words�
under the condition 	����� use of imputation procedure providing biased imputed
values for the missing observations of the response variable is worthwhile in
comparison to the outright discard of incomplete observations so far as the
estimation of coe�cients in the model is concerned� An interesting aspect of
the condition 	���� is that it is easy to check in actual practice�

Appendix

From 	
�
�� 	��
� and 	����� we observe that

s� �

�
��

n�K

�
��c
�
In �Xc	X

�

cXc�
��X �

c

�
	A�
�

� �	
� ��In � �JnJ
�

n�
��

�
In �Xc	X

�

cXc�
��X �

c

�
�c

�
��

	n�K�	
� ��
��c
�
In �Xc	X

�

cXc�
��X �

c

� �
In �

�


 � 	n� 
��
JnJ

�

n

�
�
�
In �Xc	X

�

cXc�
��X �

c

�
�c

�
��

	n�K�	
� ��
��cM�c

so that

s�	
� ��

b�cX
�

cXcbc � s�	
� ��
	A���

� ��
��cM�c

	n�K���X �

cXc�

�

 � ��

��X �

c�c

��X �

cXc�
�Op	�

��

�
��

� ��
��cM�c

	n�K���X �

cXc�
� ���

��cM�c�
�X �

c�c

	n�K�	��X �

cXc���
�Op	�

��

where

M � In �Xc	X
�

cXc�
��X �

c �
�


 � 	n� 
��
JnJ

�

n �

Using it� we have

	 �P � Ymis� � 	P� � Ymis��
s�	
� ��

b�cX
�

cXcbc � s�	
� ��
X� 	A���

�� � �	X �

cXc�
��X �

c�c�

� �

�
X�	X

�

cXc�
��X �

c�c �
�J �n�c


 � 	n� 
��
� ��

�

���
��cM�c

	n�K���X �

cXc�
X�� �Op	�

��

�



whence it follows that

E	 �P � Ymis� � ���
E	��cM�c�

	n�K���X �

cXc�
X�� �O	���

� ���
trM�cc

	n�K���X �

cXc�
X�� �O	���

which leads to the result 	���� of Theorem 
�
Similarly� we have

D	P�� �P � � E	P� � Ymis�	P� � Ymis�
� � E	 �P � Ymis�	 �P � Ymis�

�

� E

�
s�	
� ��

b�cX
�

cXcbc � s�	
� ��
fX�bc	P� � Ymis�

� � 	P� � Ymis�b
�

cX
�

�
g

�

�E

��
s�	
� ��

b�cX
�

cXcbc � s�	
� ��

	�

X�bcb
�

cX
�

�



�

Observing that

X�bc	P� � Ymis�
� � ��X�� � ��X�	X

�

cXc�
��X �

c�c�

���cX
�

c	X
�

cXc�
��X �

�
�

�J �n�c


 � 	n� 
��
J �m � ��

�
�

X�bcb
�

cX
�

�
� X���

�X �

�
�Op	��

and using 	A���� we get

D	P�� �P � � �� E	F � F �� � �� E	G�G� �H� 	A���

where

F �
��cM�c

	n�K���X �

cXc�
X����

�

cXc	X
�

cXc�
��X �

�
�

�J �m�c


 � 	n� 
��
J �m � ��

�
�

G �
��cM�c

	n�K���X �

cXc�
X��	X

�

cXc�
�� �

�

��X �

cXc�
����X �

c�c

���cXc	X
�

cXc�
��X �

�
�

�J �n�c


 � 	n� 
��
J �m � ��

�
�

H �

�
��cM�c

	n�K���X �

cXc�

��
X���

�X �

�
�

Next� by virtue of normality� we have

E	��cM�c �c�
�

c� � 	trM�cc��cc � ��ccM�cc

� 	n�K � ��	
� ���	
� ��Jn � �JnJ
�

n��� �	
� ���Xc	X
�

cXc�
��X �

c �

Further� �c and 	�� ���c�
��
cc �c� are stochastically independent so that

E	��cM�c �c�
�

�
� � E	��cM�c �c�

�

c��
��

cc �
�

�c 	A���

� 	trM�cc��
�

�c � ��ccM��

�c

� 	n�K � ��	
� ���JnJ
�

m �

�



Utilizing these results� it is easy to see that

E	F � � 

E	G� �
	
� ���

��X �

cXc�
X��	X

�

cXc�
�� �

�

��X �

cXc�
����X �

�

E	H� �
	
� ���	n�K � ��

	n�K�	��X �

cXc���
X���

�X �

�
�

Substituting these results in 	A���� we obtain the expression 	���� of Theorem

�

For the results of Theorem �� we observe from 	��
� and 	A���� that

	 �� � �� � �	X �

cXc�
��X �

c�c �
���cM�c

	n�K���X �

cXc�
W� �Op	�

��

with W � 	X �

cXc �X �

�
X��

��X �

�
X� so that the bias vector to order O	��� is�

B	 ��� � �
�� E	��cM�c�

	n�K���X �

cXc�
W�

� ���
�


� �

��X �

cXc�

�
W�

leading to the result 	��
��
Similarly� we have

D	bc� ��� � E	bc � ��	bc � ��� � E	�� � ��	 �� � ���

� E

�
s�	
� ��

b�cX
�

cXcbc � s�	
� ��
fWbc	bc � ��� � 	bc � ��b�cW

�g

�

�E

��
s�	
� ��

b�cX
�

cXcbc � s�	
� ��

	�

Wbcb
�

cW
�




� �� E

�
��cM�c

	n�K���X �

cXc�

�
W���cXc	X

�

cXc�
�� � 	X �

cXc�
��X �

c�c�
�W �

��

��� E

�
��cM�c

	n�K���X �

cXc�
W

�
	X �

cXc�
�� �

�

��X �

cXc�
���

	
X �

c�c�
�

cXc	X
�

cXc�
��

�
��cM�c

	n�K���X �

cXc�
	X �

cXc�
��Xc�c�

�

cXc

�
	X �

cXc�
�� �

�

��X �

cXc�
���

	

�
	��cM�c�

�

	n�K��	��X �

cXc���
W���W �

�
�O	���

�
��	
� ���

��X �

cXc�

�
W 	X �

cXc�
�� � 	X �

cXc�
��W �

�



��cX
�

cXc�

�
�	W��� � ���W �� �

�
n�K � �

n�K

�
W���W �

	�

whence we get the result 	���� of Theorem ��
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