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Abstract

This paper discusses the estimation of coefficients in a linear regres-
sion model when there are some missing observations on an explanatory
variable and the study variable individually as well as simultaneously.
The first order regression method of imputation is followed and the least
squares procedure is applied. Efficiency properties of estimators are then
investigated employing the large sample asymptotic theory.

1 Introduction

Practitioners routinely face the problem of missingness of some observations due
to a mariyad of factors on which little control can be exercised. This unavoidable
feature of the data set prohibits us from applying the standard statistical proce-
dures fro drawing inferences. There are two popular alternatives to circumvent
this problem. One is the amputation strategy which discards the incomplete
observations and utilizes only the complete observations for the statistical anal-
ysis. Other is the imputation strategy which follows a procedure to find imputed
values for missing observations and thus repairs the data so that it looks like a
complete data set and permits the application of standard statistical procedures.
Both strategies have their own limitations and qualifications.

In the context of the estimation of parameters in linear regression models, con-
siderable attention has been devoted to analyze the comparative performance
of amputation and imputation strategies when missingness of observations per-
tains to either the study variable or some explanatory variables; see, for example,
Little (1992), Little and Rubin (1987) and Rao and Toutenburg (1995) for an
interesting account. Realistic situations may often necessitate us to assume that
there are some cases in which values of some explanatory variables as well as the



study variable are missing simultaneously. Such a framework is considered in
this paper and the estimation of regression coefficients in the model is discussed.

The plan of presentation is as follows. In section 2, we describe a linear regres-
sion model in which missingness of observations relate to the study variable and
only one explanatory variable. The entire set of observations is divided into
four parts. The first part consists of complete observations only. Observations
on the last explanatory variable are assumed to be missing in the second part
while values of the study variable are assumed to be missing in the third part. In
the fourth part, observations on both the study variable and the last explana-
tory variable are missing simultaneously. Under such a framework, first the
regression coefficients are estimated by the least squares procedure employing
the complete observations in the first part of the data set. A simple imputation
procedure is then followed to find the imputed values for the missing observa-
tions. These imputed values are substituted for repairing the data set and the
least squares procedure is used for estimating the regression coefficients from re-
paired data. The thus obtained estimators are presented along with those which
utilize barely the complete observations. In section 3, we analyze the efficiency
properties of these estimators. As general conclusions related to superiority of
one estimator over the other are hard to draw, two particular cases of the model
are considered. Finally, some concluding remarks are offered in Section 4.

2 Model Specification And The Estimators

Consider a linear regression model with some missing observations. For the
sake of clarity in exposition, let us assume that there is barely one explanatory
variable on which some observations are not available. Further, it is assumed
that some observations on the study variable are also missing.

Corresponding to m; complete observations, we have the following regression
relationship:

yi=Xif+az +ea (2.1)

where y; is an ny; X 1 vector of ny observations on the study variable, X; is a
ny1 X K full column rank matrix of n; observations on K explanatory variables, 3
is a K x 1 vector of regression coefficients, z; is a ny x 1 vector of n; observations
on the last explanatory variable, « is the scalar coefficient associated with it and
€1 is an nq X 1 vector of disturbances.

Next, suppose that we have a set of ny observations such that observations on
the last explanatory variable are missing. Thus we can write

y2 = XofB + axl + € (2.2)

where y2 is a ns x 1 vector of ns observations on the study variable, X> is a
ng X K matrix of no observations on the K explanatory variables, x5 denotes
the vector of ns missing values of the last explanatory variable and €5 is the
vector of disturbances.



Similarly, there are ng observations in which values of the study variable are
missing:

ys = X360+ axs + €3 (2.3)

where y3 denotes the vector of ng missing values of the study variable, the ng x
Kmatrix X3 and the ng x 1 vector x3 contain observations on the explanatory
variables and €3 is a n3 x 1 vector of disturbances.

Finally, the last part of the data set consists of n4 observations only on the K
explanatory variables so that

yr = Xuf 4+ az) +e4 (2.4)

where y; and z denote the vectors of missing values of the study variable
and the last explanatory variable respectively, X, is the ny X K matrix of ny
available observations on the K explanatory variables and €4 is a ng X 1 vector
of disturbances.

We thus have an incomplete data set consisting of (n1+mn2+mn3+n4) observations
for the estimation of (K + 1) regression coefficients.

It is assumed that the elements of €1, €5, €3 and €4 are independently and iden-
tically distributed with mean 0 and variance 2.

If we delete the incomplete part of data set and use only n; complete observa-
tions, the least squares estimators of « and 3 are given by

~ CUllMyl
= 2.
“ ) Mz, 25)
B = (X{Xy) 'X{(y — éa) (2.6)
where
M =1, — X (X|X))'X]. (2.7)

In order to make full utilization of available observations, we need to find im-
puted values for missing observations. For this purpose, let us consider the
first order regression method of imputation for the missing values of the last
explanatory variable. This method consists of running the regresssion of the
last explanatory variable on the remaining K explanatory variables using only
the n; complete observations and then utilizing the estimated relationship for
finding the predicted values of the missing observations; see, e.g. , Afifi and
Elashoff (1967), Dagenais (1973), Gourieroux and Monfort (1981) and Rao and
Toutenburg (1995). This yields the following imputed values for =3 and z3:

373 = X2(X{X1)71X1371 (28)
oy = Xy(X]X1) X {x (2.9)

In the same spirit, if we run the regression of the study variable on the K
explanatory variables utilizing the n, complete observations and employ the es-
timated relationship for finding the predicted values for the missing observations



on the study variable, we obtain the imputed values for y5 and y; as follows

9 = Xa3(X;X1) ' Xy (2.10)
Ji = Xa(X1X1) 7' Xiyi. (2.11)

Now let us introduce the following notation

0 = x3— X3(X1Xy) Xz
S = (X]X1+X5Xo + X, X5+ X1 Xy)™!
U = Xiz+ X85 + Xz + Xy#)

= SNXIX)) Xy + X460
Vo= Xiy+ Xgye + X395 + Xag;

= STHXIX)TIX = Uy + Xjlys — Xo(X[X0) 7' Xiy1]
uw = mzym +2YEy + xhrs + 8473

= )Mz + 2, X, (X X15X X1) P X 2y + 2250 — 0'0
v = Ty +33ye + 2595 + 23797

= @y Mz + 2 X0 (X X0) T (X [y + Xjyo)
+ 25 X3 4+ 2 X1 (X X1) T XX (X1 X0) T X o

If we substitute 23 in place of =} in (2.2), g3 in place of y3 in (2.3), 2} and
74+ in place of z} and yj respectively in (2.4) and then apply the least squares
procedure to the thus obtained equations and (2.1) jointly, the estimators of «
and 3 are to be found to be as follows:

N v—=U'SV
R (212)
oy My; — 0' X35 X} [ys — Xo(X] X1) 1 X 1]
oy Mz, +6'(I — X35X,)0
B = S(V-aU) (2.13)
= (X1X1) "Xy + SX5[ys — Xo (X[ X1) ' X{y1]
—[(X1 X)) X |z + SX36].

When the missingness of the observations on the study variable and the last
explanatory variable occur simultaneously so that the model is specified by
equations (2.1) and (2.4) only, it is interesting to observe from (2.5), (2.6), (2.12)
and (2.13) that @ = & and 3 = (. This implies that the set of ns observations
on the K explanatory variables play no role in the least squares estimation of
regression coefficients. When the set of n, observations is also included so that
the model is defined by the equations (2.1), (2.2) and (2.4), we find that & and
& continue to remain identical but 3 and 3 become generally unequal. Now if
the set of ng incomplete observations is further added so that the model consists
of all the four equations (2.1), (2.2), (2.3) and (2.4), we observe that not only
B and B are unequal but & and & also differ in general.



3 Efficiency Comparisons

Let us first compare the estimators & and & of the coefficient o associated with
the explanatory variable on which some observations are missing.

It is easy to see that & is an unbiased estimator of a while & is not. The bias
of & is given by
B(a) = E(a-a) (3.1)
o GI(I — ngXé)e + G’XgSXé{mj — X2(X{X1)71X{$1}
:U’lMﬂil +9'(I—X3SX§)9 )

Further, the variances of @ and & are

Via) = E(dA—a)z (3.2)
- i Mz,
V(a) = E(a—E(a))? (3.3)

o? [.Z’IlM.Z’l + G’XgSXé{I + X (X{Xl)ilXé}Xstée]
[:U’lMﬂil +9'(I—X3SX§)9]2 '

Using the result

1 1
<
i Mz +6'(I — X35X5)0 — o May

we observe that

V(@) _ 2 My + 0/ XySXAT + X (X[ X))~ LX5)X, S K30
V(d) - x’lM:vl + 9'([ — X3SX:’3)9 '

(3.4)

Thus the estimator & has smaller variance in comparison to & so long as the
quantity 6’ Af is positive where

A=T-X35X) — X3SX,XoSXE — XsSXLXo(XIX1) "X, X,8X, . (3.5)

As the matrix A does not involve any unknown quantity, the positivity of the
characteristic roots of A can be easily checked for any given data set in practice.

If we compare the mean squared error of & with the variance of &, it is hard
to deduce any neat condition for the superiority of & over & or vice-versa such
that it can be verified in any given application.

Next, let us consider the estimators 3 and /3’ of 3, the vector of regression
coefficients associated with the explanatory variables on which no observation
is missing.

It can be easily seen that the estimator /3’ is unbiased. However, /3’ is generally
biased with bias vector as follows:

B(3) = E@-p) (3:6)
= a[SXi{xs — Xo(X{ X)) Xz} — aSX30 + (1 — a)(X; X1) ' X | 2]



where

0= JfllMCUl — 6’X3SX£{:U; — XQ(X{XI)_lX{:Ul} (3 7)

Similarly, the expression for the variance covariance matrices are as follows:

V(B) = o’ (X{X1)71+x’M;v1 (X1 X1) ' Xjz2) X (X X0) | (3.8)
1
V(B) = 0 [SX3X2S + (I — SX4Xo)(X]X1) H(I — X4 XaS) (3.9)
+(8¢" + ¢d")] + V(&)dd'
where
§ = (XJX) ' Xz +SX30 (3.10)
— 1 / _ / -1
¢ = Yo +0I(I_X35Xé)9[S+SX2X2 (X]Xx)7' (3.11)
X5X,8X30.

It can be clearly appreciated from the above expression that no inference can be
deduced regarding the superiority of one estimator over the other. Same is true
when we compare the estimators with respect to the criterion of mean squared
error matrix.

Let us now examine two particular cases of our model specification. Case 1
assumes that the third part of the data set is absent while Case II deletes the
second part.

3.1 Casel

Suppose that the model is specified by (2.1), (2.2) and (2.4) only:

y1 = Xif+oar +ea
Yo = Xoff+azi+e (3.12)
yy = Xuf+arite.

As pointed out earlier, now the estimators & and & are identically equal while
(B and B are generally different.

If we write

S = (X X; + X5 Xy + XjX,)™! (3.13)

the expression for the bias vector and the variance covariance matrix of /3’ can
be easily recovered from (3.7) and (3.9). These are as follows:

B(Br) = aSrXi{zs — Xo(X| X)) Xla1 ) (3.14)
V(Br) = o [SrXsXaSr+ (I — SiX5Xo)(X]X1) ™ (I — X3X257)(3.15)
1 ~ _
+lelMJj1 (X{Xl) 11’,1371X1(X{X1) 1:| .



Comparing (3.8) and (3.15), we find
V(B) = V(B =0°Q (3.16)

where

Q= SIX3Xo[(X] X))t = S+ [(X] X1) ™ = S1] X5 XSy (3.17)

As the matrix [(X]X;) ™! — S/] is positive definite, we observe that Q is also so.
This implies that (3; is superior to 8 with respect to the criterion of variance
covariance matrix.

Next, let us compare the estimators with respect to the criterion of mean squared
error matrix.

From (3.14) and (3.15), the difference between the mean squared error matrix

N

of the estimator 37 and the variance covariance matrix of the estimator B can
be written as

Ar = V(B)+[BB)IBGBN - V(B) (3.18)
—0%Q + a?SrXh[ry — Xo(X| X1) 7 X 2]
oy — o) X0 (X X)) 7 XS] XSy

Now, using Rao and Toutenburg (1995, Theorem A. 59, p. 304), we find that
Aj cannot be a nonnegative definite matrix except in the trivial situation p = 1.
In other words, the estimator /3’ cannot be superior to /3’1 with respect to the
mean squared error matrix criterion with an exception to a trivial case.

If we look at the matrix (—Ay), it follows from Rao and Toutenburg(1995,
Theorem A. 57, p.303) that a necessary and sufficient condition for a variance
covariance matrix of the unbiased estimator § to exceed the mean squared error
matrix of the biased estimator /3’1 by a nonnegative definite matrix is

o 2
[23 — ) X1 (X]X1) " X X0 S1Q ™ SrXA 23 — Xo(XI X)) ™' Xlay] < (E) .

(3.19)

Thus the estimator /3’1 is superior to /3’ when condition (3.19) is satisfied.

3.2 Case Il

Let us be given the following model:

y1 = Xif+az +e
y; = Xgﬁ —+ axrs + €3 (320)
Yy, = Xuf+az;+es.

In this case, the estimators & and B reduce to the following:

A zy My,

= 3.21
an @\ Mz, +0'(I — X351,X1)0 (3.21)
Bir = (X{X1) ' X{y — ausdn (3.22)



where

Sir = (X1 X1+ X5X3 + XjX.)™ (3.23)
6 = (X1X1) 7' Xiw + S X356 (3.24)

Comparing (3.21) with (2.5), it is obvious that & and Gy are generally different.
In fact, the magnitude of &y is smaller than that of

tildea. Similarly, if we compare (3.22) with (2.6), the estimators B and B are
seen to be generally different.

From (3.1) we observe that

0401(1 - X3S[[Xé)0

B(dyg) = —
(&r1) i Mz, +0'(1 — X3511X4)0

(3.25)

so that the bias of &j; has a sign opposite to that of a. Further, the magnitude
of bias is always smaller than the absolute value of a.

Similarly, from (3.3), we have

oz Mz,

V(arr) = '
(G&rr) [x) Mxy +6'(I — X3511X%)0]2

(3.26)

Comparing with (3.2), we find that é&;; has invariabily smaller variance than a.

Further, it is found that the mean squared error of &y is less than the variance
of & provided that

o\?2 1 2
() [w’lMarl T —x,5nxn] ! (3:27)

which is indeed necessary and sufficient condition for the superiority of & over
@ according to the mean squared error criterion.

Just the reverse is true, i.e. , & is superior to &;; when the inequality (3.27)
holds with an opposite sign.

Similarly, from (3.6) and (3.9), the bias vector and the variance covariance
matrix are

N "Mz
B = o |(XIX) " X]ay — ket 2
(Brr) “ [( 1) X o Mz, + 0'[] — X351, X4)0 (3.28)
V(ﬁ[[) = 0'2(X{X1)71 +V(d11)(511(5’11. (3.29)
Comparing (3.29) with (3.8), we find that
2 2 UQU) i 1 i —1 v / i -1
V(B)=V(Br) = o Mz, worrdy; — E(X1X1) X1$1:U1X1(X -1'Xy)
- (3.30)
where
!
M
i (3.31)

T 2 Mz, +0'(1 — X35, X5)0°



The expression on the right hand side of (3.30) is obviously a semi-definite
matrix but no comment can be made regarding its positiveness or negativeness.

In a similar way, if we consider the difference between the mean squared error
matrix of 877 and the variance covariance matrix of 3, we get

A= V(Bu)+ [BB)B(Bu) - V(B) (3.32)
0.2
= (1 — w)2 |:OL2 — ;[j’lMJ,'I <]1-i——z>:| (X{Xl)ilX{.Z’ll'lle(X{Xl)il
0.2
+w2 |:042 + $11M$1:| S[[Xé091X3S]]

2

—ut =) o - S () (060 e+
1 1 -

SHXééa:’le(X{Xl)*l]

which is clearly a matrix of rank 1.

It is difficult to determine whether Ay is positive semi-definite or not.

4 Some Remarks

We have considered a linear regression model under a general framework for
missingness of some observations. The entire set of observations consists of four
parts. The first part has complete observations on all variables in the model
while the remaining three parts refer to incomplete observations. Out of these
three parts, observations on an explanatory variable are missing in the second
part, while observations on the study variable are misisng in the third part. In
the fourth part, observations on the study variable as well as the explanatory
variable are missing simultaneously.

Two strategies for the estimation of regression coefficients have been considered.
The first strategy consists of amputing the incomplete observations and applying
least squares procedure using the first part of data. The second strategy follows a
simple imputation procedure in which separate regressions of the study variable
and the explanatory variable (on which some observations are missing) on the
remaining explanatory variables (on which no observation is missing) are run
employing the first part of data set end the estimated regression equations are
used to find predicted values for the imputation of missing observations on the
study and explanatory variables. After substituting these imputed values for
the missing observations, the least squares procedure is applied.

It is seen that amputation strategy provides unbiased estimators of the regres-
sion coefficients while the imputation strategy gives generally biased estimators.
Comparing the variance covariance matrices and mean squared error matrices
of the estimators arising from the two strategies, no clear conclusion is found
regarding superiority of one strategy over the other. However, some interesting
observations are made in particular cases.

If the missigness of observations relate to both the study variable and explana-
tory variable simultaneously but not individually, i.e. , the data set consists



of first and fourth parts only, the amputation and imputation strategies yield
identical estimators, and thus imputation is not worthwhile.

When we add the second part of data in which only the values of the explana-
tory variable are missing, the amputation and imputation strategies continue to
provide identical estimator for the coefficient associated with the explanatory
variable. However, they give generally different estimators for the coefficients
associated with the remaining explanatory variables on which no observation is
missing in the data set. The estimators arising from the amputation strategy
are unbiased but less efficient, with respect to the criterion of variance covari-
ance matrix, than the estimators stemming from the imputation strategy which
are generally biased. If we take the criterion as mean squared error matrix, no
uniform superiority of any strategy over the other is observed.

Instead of the second part when the third part of data containing missing values
on the study variable is added, the scenario changes completely and the esti-
mators based on amputation and imputation strategies are different whether
we consider the estimator of the coefficient of the explanatory variable with
some missing values or the coefficient of the remaining explanatory variables
without any missing value. As mentioned earlier, the estimators found from the
strategy of amputation are always unbiased but the estimators obtained from
the strategy of imputation are generally not so. It is observed that the bias of
the estimator of the coefficient of the explanatory with some missing values has
a sign opposite to that of coefficient and the bias is always smaller in magni-
tude of coefficient itself. Further, if we compare the variances, it is interesting to
note that the imputation strategy is rated uniformly superior to the amputation
strategy. Such a result does not remain true when the estimators are compared
with respect to the criterion of mean squared error. So far as the estimators of
the coefficients associated with the explanatory variables with no missing values
are concerned, no definite comment can be made regarding the bias vector, the
variance covariance matrix or the mean squared error matrix.
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