LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

Marx:

On llI-Conditioned Generalized Estimating Equations
and Toward Unified Biased Estimation

Sonderforschungsbereich 386, Paper 182 (2000)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

On Ill-Conditioned Generalized Estimating Equations
and Toward Unified Biased Estimation

Brian D. Marx
Institiit fiir Statistik
Ludwig-Maximilians-Universitat Miinchen
Ludwigstafe 33/11
80539 Minchen, Germany

brian@stat.lsu.edu

Abstract: I address the issue of ill-conditioned regressors within generalized
estimating equations (GEEs). In such a setting, standard GEE approaches can
have problems with: convergence, large coefficient variances, poor prediction,
deflated power of tests, and in some extreme cases, e.g. functional regressors,
may not even exist. I modify the quasi-likelihood score functions, while pre-
senting a variety of biased estimators that simultaneously address the issues
of (severe) ill-conditioning and correlated response variables. To simplify the
presentation, I attempt to unite or link these estimators as much as possible.
Some properties, as well as some guidelines for choosing the meta or penalty
parameters are suggested.

Keywords: Longitudinal data, partial least squares, principal components,
quasi-likelihood, repeated measures, signal regression.

1 Introduction

It is clear that generalized linear models (GLM) (NELDER and WEDDERBURN, 1972) have
become a well established tool for a variety of applications. Much statistical research has
firmly reversed the notion of bending the data to fit the linear model to an outlook of
providing extremely flexible models to accommodate the data at hand. DoBsSON (1990) is
an excellent introduction for readers who are unfamiliar with the GLM, and McCULLAGH
and NELDER (1989) is a classic reference. Naturally the modeling arena has now been
broadened even further in many directions, one with the pioneering work in generalized
estimating equations (GEE) by L1IANG and ZEGER (1986).

GEEs consider the multivariate setting generated from correlated or clustered response
variables that can arise either from longitudinal studies or by sampling within several clus-
ters of units. In the former, responses are often repeated measures over time on units,
whereas the latter may represent sampling within various clusters, e.g. telephone area
codes, families, or tree stands. Of course even more complex situations can be imagined:
for example units may be given a variety of (correlated) questions that represent different
response variables, where regressor coefficients are expected to have differing magnitude
for different questions. In the spirit of the GLM, non-normal response variables are allowed



such as: binomial successes, Poisson counts, Gamma realizations, or any response that is
a member of exponential family of distributions. Regressors are available and adjustments
are made for GLM parameter estimation through a modified score function (generalized
estimating equations) to account for the presence of correlation. Unlike the GLM, full
likelihood parameter estimation is not usually feasible. GEEs utilize quasi-likelihood that
depends on only the mean and covariance structure of the response variable (WEDDER-
BURN, 1974). A nice introduction to correlated data for logit models is FAHRMEIR and
TuTz (1994). An important reference for longitudinal data analysis and GEEs is DIGGLE,
LIANG, and ZEGER (1995).

In view of these extensions, there also has been an increased awareness and under-
standing of how collinear data problems extend from standard regression particularly into
the GLM through an ill-conditioned Fisher information matrix (see MACKINNON and
PUTERMAN, 1992). LESAFFRE and MARX (1993) identified further problematic sources in
GLM estimation, namely ML-collinearity: data patterns that force maximum likelihood
(ML) parameter estimates to the boundary of the parameter space via a deficient rank
GLM weight matrix. This latter type of collinearity is related to quasi-complete sepa-
ration in logistic regression (ALBERT and ANDERSON, 1984). CLARKSON and JENNRICH
(1991) further considered extended ML estimation in the GLM setting when some param-
eter estimates are infinite (at the boundary). Despite the popularity of ML parameter
estimation in the GLM, ill-conditioned information can be responsible for lack of con-
vergence, large estimated coefficient variances, poor prediction in certain regions, as well
as deflating power for hypotheses concerning model assessment. As in standard multiple
regression applications, the effects of ill-conditioning in training data can be nontrivial
and approaches are needed for reducing the effects of these dependencies.

Producing partial models through variable subset selection (VSS) is a popular ap-
proach, but as in the standard multiple regression model tends to work best in situations
characterized by true coefficient vectors with components consisting of very few (rela-
tively) large (absolute) values (see FRANK and FRIEDMAN, 1993). Further, one should
perhaps consider the research efforts extending biased estimation to the GLM framework
to alleviate consequences caused by collinear data. Alternatives to VSS in GLMs have
surfaced in the literature, for example: the bridge (Fu, 1998), the lasso (TIBSHIRANI,
1996), iteratively reweighted partial least squares (MARX, 1996), the garrote (BREIMAN,
1995), ridge (LE CESSIE and VAN HOUWELINGEN, 1992), principal component (MARX and
SMITH, 1990), among other penalized likelihood approaches. It is true that different biased
techniques lead to different parameter estimation. However many of them try to achieve
the same goal: to bias the solution coefficient vector away from directions for which the
projected sample weighted predictor variables have small variance.

Little or no work has been done to my knowledge focusing on the detrimental fea-
tures of a (nearly) singular working Fisher information matrix and alternative estimation
within the GEE framework. In addition to addressing this issue, I aim to show that many
asymptotically biased estimators are members of a broader class of shrinkage estimators
for the GLM, and these can be transplanted into the GEE framework. 1 divide these
alternative estimators into two main groups: generalized fractional principal component
estimators (GFPCE) and penalized quasi-likelihood estimators (PQLE). GFPC estima-
tion is accomplished by taking a general weighting of the principal component variables,
whereas PQL estimation in many cases broadens ridge type estimation with a variety of
clever penalizations. I link these two groups together. Estimation unification is not a new



idea, e.g. see HOCKING, SPEED and LYNN (1976), LEE and BIRCH (1988), STONE and
BROOKS (1990), and FRANK and FRIEDMAN (1993). Section 2 gives a brief overview of
the GEE, as well as notational details. Some specifics of quasi-likelihood are provided
in Section 3. In Section 4, a GEE template is presented for biased estimation. Section
5 provides some common GFPC estimation techniques extended from the GLM into the
GEE framework. Some PQL estimators are given in Section 6. An iteratively reweighted
partial least squares estimation algorithm is suggested in Section 7. Lastly, some sugges-
tions for GEE estimation are proposed for functional or other extremely high dimensional
regressors.

2 Marginal Models: Background and Notation

Marginal models are used in situations where the primary research interest is to analyze the
marginal mean of the response given the explanatory variables. The association between
the responses is often of secondary interest or even perhaps a nuisance. Consider m;
repeated measures on unit %, 1 = 1,---,n. To simplify further presentation, the reader is
free to alternatively imagine m,; samples from cluster i. Let y; = (yi1,---,¥im,;)’ be the
vector of (exponential family) responses and X; = (21, -, Zim,;) be the corresponding
m; X (p + 1) matrix of regressors (including an intercept term). These regressors can
either vary (e.g. age) or remain constant (e.g. ethnicity) within units in such studies. The
specifications for marginal models in a non-normal setting are presented in FAHRMEIR and
Tutz (1994, Section 3.5.2) and can be outlined as:

1. The marginal means
pij = E(yijlois) = hniz), (1)
where h(-) is the (monotone and twice differentiable) inverse link function, n;; = z;;3

and S is the unknown coefficient vector. Some care should be taken in defining both
zi; and (3 in (1):

(a) The coefficients may truly be population averaged in the sense that they are
common across units (samples) and time (cluster) yielding u = h(X ), where
X is the N x (p+ 1) matrix (N =37 ;m;) and Sis (p+1) x 1;

(b) The assumption that the coefficients are homogeneous across units (samples)
and time (cluster) can be relaxed. Unit-specific parameters can be proposed
when the number of repeated measures for each unit is large enough. In such a
setting define 8* = (51, -+, A,)" of dimension n(p+1) x 1 (each §; of dimension
(p+1)x1). The design matrix X* (of dimension N x n(p+1)) is block diagonal
where the n blocks are of dimension m; x (p+1),i=1,---,n;

(c) Similar to (b) above, when the number of subjects is large enough and m; =
m for all units, then time-specific parameters can be proposed. Now [** =
(B, -, 0L,) of dimension m(p+1) x 1 and the design matrix X** (of dimension
N xm(p+1)) is block diagonal where the m blocks are of dimension n x (p+1).

I mainly consider case (a) in this article. Case (b) can arise in subject-specific
modeling. Case (c) might occur for example when units are asked a few (correlated)
questions and thus the explanatory variables may have differing significance across
questions.



2. The marginal variance is function of j;;
var(yijlaig) = 0% (i) = ¢po(pig) /wis, (2)

where ¢ and v(p;) represents the scale parameter and variance function, respectively,
determined by the specific exponential family member. The weights, w;;, can be
depend on data grouping or be assigned to zero for missing values.

3. To account for within unit dependence, the covariance between y;; and y;; is a
function of the marginal means and possibly an additional association parameters
0. For a known function (,

cov (yij, yirj) = (g, parjr,0)  for i =4, (3)

and uncorrelated for ¢ # 4'. Thus for unit 7, a m; X m; working covariance matrix
is defined cov(y;) = X;(5,60). As we will see in the next section, it is convenient to
express X (m; X mz) in terms of the correlation matrix R, i.e. 3; = AI/ZR(G)AZV2
with A; = diag(o3}, -+,07,.). Several choices of R are provided in LIANG and
ZEGER (1986): uncorrelated repeated observations (independence), fully unspecified,
exchangable, or auto-regressive. The choice can be based on both simplicity and

efficiency.

3 Score Functions and Quasi-likelihood

Analogous to quasi-likelihood (WEDDERBURN, 1974), the generalized estimating equations
for B can be expressed (for fixed )

ZXD H(B.0)(yi — h(mi)).- (4)

The matrices X; and D; = diag(h'(n;;)) are of dimension m; x (p + 1) and m; x m,,
respectively. In general, some alternating estimation between (6, ¢) and [ iterations is
needed in (4). Typically (0, ¢) are estimated by either method of moments (LIANG and
ZEGER, 1986) or, in some special logit models, by a second GEE (LIANG, ZEGER, and
QAQIsH, 1992). Given current estimates, say (0, ¢), (4) is set to zero and solved by

Bl = ) 4 (ﬁ(t))—lg(t), (5)
where the estimated working Fisher matrix is defined as,

ZXD 1(BY,0,9)Di(BY) X, (6)

and 30 = 5(3®, 4, ¢).

Under regularity conditions and with 0 fixed, (5) produces consistent estimates of 3,
and asymptotically 8 ~ N(B, F~'V F~!) for any of the mentioned choices of R(6). The
matrices

n
F =Y X{Di¥'DiX; = X'QX,
1=1



Vo= 3", XID;Y eov(yi) 2 D X, © = block diagonal(§;), and Q; = D;¥;'D;. In
practice, consistent estimation for 3 is achieved by using V for V: substituting converged
£ into D;, (0, ¢) into ¥4, and using (y; — (7)) (yi — h(7)) for cov(y;). Thus the estimated
covariance matrix, often referred to as the sandwich matriz, is

n
H=F"Y" X[D;S7 (yi — b)) (yi — h(1))'S7 D X F (7)
i=1
which is useful for constructing confidence intervals and Wald-statistics for 8. If the work-
ing covariance structure is correctly specified, then estimation is asymptotically efficient.
It can be useful to re-express (5) as

B(t+1) _ (F(t))leIQ(t)g*(t)’ (8)
where y* =1+ D '(y — h(n)) is the adjusted dependent vector and D = diag(D;).

It should be pointed out that in the case of the independence working model (R(6) =
I), the working covariance does not have an association parameter 6 and is of the form
Y;(8) = D; for the canonical link function. The GEE equations have the GLM score form
as if the observations were independent. Despite some loss of efficiency, MCDONALD (1993)
recommends an independence working structure (in the logit model) whenever correlation
is regarded as a nuisance.

4 A Unifying GEE Template

For the developments to follow, it will be useful to work with the principal components for
each observation, Z, where the ((7,7), k)th element of Z is the score of the kth principal
component for the (i,7)th observation. Define the principal components Z = X_1 M,
where X_; is the N x p matrix of regressors (case a), and M is the p x p matrix whose
kth column is the kth eigenvector of the information matrix F_; constructed without the
intercept, kK = 1,---,p. Hence M is an orthogonal matrix and M'F_; M = diag(\x) = A,
where )\, are the corresponding eigenvalues of F' ;. In light of this decomposition, it is
clear that near-singular F can have a dramatic impact on the stability, and even existence,
of the sandwich covariance matrix of 3 in (7), as well as the iterative algorithm in (8).
MARX and SMITH (1990) presented details of some consequences.

There is great controversy regarding standardization of the regressors; it is not my ob-
jective to solve these disputes. For the methods to follow, similar derivations can be made
for alternatives such as: standardization of F' (BELSLEY, 1991), quasi-standardizations
(MARX, 1992), or lack of standardization when the explanatory variables have the same
units. In any case, solutions can be transformed back into the natural metric.

I recommend to standardize such that estimation of the intercept coefficient is un-
correlated with estimation of the other coefficients. In general this can be achieved by
centering and scaling X_; (without intercept) using a weighted mean and weighted sum
of squares, respectively. The N = }"i" | m,; vector of weights can be computed (iteratively)
by defining the (ith, jth) weight as the jth column total 7;; of ;. With such a choice the
intercept term is trivially the weighted mean of the adjusted dependent variable y*.

I rewrite the linear predictor as

nij = Bo + zi;, 9)



where z is the row of Z corresponding to the (ith, jth) observation, « = M'f3, and S
is the 1ntercept term. Equation (1) provides estimation for the orthogonally transformed
full principal component model.

However, to introduce a class of estimators, we generalize the model further through
a matrix I'. Let

j - ,80 + Z,Z]FOZ
= /80 + zgja*’ (10)

where a* = ['a. The matrix I' = diag(y) is a diagonal weight matrix with 7, usually
contained in the closed unit interval.

For given T', generalized estimating strategies may be applied to estimate a* in (10).
One potentially expensive candidate iterative scheme can be defined as

1) = B((]t)lN+Z(t)d*(t) + ZOT A1 Zz@&' ) ) g*()
) i+(0)

= "1y + ZOTA1O ZO' QW PO GO (11)

where é* = y — h(7*) and the entries of the adjusted dependent variable are g* = 7* +
diag(h/(7%))~'e*.

Equation (11) is particularly taxing because new eigen-decomposition is required at
each iteration through A and Z = X_; M. Some relief is possible if the converged GEE
estimated parameter estimates and working Fisher information matrix both exist from (5)
and (6) respectively. Define the matrices M and A to be the respective eigenvector matrix
and diagonal matrix of eigenvalues of the converged F' = X' IQX_l. The intercept By
is the weighted (7;;) mean of the converged adjusted dependent variable §*. Whenever
possible I recommend substitution of By, Z, A, 2, and D into (11):

7Y = Boiy + Zar®) + ZLA Z'QDe®

= Boly + ZIA' Z'QDj®), (12)
In (12) only &*, €* and §* are iterated. As (12) also shows, the weight matrix I is not
always known in practice. We will see that it too can be useful to use I' with converged
GEE estimators.

Justification of (12) is based on variance arguments of 7 showing that GEEs produce
relatively stable estimates at the original data point locations, even in the presence of
ill-conditioned information. As a demonstration, consider var(7);;) when I' = I,, (identity).
Apart from the intercept term, var(7;;) o Zgzl z?jkmkmj,c)\lzl. However, by nature of
principal components, small A; cannot generally co-exist with large entries in the kth
column of Z, z.

A conversion can be made to the X metric using
B=Ma*, (13)

with var(3) = M'CMHMTM'. If T is chosen a priori, then § is also approximately
normally distributed. Standard approaches can be taken to uncenter and unscale the
regression coefficients to their natural units.



A simple and useful approximation to the above iterative approach is to directly shrink
the converged GEE estimate of a, i.e. @ = M’'3. However GEE convergence must be met.
A one-step estimator for a can be constructed as

a* =Ta. (14)

See SCHAEFER (1986). Thus b = MTL'é is the one-step estimate of 8. The essential
difference between @* in (14) and &* in (11) is the residual in the adjusted dependent
variable. In fact, the two estimators are identical except that a* utilizes the residual é;,
whereas &* uses €.

5 Some Generalized Fractional PC Estimators

5.1 GEE Estimation

When T = I, we have n* =1, 8 = M&* = b=/ as in (5).

5.2 Fractional Estimation

One of several strategies to reduce the effects of ill-conditioned information is to delete, in
sequence, terms in the sum corresponding to the r = p — s smallest \; (or ¢-like statistics,

o?kj\,;l/Q). Hence 7 is of the form given in (10) with,
I,_100
= 0 po|. (15)
0 00,

The quantity 0 < p < 1 is the fraction of the sth principal component used in parameter
estimation, commonly p = 1.

Hence a principal component parameter estimate based on s (= 1) components can be
expressed as ¢ = MaE¢. The asymptotic reduction in variance is given as,

var(BP¢) = F=} — M\, ' M,

which can be substantial with the deletion of components associated with small eigenval-
ues. The asymptotic bias can further be quantified as

E(ch) =B — Myay.
We have an approximate result that

BP¢ ~ N(Msag, MyAT M.

Alternatively selection of s can be based on cross-validation, some estimation criterion,
e.g.

s* = argminge, <, [r{MSE(32)} — tr{MSE(3)}] , (16)
or some prediction criterion, e.g.
™ = arg ming ., {MSE(c' %) — MSE(c'B)}, (17)

for all nonnull ¢ of proper dimension. Calculations of (16) and (17) would involve the
sandwich matrix H presented in (7).



5.3 Stein Estimation

The biased technique based on STEIN (1960) can be used within GEE by scaling parameter
estimates B by a constant 0 < vy < 1. This in effect shrinks its inflated norm caused by ill-
conditioning. The constant v can be chosen by a variety of methods, but popular choices
minimize a version of the asymptotic MSE. One choice could be

Yo = arg OrsrgglE(vﬁ —B) (8- B), (18)

with the solution

. &G
'Y = dia . ) 19
v (d’d . Aﬁ) 1

Alternatively a choice based on

J— 3 2 P I Q P
71 = arg min E(yB—B)H(B - B) (20)
produces the solution
. VANV =M Aa
P = ding [ —CAMVZ MAG ) (21)
& AMV-1M'Aé& + p

5.4 Sclove Estimation

SCLOVE (1968) proposed improved estimators for coefficients in linear regression. These
developments are particularly useful when explanatory variables are ordered, as in prin-
cipal component regression, hence aligned with the framework of this section. Sclove
suggested only shrinking a subset of the components. The analogue of this concept in the

GEE context results in
rse — (IOS 7(} ) , (22)
T

where 0 < v < 1. Note when v = 0, the Sclove estimator reduces to a principal component
estimator (p = 1). Sections 5.2 and 5.3 provide some guidelines for choosing s and ~.

6 Penalized Quasi-likelihood Approaches

Consider modifying (4) such that penalized quasi-likelihood estimators can be generally
expressed as
oP(p)

8/8 }7

where Z{-} is the zero solution, P(3) is a penalty function for the coefficient vector and
K is the non-negative regularization parameter. Below some penalized likelihood GLM
estimators are extended to the GEE framework through PQL.

PR = Z4{s(B,0) — K



6.1 Penalizing Adjacent Coefficients

There exist experimental situations when the set of regressors have some ordering, and
it is reasonable to assume that adjacent coefficients cannot differ too much from each
other. EILERS and MARX (1996) imposed a penalization scheme to B-spline coefficients
in a variety of smoothing applications using penalized likelihood (P-splines). Such notions
of penalized estimation can be extended into the GEE setting. The penalty matrix is
constructed using the dth order difference operator A%, d = 0,1,---,p — 1 (WHITTAKER,
1923). Define

AY(Br) = Bk — Br1
A?(Br) = AYAM(Br)) = Be — 2Bk—1 + Br_2, (23)

for k =d+1,---,p. Higher order differences can be found by induction and in general can
be expressed as P¢f3, where P? is the (p — d) x p banded matrix constructed by taking d
row differences of I,. Estimation involves penalizing the score in (4) for fixed (0, ¢),

BP = Z5{s(5.6) - P P'5}, (24)
where x > 0. The PQL-solution results in modifying (8) as
BD(H—I) _ (F(t) + HPd’Pd)—lX/Q(t)g*(t)_ (25)

Upon convergence, the covariance matrix simplifies: CGV(BD) = (F + ﬁPled)_lf/(F +
/@Pd'Pd)*l. If needed, the intercept term can be left unpenalized by augmenting a column
0p—q to P d

Linking (25) back to (12) would require a non-diagonal I" matrix. The corresponding
GFPC estimator could use

00 = (A + sM'PY PN 1A, (26)

when the regressors are consistently centered and scaled. Note that (26) penalizes differ-
ences of adjacent B, not the . The penalized solution is given upon convergence as
Bb = maP.

The above result routinely allows smoothing in GEEs using penalized B-splines (regres-
sion splines). Further this smoothing approach is closely related to the Demmler-Reinsch
basis (DEMMLER and REINSCH, 1975), which would orthogonally rotate a B-spline basis,
B(= X_1) using a spectral decomposition of F_I/QPdIPdF_I/Q, rather than F. Such
smooth bases do not need to be centered and scaled, and moreover have a span which
includes the intercept hence [y can be set to zero.

6.2 Ridge Component Estimation

Ridge regression for the GLM (LE CESSIE and VAN HOUWELINGEN, 1992 and MARX, EIL-
ERS and SMITH, 1992) was introduced into the statistical literature as a restricted or pe-
nalized ML estimate for stabilizing regression coefficients in the presence of ill-conditioned
information. The penalty is function with the penalty proportional to the square norm
of B, ||8]|> < k. Notice that when d = 0 in the above section, we have P equal to the
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identity matrix of dimension p, and the difference operator reduces to exactly the ridge
regression solution for the GEE.

There is a vast literature on techniques for choosing the nonnegative ridge regulariza-
tion parameter. One choice could be to minimize the error of prediction through cross-
validation (CV). Le Cessie and van Houwelingen considered a variety of prediction error
criteria useful for logistic regression. Marx, Eilers and Smith considered extensions of the
ridge C), statistic.

NyYQuIST (1991) demonstrated that the above ridge estimator (in the GLM) is a special
case of equality constraint estimation of the form M’S = «, where ay, 7id (0, x?). Some care
has to be taken when considering a Bayesian connection. Although it may be tempting
to, for example, take a Normal prior on 8 ~ N(0,Q) (which specializes to a penalized
likelihood), the full likelihood often does not exist. For that matter the quasi-likelihood
does not always exist.

6.3 Regression Shrinkage via the Lasso, Garrote, and Bridge

Other more nonlinear shrinkage estimators exist, one being the lasso technique proposed
by TIBSHIRANI (1996). The idea is similar to ridge estimation except we now solve

Bt = Zs{s(B,0 —ﬁZIﬁkl} (27)

One beauty of this technique is that is combines desirable features from both variable
subset selection and ridge estimation, in that it shrinks some estimated coeflicients and sets
others to zero. For standard multiple regression, Tibshirani presented a lasso algorithm
that utilizes the least squares problem with 2P inequality constraints, and showed it must
converge in a finite number of steps. Extensions and applications to generalized estimating
equations appear promising, but more work needs to be done in this area. Tibshirani also
proposed solving the constrained problem by iterative application of the lasso algorithm,
within the method of scoring algorithm. Convergence is not guaranteed, but can be well
behaved in logistic regression. Fu (1998) proposed another nonlinear bridge estimator,
which is a competitor to the lasso.

The motivation for the lasso comes from non-negative garrote estimation (BREIMAN,
1995). An extension of Breiman’s work into the GEE setting would now involve solving
for

P
BY = Zg{s(cB,0)} subject to ¢ > 0, Z ¢k < K, (28)
k=1
where c is a p vector of non-negative constants. However this generalized garrote estimator
is likely to suffer when the F' matrix is severely ill-conditioned since it would depend on
both the signs and magnitudes of the GEE solution.

7 GEE (Iteratively Reweighted) Partial Least Squares

Related to principle component estimation, partial least squares (PLS) (WoLb, 1975)
produces a sequence of models {HEL5}, where R = rank(F). Applications of PLS often
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arise with high dimensional regression, e.g. p > N. Sometimes PLS is used with functional
regressors, such as spectra, time series, but it should be pointed out that PLS does not
use any of the ordering information among these regressors. In the next section below, I
will propose an additional approach for functional regressors in the GEE setting.

A key feature of partial least squares estimation, unlike principle components, is that
a latent regressor variable is constructed using response variable information. Given a
latent regressor, it is then removed from the remainder of the regressor space. MARX
(1996) presented the algorithmic details and properties for iterative reweighted partial
least squares estimation (IRPLS) in the GLM setting. (IR)PLS estimation only needs
two iterated matrix multiplications for each desired rank estimate, and moment matrix
calculations are not needed. These features can be a strength in prohibitive situations
involving a large matrix inversion or diagonalization. We will see that IRPLS can be
further transplanted into the GEE setting, while iterating: the weight matrix (€2), the
adjusted dependent variable, and all R latent variables (until specified convergence).

The regressor subspace is carved out into R orthogonal components, in a weighted
metric, i.e. the latent variables. The following two decompositions, of the data matrix
and adjusted dependent variable, are carried out together,

K
Ey=X_1=) tw,+Ex (29)
k=1
K
fo= 0= ate + fx, (30)
k=1

where the t; are N-vector latent variables, p; are K-vector loadings, Fx is a residual
matrix. When K = R, we have Er = 0. The ¢; are scalar coefficients, and fx is a
N-vector of residuals. The uniqueness of the t;’s and pi’s come from imposing conditions
of orthogonality.

I next provide one form of the IRPLS algorithm for GEEs. The algorithm is presented
in five parts:

I. Line 1 of the algorithm below provides one suggestion for the initializations of the
algorithm. It should be clear that Ey is the X_; matrix (e.g. spectra) which is
autoscaled, and that fo is the usual adjusted dependent variable, which must be
iterated. The initial values for this adjusted dependent variable are usually based
on a suitably transformed version of the observed y, denoted as 1 (y). However care
must be taken to avoid infinite values of the transformed version. For example,
Yp(y) = In(y + 0.5) and ¥p(y) = (y + 0.5)/2 work well for Poisson and Bernoulli
responses, respectively;

II. Lines 2(a)-2(b) of the algorithm below iterate and construct the latent variables;

ITI. The ingredients for the GEE scoring portion of the algorithm are given in lines 2(c),
2(e)-2(g);

IV. Line 2(d) updates the association parameter for the working covariance matrix;

V. Once the estimated latent variables are constructed and converged, final estimates
of LS and AP (s < R) are given in lines 3-4 below.
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GEE IRPLS Algorithm

1. Initialize Eo « X_ ; fo — P(y) ; IR h(¥(y)); < 6(A) e.g., method of moments;
Q) « block diag{D; (172])2 (n,],G)D (Mi5)}; 7= column totals of Q

2. Tterate until A7 small

(a) For k=1to R

iy — B Qfy fsart(fr QB EL V) #(unit length) orthog loadings
ii. & < Ep_1wyp  #latent variables such that Q'/2¢, orthogonal

iii. #j, < scale{ f, center = wt.mean({;,, wt = 7), scale = SS(3)}

iv. G < coefficient of gls fit( fe_1 on #x, wt matrix = €, no intercept)

Vo fr e fro1 — frd A

vi. Py, = coefficients gls fit( Ej_1 on fj, wt matrix = Q, no intercept)

vii. Ej, < residuals gls fit( By, on ty, wt matrix = Q, no intercept)

(b) end For

(¢) 7 + wt.mean(fo, wt =7) +Zk L ktr

(d) 0 « 6(), e.g., method of moments

() €« block diag{D;(1i;)X;" (7is, ) Di(is) }

(f) 7  column totals of )

(&) fo+ i+ D )y — h(i)

(h) Eg « scale { X, center = wt.mean(X, wt = 7), scale = SS(X) }

3. Choose s 3 ||for1|| small, s < R

4. BFPLS « W (W!X' QX W,) *W!X' Qfy and
APLS « wt.mean(fo, wt =7) +X_18FLS « wt.mean(fo, wt = 7) + Sor_y it
where Ws = {wy, -, Ws}

The generalized least squares (gls) estimates in lines 2(a):iv,v,vii can be handled rou-
tinely with software. For example users are allowed to specify a general form for the
correlation matrix R(f) that can further build the necessary block diagonal structure by
the specified unit variable. Care has to be taken since R~!(#) cannot substitute for Q.
Since A; # oI, an additional weight variable is needed using the diagonal elements of
D~1/2, Perhaps this can be best seen by noting since cov(D~'/2y) = R(9).

I now focus on the second portion, or lines 2(a)-2(b), of this algorithm while moving
from step k— 1 to step k, k=1,---, R = column rank(ﬁ’). As seen from line 2(a)i above,
the adjusted dependent variable residuals, fk,l (in step k — 1), are partially regressed on
the regressor residuals, Ej_,. This partial regression consists of computing the weighted
covariance and using this vector to construct latent variables [line 2(a)ii]. Next, the ad-
justed dependent variable residuals (in step k& — 1) are regressed on the current latent
variable (in step k) [line 2(a)iv]. The result of this fitted value is then subtracted from the
residuals (in step k£ — 1) to form the next sequence of adjusted dependent variable resid-
uals (step k) [line 2(a)v]. The explanatory variables residuals (in step k) are formed by
subtracting from the residuals Ej_q its (weighted) projection on the estimated kth latent
variable [line 2(a)vii]. As MARX (1996) pointed out, other variants of this algorithm exist.
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7.1 Connecting PLS to PC

An interesting connection exists between principal component and iteratively reweighted
partial least squares in this GEE setting. Denote ) as the number of iterations until
convergence. The GEE scoring solution can be expressed as

0 R
AOEE =N "{Boly + X1 Y Ay g, X Qg* 30, (31)
=1 k=1

where R truncates the null components. Again f; is the iterated weighted (7) mean of
the adjusted dependent variable, and Q is the updated GEE weight matrix. Based on
these R components, it will be useful to define the matrices Ag and Mp corresponding
to the diagonal matrix of nonnull eigenvalues and the associated matrix of eigenvectors,
respectively, of the converged GEE F matrix, if they exist. As argued in Section 4, the
PC estimator can use results of the converged GEE solution. Suppose that components
are deleted in sequence from the sum associated with the r = R — s smallest nonnull 5\k
The principle component estimator can be expressed as

i = {foly + X_ 1Z>\ g X2 1QZ~*PC 8 (32)
k=1 t=1

where *7°C is again the adjusted dependent variable but this time updated using only
s terms in 7js PCM  IRPLS estimation can also be less taxing if information is borrowed
from the converged GEE solution. With s latent variables, one iterative scheme can be

expressed as

APt = {Boly + X W, ZgbklfkkaX IQZ grrest (33)

where similarly to PC estimation, y*P LS

is the adjusted dependent variable utilizing s < R
latent variables in H" and again W, = (wl, -+, ). The & and the ¢ correspond to

the eigenvectors and eigenvalues of W F WS, respectlvely

8 Functional Regressors

As indicated in the previous section, regression problems can be high dimensional. Con-
sider situations when modern technology generates regressors (near infrared spectra, brain
waves, log-periodograms of spoken syllables, time series, etc.). Such information comes in
the form of hundreds or thousands of discrete digitizations of some signal, often resulting
in p > N. Moreover there exists some ordered structure, e.g. along wavelength. An ap-
plication could be measuring several units of a particular food product over time, where at
each time a near infrared spectra and a response (say % constituent) is collected. In such
a setting, we have high dimensional functional regressors and responses within units that
are correlated (perhaps AR(1)). RAMSAY and SILVERMAN (1997) provided an excellent
overview of applications involving functional data. JAMES and HASTIE (1999) provided
an interesting subject-specific mixed modeling approach using principal component tech-
niques for sparse functional data.
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Consider rewriting (1) as

1= h(Bo+ X_18) = h(n). (34)

This problem is highly ill-conditioned, and the only hope to get a sensible result is by con-
straining  in some way. MARX and EILERS (1999) proposed a (GLM) P-spline modeling
strategy, as a competitor to (IR)PLS, that forces 8 to be smooth. The dimension of the
signal coefficient vector is reduced initially by projecting it onto a B-basis, B (of smooth
functions): Byx1 = Bpxg0¢x1, where ¢ < min(N,p). Notice that this approach takes ad-
vantage of the spatial or temporal information along the signal and has an attractive linear
nature of §, where ¢ is a relatively low dimensional vector of B-spline coefficients.

P-splines take one step further: use a moderate number of equally spaced B-spline
knots (say 10 to 40) and further increase smoothness by imposing a difference penalty on
0 (as in Section 6.1). Notice that (34) can be rewritten as

1= h(Bo + X_1Bd) = h(Bo + UJ),

where we can define a new full rank regression matrix Uyy, = X_1B. Now re-express
(24) as
50 = 25{s(5,0) — kP Pis},

where

5(8,0) = U'Q6,0)D~1(6) (y — h(UY?)), (35)

and k£ > 0. The information matrix is Fyy = U'QU (with M|, FyMy = Ay), and (25)
can be implemented to estimate 6°. The penalized solutions are given upon convergence
as 8 = Bb,. Suggestions for optimization of x are given in Marx and Eilers using cross-
validation and information criterion. Similar arguments to those presented with (26) can
link this setting to GFPC estimation.

Simple data management tricks can make fitting such GEE models trivial in existing
(GLM) GEE software and macros that allow a variety of correlation structures, by the
unit variable. Consider constructing a p x ¢ B-spline matrix using a modest number of
equally spaced knots along the indexing domain (e.g. frequency) of the signal. Thus
U is accessible. Instead of passing the y response and the signal matrix X_; into the
GEE fitting algorithm, use the augmented matrix Uaug = rbind(U.1, (0, xP%)) and the
augmented adjusted dependent variable ya*mg = rbind(y*,0,—4), where U, includes the
(unpenalized) intercept. Thus the software can automatically provide a penalized estimate
of 0., and 7 = U+1(§H. Notice also that HB = BH;B'.

9 Summary and Discussion

I have addressed the issue of ill-conditioned GEEs, which to my knowledge has been
lacking in the literature. In doing so, I have pointed out some of the consequences of such
a setting while transplanting a variety of biased estimation techniques into situations with
correlated responses. To simplify the presentation, I attempted to link and unify these
estimators as much as possible, borrowing work of others as mentioned in Section 1. Of
course there are trade-offs in taking such a broad approach; naturally a disadvantage is
that all of the many specific issues cannot be addressed here. Much more research is needed
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to investigate additional analytic properties of the proposed estimators, as well as the most
effective techniques for choosing the meta or regularization parameters. Future research
could investigate comparisons of these estimators under a variety of regressor collinearity,
response correlation, link and random component experimental settings. Certainly other
GFPC weighting schemes exist, as well as other penalty choices for the quasi-likelihood.
Biased estimation is only one tool and is not always the final answer. However as seen in
the previous sections, such estimators can provide a practical solution to a complicated
problem: degenerate or extreme ill-conditioning and general correlations structure among
the responses.
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