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Abstract

We present three different methods based on the conditional mean im-
putation when binary explanatory variables are incomplete. Apart from
the single imputation and multiple imputation especially the so-called pi
imputation is presented as a new procedure. Seven procedures are com-
pared in a simulation experiment when missing data are confined to one
independent binary variable: complete case analysis, zero order regres-
sion, categorical zero order regression, pi imputation, single imputation,
multiple imputation, modified first order regression. After a brief theo-
retical description of the simulation experiment, MSE-ratio, variance and
bias are used to illustrate differences within and between the approaches.

KEY WORDS: binary variables; imputation; incomplete data; logistic
regression; simulation experiment;

1 Introduction

Statistical analysis with incomplete data is a common problem in practice. The
linear regression as a main tool therefore often is affected by missing values
within statistical analyses. Apart from other popular approaches of handling
this problem also imputation methods were discussed in particular (see e.g. Hill
and Ziemer (1983) or Little (1992)). Within these essays the statistical theory
was also described as the possibility of a practical transfer, e.g. in simulation
experiments. Various scientific analyses use linear regressions containing bi-
nary variables (nominally or ordinally scaled) which also may be incompletely
observed. This paper presents a brief description of methods dealing with in-
complete binary variables. Based on the well known notation of a linear model

y=XB+e (1.1)

we assume a continuous and completely observed response vector y. The (nx K)
design matrix X however contains m missing values in one binary regressor. For
remaining assumptions and notations see e.g. (Toutenburg, 1992, p. 18ff).

As already insinuated we assume one incomplete variable. Without any restric-
tion of generality we also assume a reorganization of the incomplete regressor
according to

XKfl = (xc;mmis)l )



where the indices ¢ and mis indicate the complete and missing part of the
variable X _1. Thereby z. is of dimension ((n —m) x 1) and ;s of (m x 1).

2 Standard Methods

Complete and available case analysis among others are the most popular ap-
proaches. Whereas the complete case analysis (CCA) discards all cases contain-
ing at least one missing value the available case analysis uses all cases having
complete observations for variables which are used within the scope of the cur-
rent analysis. Therefore the number of cases for different problems often varies
and depends on the current variables involved and might exceed the n —m cases
of the CCA. Both, the complete- and the available case analysis take advantage
exclusively of the observed data and their information. Hence, the scaling of the
variables doesn’t affect the process of analyzing or its technique, respectively.

The unconditional mean imputation, also known as zero order regression (ZOR)
and first introduced by Wilks (1932), is also a common approach to missing
values. Each missing value of a regressor is replaced by the sample mean of
the observed values of the regressor computed from the complete cases (see e. g.
Rao and Toutenburg (1999, ch. 8)). Its usage however strictly regarded requires
an adaption to the non-continuous scaling. Except for treating ordinally scaled
variables as continuous the median has to be imputed for ordinally scaled data
and the mode for nominally scaled data instead of the mean.

Because of rather secondary attention this short illustration should be sufficient,
for more information about this topic see e.g. Rao and Toutenburg (1999, ch. 8).

3 Methods based on the conditional mean im-
putation

The conditional mean imputation is also known as first order regression (FOR)
or Buck’s method (see (Buck, 1960)). An auxiliary regression based on the com-
plete cases of the incompletely observed variable incorporates the structure of
the design matrix X. All complete independent variables are the independent
part of the regression, the incompletely observed variable is the new response
vector. Toutenburg, Srivastava and Fieger (1996) extended the FOR by in-
cluding the completely observed response vector as an additional independent
variable in the auxiliary regression. This method is also known as modified
first order regression (mFOR). In general, the auxiliary regression is formulated
according to

K
zij = Ooj + Z Tipbpj +uwig , g P (3.1)
w=1,u#j



where z;; is the missing value and ® the index set of the missing values. There-
fore z;; can be replaced by #;; with i € ® and

K
'%ij = 00]’ + Z :v,-,ﬂm + U5 R i ¢ P . (32)
w=1,u#j

The assumption of having a binary z;; however prevents the modelling of the
auxiliary regression (3.1) using the classical linear regression because of its re-
quirement of a continuous response variable. Thus we have to turn to the theory
of the generalized linear models (GLM), in particular the modelling of the lo-
gistic regression. As described in Fahrmeir, Hamerle and Tutz (1996, p. 248),
its main tool can be written as
exp(1)

Py=1l|z)=—"—""F"==m 3.3
where n = Bo + bizi1 + ... + Brx—17i; k—1- Based on the so-called logit-link
(3.3), several imputation methods can be built.

3.1 Pi imputation

The idea of a probability-imputation is realized in the hence called pi impu-
tation. As within the classical prediction (see e.g. Toutenburg (1992, p. 158))
the estimate of § - here based on the complete case model - is used to get
substitutes for the missing values with help of the corresponding values of the
complete variables. Therefore simply the probability is imputed for a 0/1-value.
This corresponds to P(y = 1 | #;) in (3.3), the probability that the missing value
is ‘1’ given the values of the complete variables for case [ and has to be com-
puted for all casesl =n —m + 1,...,n where we have missing values. There’s
no restriction for the complete variables concerning their scaling.

Example Let us assume a simple regression model where the continuous re-
sponse is the income of an individual. In addition to the incomplete binary
variable ‘gender’ (‘0° = male, ‘1’ = female) the model contains further K — 1
independent variables of any quantity and scaling. The response vector of the
auxiliary regression then is equal to the n — m observed cases of the variable
‘gender’. All completely observed independent variables (using also the com-
plete response vector leads to the estimate of the mFOR) are used to run the
logistic regression and to compute the estimate ﬁ for the unknown parameter
B. The probability

Plxik—1 =1|x ko =TT k3 =7,..., 01 =7,&10=1)

Ty.

withl=n—m+1,...,n,r € IR and the assumption of X as a constant vector
of ones and X 1 as the incomplete binary variable, is computed with the help
of (3.3) leading to

exp(fo + iy + .-+ Br o ko)
1 +exp(Bo + Brzi + .- + Br—2%1,K2)

™ = P(xl,K—l =1 | :Ul.) = . (34)



The probability 7; in (3.4) has to be calculated for every case of Xy _; which
has missing values. In practice, e.g. 7 = 0.47 then reflects a probability of 47%
that the individual who did not state its gender in this survey was female given
its remaining data based on the individuals who answered each question. Thus
we get m probabilities m; which commonly are different.

3.2 Single imputation

The conditional probability m; in (3.4) enables two more imputation methods.
In this paragraph we will consider the so-called single imputation. Based on
these probabilities the conditional distribution of the incomplete variable given
the complete variables has to be estimated line-by-line, for each interviewed
individual in terms of our example, respectively. From these distributions a
random draw for each missing value has to be made. The conditional distribu-
tion is simply a binomial distribution with probability 7;. It may also be easy to
manage the random draw in practice, e.g. in a simulation experiment. For every
individual who refused the answer we have to draw a pseudorandom number ¢,
out of a continuous uniform distribution within [0;1]. All missing values having
t; < m; are substituted by ‘1’, i.e. these individuals are ‘supposed to be’ female.
When for example ¢,, = 0.61 and 7, = 0.33, the n-th interviewed person (who
did not state its gender) now is assumed to be male.

3.3 Multiple imputation

All approaches imputing each missing value once imply an important defect.
Neither the uncertainty of the imputed value nor the possible incorrectness of
the specified model are taken into account. The multiple imputation tries to
cope with this essential structural nuisance. This is managed by M imputations
instead of one for each missing value. Thus we have M completed data sets and
also M (mostly) different estimates for the unknown parameter 8. Rubin (1996,
p. 480) has shown that multiple imputation already brings useful results for less
than five imputations.

In order to get the final estimate of the multiple imputation the average of the M
parameter vectors has to be computed. A little more effort is needed computing
the variance of the multiple imputation which consists of two components (see
Little and Rubin (1987, p. 257)). Apart from the variance within the estimation
which emerges during a simulation experiment between its replications also the
variance between the estimations has to be computed. The variance between the
estimations results out of the M different parameter estimates and is expected
to reflect the uncertainty about the in practice unknown value. Combining
these two variances results in the variance of the multiple imputation. In some
simulation experiments the variance of the multiple imputation was realized
as higher as these from the alternative methods (see especially Rubin (1996)).
Within this context it may be noted that the realization of this algorithm doesn’t
require much effort when the procedure of the single imputation already has
been performed. It is only required to run the single imputation M -times and
to compute averages and averaged variances of the M resulting estimates.



3.4 Extension to multi-categorical scaling

The paragraph about the unconditional mean imputation already included ex-
tensions to nominally and ordinally scaled variables with more than two cate-
gories by suggesting mode and median as suitable parameters. Methods based
on the auxiliary regression within a first order regression such as pi imputation,
single imputation and multiple imputation can’t be extended in such a simple
way to the case of multi-categorical scaled variables. Difficulties are coming
within the FOR because of the application of the multi-categorical logit link
for nominally scaled variables and the so-called cumulative model for ordinal
structure (see e.g. Fahrmeir et al. (1996, p. 262ff.)). Because we focus on an in-
complete binary variable this short clue should be sufficient and in the following
the simulation experiment is reviewed.

4 A simulation experiment

4.1 Introduction

This simulation experiment was realized using C++ programming language and
Sun Solaris, CDE version 1.2. The main advantage of this language is the reuse
of existing classes and their documentations which were produced within this
institute (Statistical Institute of the Ludwig-Maximilians-University, Munich).
These classes simplified the programming enormously. For more information
about contents and specific tools see Fieger, Heumann, Kastner and Watzka
(1997).

Two different models were simulated and discussed. The first model consists of
three covariables - one constant, two binary variables (one of them incomplete)
- and was considered for three percentages of missing values (10%, 30%, 50%).
Besides the three variables of the first model the second model contains another
covariable which is continuous, however. The second model was considered
for the two percentages 10% and 30%. In both models the data were missing
completely at random (MCAR, see Rubin (1987)). Because of similar results,
or to be more exactly, because of no new perceptions the review is restricted to
the first model.

The following settings were chosen:

sample size n = 30

[l =100 loops

multiple imputations M =3

X; and X, according to B(30, 0.6)

missing percentages mp € {0.1,0.3,0.5}

correlation between X; and X, according to p € {0.0,0.3,0.6,0.9}

For creating the data we first chose a fixed parameter vector  containing only
ones. The design matrix X resulted from standard normally distributed pseu-
dorandom numbers which were grouped in order to get binomial distributed
numbers according to B(30, 0.6). The correlation structure was involved by
the coefficient of Bravais-Pearson within the normal distribution (an existing



function described in Fieger (1997) was used to manage this). A comparison
of these fixed coefficients with the coefficients for the nominally scaled data
showed just slight differences. After the creation of the error vector e the re-
sponse vector y could be computed by y = X3 + €. The [ = 100 loops were 100
creations of € (given X and ) and therefore of new response vectors. Based on
this ‘true’ model we discarded some cases according to the missing percentage
and the MCAR-assumption. So we had the complete case model and a model
with missing values which enabled us to develop the imputation methods. All
approaches were analyzed by existing functions within the classes for the linear
regression model.

Different settings (e.g. missing percentage) didn’t influence the time of about
ten minutes which took an experiment to run.

Apart from the ‘true’ data set (TR) with the original values complete case
analysis, zero order regression (Z), categorical zero order regression (imputation
of the mode, ¢Z), pi imputation (PI), single imputation (SI), multiple imputation
(MI) and a single imputation based on a modified first order regression (mF)
were considered. Because of the nonexistence of passing trends the illustration
is confined to unique contexts. Base for the illustration are the adjusted R2, the
MSE-ratio!, variance and bias. The bias (difference between the fixed parameter
and the estimate of the considered method) was the computed average of the [
replications, the variance was the variance between the [ different estimates for
each method (except for the multiple imputation where we also had the second
component).

4.2 The adjusted R squared

Except the steady maximum of the modified first order regression no specific
properties could be noticed. However, the maximum of the mFOR mustn’t
esteemed as astonishing because of the additional usage of the response vector
y for the auxiliary regression which leads to an increase of the variance.

4.3 The MSE-Ratio

The following diagrams illustrate the MSE-ratios of all considered imputation
methods for each percentage of missing values and each correlation structure.
The x-coordinate displays the correlation, the ordinate the MSE-ratio. As easily
can be seen (and was also seen during the analysis of the second model) the
pi imputation is the only procedure which always has a minor MSE than the
common complete case analysis. Therefore the pi imputation is the only method
which presents a uniform attribute irrespective to correlation and percentage of
missing values.

Iratio between the mean square error of the complete case analysis and the mean square
error of the alternative method
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Figure 4.1: MSE-ratios of all imputation methods for a missing-percentages of
10%.
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Figure 4.2: MSE-ratios of all imputation methods for a missing-percentage of
30%.
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Figure 4.3: MSE-ratios of all imputation methods for a missing-percentage of
50%.

These results should be handled carefully, however. First of all, variance and
bias have to be considered separately with respect to fluctuations which could
explain apparent differences between the ratios. For example large variances
of the complete case analysis could lead to MSE-superiorities of alternative
methods which have smaller variances and relatively small biases. Secondly,
model specific properties have to be taken into account when trying to dis-
cuss the results, e.g. an underestimation of the variance resulting from a zero
order regression. Rather weaker trends could be seen from the 3-dimensional
graphics. These diagrams show the evolution of the mean square error ratios
(z-coordinate) in subject to correlation (x-coordinate) and percentage of missing
values (y-coordinate).

Figure 4.4: MSE-ratios of multiple imputation (left graphic) and ZOR (right
graphic)



Figure 4.5: MSE-ratios of the mFOR

The multiple imputation always decreases its MSE within severe correlation. If
the mean is imputed (zero order regression) an increase of the MSE-ratio can
be observed with increasing percentages of missing values. The modified first
order regression shows reverse trends, e.g. a ‘qualitative’ improvement during
the raise of the missing-percentage up to 30% is followed by a deterioration
during the raise up to 50%.

4.4 Variance

The modified first order regression shows maximal and categorical zero order
regression shows minimal variances within severe correlation (p = 0.9) irrespec-
tive to the percentage of missing values. Results of similar uniqueness could be
seen out of the situation for p = 0.0 where the true model had the smallest vari-
ance and again the modified first order regression had the maximum. Within
the recent correlation structure such unique properties weren’t found.

Probably the binary variables caused the relatively small variance of the multi-
ple imputation which was expected to be larger than those of the alternatives.
Therefore the usage of the single imputation instead of the multiple imputation
seems to be justified within this scope. To be more precise, the rarely small
differences between single and multiple imputation would recommend the use
of the single imputation because of its minor effort. Procedures based on the
unconditional mean imputation as the ZOR and the ¢ZOR confirm some un-
derestimation of the variance and therefore provide quantitative differences in
comparison with the recent methods.

Despite more or less individual deviations it can be stated that variances will
increase with an increasing percentage of missing values. This could be seen
in figure 4.6 through 4.9. Complete case analysis, zero order regression, pi
imputation and modified first order regression show this increase for the values
itself in contrast to the alternatives where this phenomenon was determined only
by analyzing the changes of maxima and minima. According to the previous



figures the correlation structure is situated on the x-coordinate, the missing-
percentage on the y-coordinate and the variance of the corresponding method
on the z-coordinate. Considering the bars parallelly to the y-coordinate verifies
the increasing variance for increasing percentages of missing values. The recent
methods differ just slightly from this trend. All methods have maximal variances
within severe correlation without respect to the missing percentage.
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4.5 Bias

Whereas the pi imputation has the smallest biases (apart from the unbiased
complete case analysis) and also shows least deviates in its values the modified
first order regression always overestimates more than the other methods. Single
imputation and multiple imputation underestimate irrespectively to the missing-

percentage. The degree of this underestimation generally is more severe for the
multiple imputation.
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5 Summary

The simulation experiment was realized especially for implementing different
methods based on the conditional mean imputation and for comparing their re-
sults for different settings. Thereby the four methods pi imputation, single im-
putation, multiple imputation and a single imputation based on a modified first
order regression were compared with standard methods (complete case analysis,
mean imputation and imputation of the mode) and last but not least with the
‘true’ data set. Beginning with the discussion of the MSE-ratios as a kind of base
for further analysis the pi imputation emerged as the only method representing
a steady trend across the different settings. This phenomenon was also observed
by analyzing the second model and therefore emphasized the unique position
of the pi imputation. Apart from individual local properties, an increase of the
variances with increasing percentages of missing values had been observed. A
general characteristic could be seen in the maximal variances within severe cor-
relation across all methods irrespective to the missing-percentage. Additional to
its unique trend by considering the MSE-ratios the pi imputation showed small-
est biases and is thus emphasizing its impact within this experiment. Though
small biases are one reason for small mean square errors, they could often be
considered exclusively because of their low influence to the MSE in comparison
to the values of the variance. Considering the bias, similar results were seen
between single and multiple imputation which consequently favorite the single
imputation because of its minor effort and the nonexistence of larger variances
of the multiple imputation which should reflect the uncertainty of the unknown
value and therefore improve estimates based on the single imputation.

Summarizing the simulation experiment it has to be mentioned that the different
imputation methods were implemented without much effort. Conclusions based
on the chosen settings and their results however were confined to individual
properties except the pi imputation.

A simulation experiment in general has to be considered as a kind of closed
system which always has to be discussed with regard to the assumptions and
conditions which had been made. The aim of a simulation study could more-
over not be the verification of a theoretical provable coherence. In fact it should
illustrate that theoretically complex methods can be implemented with rela-
tively small effort. Therefore miscellaneous situations could be simulated and
exemplarily discussed, sometimes in accordance with theoretical already known
properties.
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