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for a multi-way ANOVA
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Abstract

This paper aims at constructing stepwise test procedures based on the Bonferroni—
Holm principle for a multi-way ANOVA. Especially for the two-way ANOVA it is
shown, that the procedures keep the multiple level c.. These theoretical results are
supplemented by a simulation study to compare the multiple procedures regarding
two power concepts and to learn about which of the introduced procedures is the
best.

Key words: Adjustment for multiplicity, Bonferroni—-Holm procedure, multiple test

problem, multi-way ANOVA, stepwise procedures

1 Introduction

If several hypotheses are to be tested simultaneously in the context of a single sta-
tistical experiment, the classical test theory does not account for the multiplicity of
the test decisions. For example the classical F'—test in a one—way analysis of variance
is only able to show overall significant differences among the population means but
it cannot specify them. Such detailed comparisons call for a multiple test proce-
dure, which captures the complexity of the statistical problem and the multiplicity
of possibly wrong decisions.

Multiple tests are often applied in the context of multiple pairwise comparison in the
setting of an analysis of variance. Particularly for the case of a balanced one-way
layout numerous procedures have been developed and improved by various sugges-
tions for instance with less restrictive adjustments of the size of the individual tests.
The corresponding multiple tests can still be used after appropriate modifications if
non—standard situations such as unequal sample sizes or linear contrasts instead of

pairwise comparisons are investigated.



Multiple tests in the context of a two or multi-way ANOVA, however, has not been
paid so much attention up to now, so that for this case only very few procedures are
known, as the method of HARTLEY (1955) or OTTESTAD (1960, 1970).

In this paper, multiple test procedures are derived in particular for a two—way
ANOVA which are less conservative than for instance a procedure obtained from
a Bonferroni adjustment of simultaneous tests originally proposed for a one-way
layout. Since our proposals are mainly based on a modification of the Bonferroni—-
Holm procedure, they can be easily extended to applications in a multi-way layout.
They are defined as stepwise test procedures and thus more powerful than their
simultaneous counterparts. It is additionally investigated if the proposed test pro-
cedures keep the multiple level a, where it can be shown that two of our proposals
fulfil this property whereas the third modification does not. The procedures are
then compared with respect to their power by means of Monte—Carlo experiments
based on the simultaneous power (MAURER & MELLEIN, 1988) and the relative

frequency of correctly rejected false hypotheses.

2 Multiple tests in a two—way ANOVA

The multiple test procedures which will be introduced in Section 2.2 are based on
the Bonferroni-Holm approach. This general principle for constructing stepwise test
procedures allows for the application of any suitable level a test. Thus, our proce-
dures are not restricted to the classical Gaussian case as introduced in Section 2, but
also apply to nonparametric tests. The simulation study (Section 3) is nevertheless
restricted to the classical situation, i.e. F'—tests are used to check overall hypotheses

and multiple t—tests for all pairwise comparisons.

2.1 Basic notations

For convenience, let us briefly introduce the classical two—way ANOVA setting. The

statistical model reads as
Ykln:u+ak+ﬁl+(aﬁ)kl+ekln, kzl,...,K, lzl,...,L, nzl,...,N,

where the error terms €y, are assumed as i.i.d. N'(0, 02) random variables. The main

effect of factor A on level k£ and the main effect of factor B on level [ are denoted



as i and [, the interaction effect of factor A and B on levels (k,l) as (af), and
the grand mean as p.
The latter is estimated via the arithmetic mean of all observations, i.e.

K L N

ﬂ:mEZZYkm:

k=11=1n=1
The maximum likelihood estimators of the two main effects oy and [, are given as

deviation of the mean on the corresponding factor level from the grand mean, i.e.

&k = ?k-- - ? with ?k-- Z Z Ykln;
l 1n=1

Bl = ?-l- -Y.. with 7.1. Z 2 Yiin.
k 1n=1

The ML estimator of the interaction effect («f3)y; reads as
— - o = = — 1 Y
(Oéﬁ)kl = Ykl~ — Yk — Y.l. + Y. with Ykl~ = N Z kin-

The family of hypotheses to be tested in this set—up mainly consists of three intersec-
tion hypotheses concerning the main and interaction effects as well as the hypotheses
of all pairwise comparisons within the factors A, B, and the interaction AxB. In

detail, the intersection hypothesis w.r.t. to factor A is denoted as Hg' with

H64 D = Moo = ... = UK.

and has to be tested against

HY 35, ke{l, . K}, j#k:pj# i,

where ji;. is the mean on level 7 of factor A. The intersection hypotheses HP and
H{'P are defined analogously. The multiple pairwise comparisons are used to identify
those factor levels which actually differ regarding their influence on Y. For factor

A, we have in total % - K(K — 1) pairwise comparisons of the type
HP =gy vs o HYOY opy £ e, 1<j<k <K

For the sake of simplicity, the hypotheses of pairwise comparisons are in the fol-
lowing consecutively numbered as Hg‘(j) with 7 =1, ..., w and H@B(j), H(?B(j)

analogously.



2.2 Modifications of the Bonferroni—-Holm procedure

As a first proposal, we consider the original Bonferroni—-Holm procedure which can
be applied in a straightforward manner not only in the case of a one-way ANOVA
but also in ANOVA settings with more than one factor.

To use the Bonferroni—-Holm procedure in a two—way ANOVA the p—values of the
pairwise comparisons, only, are considered, irrespectively of the particular factor or
interaction to which they belong. These p—values are ordered such that p;) < pp) <
oo € Ppuy With m, = [3- K(K =1)+}-L(L—1) + 4 KL(KL —1)] . The corre-
sponding null hypotheses are denoted as Hél), 62), - é"*). The Bonferroni—-Holm
procedure rejects intersection hypotheses whenever at least one of the elementary
hypotheses of the pairwise comparisons forming the intersection is rejected. In con-
trast to the procedures presented below the intersection hypotheses are here not

tested explicitly.

The BH procedure is given as (p;; i = 1,...,n,) with stepwise tests

o =126, i=1..n, (2.1)
7j=1
where
0 >
- f «Q _
QO(]) — or p(]) m7 .7 — 4, ,TL*, (22)
1 <

and ¢;) are the individual tests for the elementary hypotheses ordered according

to the ordered p-values. For procedures of this type, the following result originally
derived by HoLm (1977, 1979) holds.

Theorem 2.1
The BH procedure according to (2.1) and (2.2) keeps the multiple level cv.

Since the Bonferroni-Holm procedure is applied to the pairwise comparisons w.r.t.

both factors and all interactions, the first adjusted significance level is given by

[K(K71)+L(L7(11)+KL(KL71)}/2'

most applications difficult to reject the corresponding hypotheses.

This may obviously be very small which makes it in



Bonferroni-Holm Modification I (BHM I)

The second test procedure is a combination of the Bonferroni—-Holm procedure and
the simple Bonferroni adjustment applied to the intersection hypotheses. This im-
plies that first, a suitable level /3 test for each of the intersection hypotheses Hg',
HE, and H'P is performed. If one of these is rejected it is investigated which of the
corresponding means differ significantly from each other using the Bonferroni—-Holm
procedure.

For a more formal description of this procedure let p;,i € {A, B, AxB}, denote
the p—values for the intersection hypotheses, and p;;), j = 1,...,n;, the p—values

for the corresponding pairwise comparisons such that p;1) < ... < pj,) for each

i € {A, B, AXB}, where ny = w, ng = @, Naxp = w
The BHM I procedure is then given as ¢ = (¢;, gi;;t € {A, B,AxB},j € {1,...,n})

with

vi = if p; a/3, i € {A, B, AXB}, (2.3)
1 <

and Pi(j) = Pi - Hi;:l @i(k})a ] = 17 ooy Ty with

0 >
a/3

S k=1,.. 0. 2.4
nz—k—+—1’ ) 7n ( )

Pi(k) = if Pi(k)
1 <

Here, ©;(;) represent the individual tests for the elementary hypotheses of the pair-
wise comparisons belonging to factor ¢ and arranged according to the p-values.

Concerning the size of this procedure, the following result can be shown.

Theorem 2.2
The BHM I procedure according to (2.3) and (2.4) keeps the multiple level a.

Proof
Let I, be given as the set of indices of the true intersection hypotheses with |Iy| = myq
and I; the set of indices of true null hypotheses w.r.t. the pairwise comparisons

within factor ¢ and |[;| their number, ¢ € {A, B, A x B}. Furthermore, ¢;; denotes
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the corresponding unordered test and p;; the unordered p-values for the elementary
hypotheses. The rank of p;; within {p;;;j = 1,...,n;} for fixed 7 is given as R(p;;).

The proof is divided into two steps. In the first step, we consider the situation that
an intersection hypothesis H¢, i € {A, B, A x B}, is true. The probability for a false

rejection within this factor is bounded by «/3, i.e.

P =P(p;i=1) < /3,

(pi=1)U (U {oi; = 1})

Jel;

since

Ulpiy =13 S{pi =110 U{pi = 1} (2.5)
JeL; JeL;
In the second step, we consider the situation that an intersection hypothesis H¢,
i € {A, B, A x B}, is false. The probability for rejecting a possibly true pairwise
comparison belonging to this factor is bounded as follows. Equation (2.5) yields
that

P(U{%’j:l}) P_(%'Zl)ﬂ(U{@ij:l})}

JEL; Jel;

IN

< r U{S5ij:1}> =1-P (ﬂ{@ijzo})
jel; jel;
= 1-P (ﬂ {Bir@iy)) = 0})
JeL;
a/3
= P4 I pis < -
( SE A= minje;, R(pij) + 1)
a/3
< P 15 S N
B s; <p n; — minjer, R(pij) + 1)
a/3 a/3
< Zp<pz's§ |I~|>§ T «/3.
sel; ? sel; ?



These two steps imply that the probability of falsely rejecting at least one of the

true hypotheses can be calculated as

P(U{%:l}UU U{%j:l}) < ZP(¢i=1)+ZP(U{S@ij:1}>

i€lp i€ly jEI; i€lp i1y jel;

IN

da/3+) a/3=c

i€l i¢Io

Since parts of the above proof are based on the Bonferroni inequality, it has to be
expected that the nominal multiple level of this test can become clearly smaller than
«. That means that despite of the Bonferroni-Holm adjustment applied separately
to each factor as well as for the interaction the procedure may be rather conserva-

tive.

Bonferroni-Holm Modification II (BHM II)

The second modification of the Bonferroni—-Holm procedure is similar to the BHM I
procedure, with the only, but important difference that the levels of the three tests
of the intersection hypotheses are not simply determined by the Bonferroni inequal-
ity. They now depend on the results of the previous tests according to a second
Bonferroni-Holm adjustment, such that the whole test may be regarded as a nested
procedure.

Therefore, the p—values of the tests of the three intersection hypotheses are ordered
such that p(1y < p) < p3). This modification leads to a less conservative procedure
since only the smallest p—value is now compared with «/3. If it is larger than the
adjusted level of significance, the procedure stops, and all intersection hypotheses as
well as all hypotheses for the pairwise comparisons cannot be rejected. Otherwise
those pairwise comparisons have to be tested, whose intersection yields the rejected
intersection hypothesis. This has to be done according to a Bonferroni-Holm proce-
dure with multiple level /3. As soon as a p—value for a pairwise comparison exceeds
the corresponding level of significance, this particular Bonferroni-Holm procedure
stops, and the whole procedure continues with the next intersection hypothesis,
where p(y) is compared with a/2.

Thus, the whole procedure stops if and only if one of the intersection hypotheses

cannot be rejected or all hypotheses are rejected. In contrast, if one of the pairwise



comparisons cannot be rejected this only implies that the inner Bonferroni-Holm
procedure stops without testing any further pairwise comparisons, but the proce-
dure continues with the examination of the next intersection hypothesis.

This procedure, however, does not keep the multiple level «, because apart from
false decisions on the first level of the intersection hypotheses a type I error can
also be committed on the second level in each case of the pairwise comparisons.
Let us for instance assume that not all means are equal, but that the last pairwise
comparison to be tested within the factors and intersections, respectively, is true
but rejected. This error occurs at worst with a probability of a/3 4+ «/2+ «, so that
the multiple level « is exceeded.

The above procedure can, however, be improved such that it keeps the multiple
level, namely if the procedure does not only stop as soon as one of the intersection
hypotheses cannot be rejected, but also if one of the elementary hypotheses of the
pairwise comparisons has to be retained.

For a formal description of this BHM II test, let p;,i € {A, B, AxB}, denote
the p—values for the intersection hypotheses and p;) the corresponding ordered p-
values. The ordered p—values for the pairwise comparisons are given as p; ;) with
j=1,....,n4), where ni) = ng, and R(i) € {A, B, AxB} is the antirank.

The BHM II procedure is given as (y;, ¢;; @ = 1,2,3, j = 1,...,n;) with the

stepwise tests

i—1 o)
i) = Pu ¢ 11 ¢uywy| and (2.6)
j=1 k=1
j ~
o = @ 1 Pow (2.7)
k=1
where
0 >
- . (67 i
o= SR CR 1=1,2,3 (2.8)
1 <
and
0 >
] | 0/B—i+1) |
ey = if P@)(5) e — i1 ,1=1,2,3, 7=1,...,n; (29)
1 <



Here, ¢y and @)(j), respectively, denote the individual tests for the intersection
and elementary hypotheses arranged according to the corresponding p—values. For
i=1, [IZY &g ) TL) @)w] s defined as 1

Theorem 2.3
The BHM II procedure according to (2.6) — (2.9) keeps the multiple level c.

Proof

In addition to the notations used in the proof for the BHM I procedure, let p;; be
the unordered p—values for the elementary hypotheses. We have to show that the
probability of rejecting one or more true hypotheses is bounded by «.

Since

U U{es =13 € U{wi =1}, (2.10)

1€l jEIi 1€l

the probability for a multiple type I error results in

P(U{%‘:l}UO U{%j:l})

iely i=1jel;

(210) P(U{%:l}u U U{%:l})

1€lp kglo jely,

= 1_P(ﬂ{90i:0}ﬂ N ﬂ{%jzo}>

i€ly k¢ly jely,
- 1-— P I:(Sp(miniejo R(pl)) = 0) N (Sp(minkejo R(pk))(minjejk R(ij)) = 0)] (211)
Let us now distinguish two cases.

1. case: If min;e;, R(p;) > minggy, R(pk) it holds that

{Liminggr, Rex)minjer, Rpry) = 0} C {@miniery R = 0},

and (2.11) is equal to P (W(miniezo R(p)) = 1).

Using now the same arguments as in the proof of Theorem 2.2, it follows that

P (Ptminicry 1) = 1) < P (Bminiesy ey = 1) < e

9



2. case: If min;e;, R(p;) < minggy, R(px) we have

{Sp(minielo R(pi)) — 0} C {gp(miﬂkglo R(pg))(minjer, R(pr;)) — 0}'

It follows that (2.11) is equal to

P (w(minkgzo R(p))(minjer, R(pr;) = 1) <P (@minkgzo R(p))(minjer, R(pr;)) = 1) :

Using again the same arguments as above we get P (cﬁ(mink R(py))(minjer, R(p;) = 1)

O IA

Q.

Like the BHM I procedure but in other situations, the BHM II procedure may be

rather conservative as will be discussed below.

2.3 Comparison of the procedures

There is a crucial difference between the BH procedure and the BHM I as well as
the BHM II method. While the intersection hypotheses for the factors A, B and the
interaction Ax B are tested explicitly in the latter two procedures, they are tested
only implicitly in the BH procedure.

Let for instance the test of H{'Z have the smallest p—value. If now one of the
hypotheses related to the interaction cannot be rejected, then the BHM II procedure
stops without testing any of the pairwise comparisons related to the main effects of
A and B. Using the BH procedure, however, one might have the chance to reject
some of the pairwise hypotheses of the two main effects. The BHM I procedure also
allows for testing pairwise comparisons related to the factors A and B, even if some
of the pairwise interaction hypotheses turn out to be non-significant, since here the
two factors and the interaction are treated separately.

As already mentioned, the BH procedure might result in very small adjusted p—
values, if many elementary hypotheses are to be tested. But this is also the case
for the other procedures. Consider again the situation that paxp) is the smallest

p—value of the intersection hypotheses. Then, the smallest p—value of the BHM

a/3
KL(KL-1)/2

the first one of the BH procedure. However, it has to be taken into account that a

II pairwise comparisons is compared with which is even smaller than

smallest p—value means that the intersection hypothesis is most unlikely. The chance

that existing differences in the corresponding elementary hypotheses are detected,

10



is thus very high.

The smallest possible adjusted level of the BHM I procedure is also % The
adjusted significance levels the two smallest p—values of factor A and B have to be
compared with are, however, greater using the BHM II procedure than the BHM
I method. This is because the three intersection hypotheses are interconnected
not simply by the Bonferroni inequality, but according to the Bonferroni-Holm
approach.

Another aspect of multiple test procedures besides that of committing errors of type
I concerns the possibility that their components may lead to overall decisions which
are not free of contradictions. Comparing the above procedures w.r.t. the concepts
of coherence and consonance introduced by GABRIEL (1969) it is obvious that all
three procedures are coherent by construction, but only the original Bonferroni—

Holm procedure is also consonant whereas the BHM I and BHM II procedures may

yield non—consonant decisions.

3 Simulation

In the previous section, it was shown that the Bonferroni-Holm procedure and two
of its modifications, namely BHM I and BHM II, keep the multiple level o« and thus
also control the per—comparison error rate. To get an idea, which of these three test
procedures is best regarding its power, a small simulation study is performed.

The comparison is based on the simultaneous power, briefly denoted as power I in
the following, as analogue to the multiple level, and on the proportion of correctly
rejected false hypotheses, briefly denoted as power II, corresponding to the per—

comparison error rate.

3.1 Design

The simulation study is based on model (2.1) assuming normality for the error terms,
homogeneity of variances, and a balanced design. For each factor we allow for three
levels, i.e. K = L = 3. This results in three pairwise comparisons for each factor and
in 36 hypotheses concerning all possible interaction comparisons. The single tests

are performed as F—tests for the intersection hypotheses and as multiple t—tests for
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the pairwise comparisons.

The multiple level « is fixed as 5%, which results in 5.95-10~% as adjusted significance
level in the first step of the BH procedure. If p(axp) is the smallest p—value of the
three intersection hypotheses, the smallest p—value of the pairwise comparisons using
the BHM I or BHM II procedure is compared with 2.31-10~%, which is even smaller
than the one of the BH procedure as noted above. The adjusted significance levels,
with which the two smallest p-values of the tests for the pairwise comparisons within
factors A and B are compared afterwards, are greater using the BHM II procedure
with 4.17-107% and 8.33 - 1072 than using the BHM I procedure with 2.78 - 1073.
Using the polar Marsaglia procedure (MOESCHLIN, POHL, GRYCKO & STEINERT,
1995) normally distributed random numbers are generated. The sample size N is
fixed as 100 and the grand mean p as 0 without loss of generality. Regarding the
variance, it has to be taken into account that another parameter may be important
to judge the power of the different multiple tests, given as the smallest difference of
two means and denoted as §. Allowing for different values of ¢ gives us the possi-
bility to get an idea of the capability of the various procedures to detect even small
differences in the means. It seems reasonable not to look at 0 and o separately, but
to use a combined measure, i.e. §/o. Thus, the absolute value of o is no longer of
particular interest. It is therefore fixed at 1, but varying values of § /o are considered
ranging from 0.03 to 0.90 with a stepwidth of 0.03. The obtained Monte-Carlo re-
sults are not reported for all choices of ¢ /o but only for some selected values yielding
the most interesting cases.

Three constellations of true and false elementary hypotheses are investigated. First,
all elementary hypotheses, i.e. those belonging to the two factors and to the inter-
action, are true. Second, they are all false, and in the third case they are partially
true and false.

Let us denote the number of true elementary hypotheses belonging to the factors
A, B and the interaction A X B as |I;| as above, the number of false elementary
hypotheses as |I;],i € {A, B, AxB}. If some of the elementary hypotheses of the
interaction are false, there are different possibilities for the number of true and false
hypotheses. Here, power I and II are given only for the two cases |4y 5| = 12 or 5.
For all other situations with |I4xp| < 12, the results tend to be of the same order

of magnitude as in the two situations described here in detail. For |Ix.p| >18,
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however, the results are quite different especially concerning the most powerful test.
Only in the case described in Table 4 the results obtained for [I4, 5| > 18 are in
general of similar size as those obtained for |I44 | < 12. The simulation results are
summarized in Tables 1-7. It should be mentioned, that we have chosen only some

typical examples out of all possible tables for illustrating the results.

3.2 Results

Let us begin with some further general characteristics of the multiple test proce-
dures. The simultaneous power of the BHM II procedure is exactly zero whenever
at least the two factors or a factor and the interaction imply partially true as well as
false hypotheses (Tables 1, 2). Since this procedure stops as soon as one of the ele-
mentary hypotheses cannot be rejected, the false hypotheses belonging to the other
factor always have to be retained. Thus, the simultaneous power is exactly zero.
In addition, power II can never reach 1 in this situation. In fact it always remains
below 0.5, since for the reasons given above the BHM II procedure can reject all
false elementary hypotheses within one factor, but not those within the other one.
The BHM I procedure comes up with the same simultaneous power I and II as the
BHM II procedure, if the two factors or a factor and the interaction imply only true
hypotheses (Tables 3, 4).

The situation of homogeneity of means and of no interaction effects is mainly con-
sidered to assess the nominal multiple level achieved by the proposed procedures.
Here, we observe a significance level of 3.8% for the BHM I and II procedure and
a value of 0.5% for the BH procedure. Thus, the problem already addressed above,
that the nominal level can be far below «, clearly occurs. While the first two pro-
cedures are slightly conservative, this effect is extreme for the BH procedure.

For the nominal per—-comparison error rate we get a value of 0.08% using the BHM
I and II procedure and a value of 0.01% using the BH method. Let us also mention,
that the nominal multiple level and the nominal per-comparison error rate are also
kept with designs different from the one chosen here.

As a first result w.r.t. power it can be noticed that the simultaneous power depends
substantially more on the size of the differences in the means than the power II. To

achieve a simultaneous power greater than zero, §/o has to be at least — with a few
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exceptions — 0.3 if all elementary hypotheses concerning the interaction terms are
true. Otherwise d/o must be even larger than 0.42. Power II, however, is already
greater than zero if the differences in the means are 0.03 times the standard devia-
tion.

Summarizing the remaining simulation results, one should first state that there is
no simple answer to the question which of the tests introduced in this paper is best
in regard to its power. One should be aware of the fact that the properties of the
test procedures are data—dependent. But additional information for instance due to
subject—matter knowledge may help to reach a decision.

The BHM I and II procedure are both equally good w.r.t. power I and II if there are
either no interactions but main effects concerning one factor (Table 3) or if all null

hypotheses related to the interaction are false (Table 5). This is because in the first

case the adjusted significance level of 3:@1 of the BHM I and II procedure is much

greater for 1 < ¢ < 3 than the one of the BH procedure with i1 In the second

case it is due to the fact that the adjusted levels of significance of the BH procedure

o7 are greater than 3601/2.3“ for 1 <4 < 34, but smaller for + > 35. Thus, the two

greatest p—values are to be compared with a value which is smaller using the BH

procedure.

Regarding power I, the BHM II procedure is the best test if there are no interactions
but main effects concerning both factors (Table 6) — with the exception of the case
described above when the power is exactly zero. If power II is considered, the BHM
I procedure turns out to be the best for these situations.

The BH procedure is the most powerful test among the three procedures presented
here if there are interactions and more than half of the elementary hypotheses re-
lated to the interaction are false (Tables 2, 7, 8). A few choices of d/c lead to a
nearly similar power I of the BH and BHM II procedure. In regard to power II, the
BH procedure again outperforms the other procedures (Table 8).

If less than half of the elementary hypotheses related to the interaction are false
then the results are close to those obtained when there is no interaction effect. The
only exception is the situation that there are no main effects of both factors. Here,
the BH procedure is the most powerful test among the three procedures investigated

here.
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Discussion

From the above simulation results it becomes obvious that no simple and generally
valid rule can be given for one of the procedures being the best test. Such a rule
does even not exist if it is restricted to particular situations since the performance of
the tests heavily depends on the true, but unknown model. Thus, it would of course
be helpful to have some further knowledge of the empirical situation when choosing
the best test. Typically, such an information is, however, not known in advance.
Without going into details, one possible way—out might be to perform special tests
in order to reach a decision for the final test procedure. Such an approach can be
regarded as an adaptive procedure where the finally selected multiple test depends
on the given data. However, when using such an adaptive procedure, it has, however,
again to be checked whether the multiple level is still kept and how the simultaneous
power or power II behave. To summarize, the results of Section 3 may be understood
as rough hints only when being confronted with the problem of selecting an adequate
test.

Furthermore, it has to be mentioned that the three procedures introduced in this
paper are not optimal, since none of them fully exhausts the significance level of 5%.
This is especially true for the original Bonferroni—-Holm procedure. The question
arises whether improvements can be achieved by a more specific determination of
the adjusted levels, as for instance those proposed by SHAFFER (1986) or ROYEN
(1987).

As a last point to be made, it has to be examined how the three procedures behave
w.r.t. their power, if they are used in the context of an ANOVA with more than two
factors. Since the adjusted levels will then be even smaller, it is obvious that any
rejection of a hypothesis becomes most improbable. Here, other techniques based on
modelling the correlation structure and thus avoiding any adjustments may be more
appropriate (cf. BRETzZ, 1999), although such an approach requires more specific
distributional assumptions.

Finally, let us emphasize that the problems occurring when adjusting for multiplicity
in a multi-way ANOVA point to the necessity to keep the number of hypotheses
to be tested small. It could e.g. be thought about whether all pairwise interaction

hypotheses are equally important or whether some of them could be discarded.
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Tables

Table 1: Power I and power II for the situation of main effects for exactly two
levels of each factor A and B and 36 true null hypotheses for the interactions, i.e.

no interactions.

BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.39 | 0.195 0.681 | 0.000 0.408 | 0.004 0.203
0.42 | 0.311 0.791 | 0.000 0.453 | 0.010 0.330
0.45 | 0.516 0.859 | 0.000 0.477 | 0.160 0.465
0.48 | 0.682 0.918 | 0.000 0.488 | 0.193 0.582
0.51 | 0.800 0.958 | 0.000 0.497 | 0.330 0.727
0.54 | 0.937 0.987 | 0.000 0.498 | 0.586 0.856
0.57 | 0.982 0.996 | 0.000 0.499 | 0.708 0.905
0.60 | 0.987 0.997 | 0.000 0.499 | 0.850 0.957
0.63 | 0.996 0.999 | 0.000 0.500 | 0.944 0.983
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Table 2: Power I and power II for the situations of no (one) true null hypothesis
for the main effects of factor A, one (no) for the main effects of factor B, and 12
true null hypotheses for the interactions. The results in brackets are for the same
designs but with 5 true null hypotheses for the interactions. The results are the

same for both constellations of factors A and B.

BHM I BHM II BH

d/o | Power I Power II | Power I Power II | Power I Power II
0.48 | 0.041 0.664 0.000 0.577 0.072 0.736
(0.080)  (0.830) | (0.000) (0.658) | (0.164)  (0.880)
0.51 | 0.114 0.763 0.000 0.685 0.172 0.838
(0.176)  (0.889) | (0.000)  (0.723) | (0.330)  (0.940)
0.54 | 0.260 0.858 0.000 0.776 0.361 0.917
(0.382)  (0.935) | (0.000) (0.783) | (0.611)  (0.973)
0.57 | 0.353 0.905 0.000 0.830 0.510 0.949
(0.468)  (0.965) | (0.000)  (0.836) | (0.690)  (0.986)
0.60 | 0.496 0.946 0.000 0.863 0.694 0.974
(0.697)  (0.983) | (0.000) (0.881) | (0.855)  (0.993)
0.63 | 0.722 0.977 0.000 0.880 0.834 0.989
(0.832)  (0.992) | (0.000)  (0.907) | (0.921)  (0.996)
0.66 | 0.801 0.986 0.000 0.891 0.912 0.995
(0.901)  (0.997) | (0.000) (0.919) | (0.934)  (0.998)
0.69 | 0.849 0.993 0.000 0.897 0.958 0.998
(0.950)  (0.998) | (0.000)  (0.921) | (0.967)  (0.999)
0.72 | 0.926 0.996 0.000 0.904 0.968 0.999
(0.962)  (0.999) | (0.000) (0.922) | (0.991)  (0.999)
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Table 3: Power I and power II for the situations of three (one) true null hypotheses
for the main effects of factor A, one (three) for the main effects of factor B, and
36 true null hypotheses for the interactions, i.e. no interactions. The results are the

same for both constellations.

BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.30 | 0.052 0.386 | 0.052 0.386 | 0.007 0.030
0.33 | 0.123 0.466 | 0.123 0.466 | 0.016 0.062
0.36 | 0.265 0.591 | 0.265 0.591 | 0.030 0.104
0.39 | 0.382 0.674 | 0.382 0.674 | 0.070 0.193
0.42 | 0.561 0.784 | 0.561 0.784 | 0.153 0.291
0.45 | 0.675 0.846 | 0.675 0.846 | 0.274 0.434
0.48 | 0.822 0.918 | 0.822 0.918 | 0.410 0.568
0.51 | 0.902 0.956 | 0.902 0.956 | 0.608 0.729
0.54 | 0.960 0.983 | 0.960 0.983 | 0.742 0.837
0.57 | 0.981 0.993 | 0.981 0.993 | 0.839 0.904
0.60 | 0.998 0.999 | 0.998 0.999 | 0.906 0.951
0.63 | 0.999 0.999 | 0.999 0.999 | 0.964 0.980
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Table 4: Power I and power II for the situations of no main effects of the factors

A and B, and 12 (in brackets 5) true null hypotheses for the interactions.

BHM I BHM II BH

d/o | Power I Power II | Power I Power II | Power I Power II
0.45 | 0.023 0.491 0.023 0.491 0.036 0.591
(0.032)  (0.714) | (0.032)  (0.714) | (0.060)  (0.790)
0.48 | 0.089 0.612 0.089 0.612 0.158 0.715
(0.093)  (0.797) | (0.093)  (0.797) | (0.184)  (0.860)
0.51 | 0.116 0.713 0.116 0.713 0.239 0.813
(0.173)  (0.862) | (0.173)  (0.862) | (0.263)  (0.905)
0.54 | 0.234 0.795 0.234 0.795 0.347 0.864
(0.352)  (0.919) | (0.352)  (0.919) | (0.502)  (0.951)
0.57 | 0.360 0.881 0.360 0.881 0.524 0.936
(0.608)  (0.962) | (0.608)  (0.962) | (0.687)  (0.975)
0.60 | 0.475 0.917 0.475 0.917 0.593 0.955
(0.658)  (0.978) | (0.658)  (0.978) | (0.776)  (0.987)
0.63 | 0.626 0.961 0.626 0.961 0.763 0.978
(0.856)  (0.991) | (0.856)  (0.991) | (0.870)  (0.994)
0.66 | 0.788 0.985 0.788 0.985 0.873 0.992
(0.898)  (0.995) | (0.898)  (0.995) | (0.917)  (0.997)
0.69 | 0.870 0.992 0.870 0.992 0.925 0.996
(0.939)  (0.998) | (0.939) (0.998) | (0.959)  (0.999)
0.72 | 0.918 0.996 0.918 0.996 0.964 0.998
(0.976)  (0.999) | (0.976)  (0.999) | (0.990)  (0.999)
0.75 | 0.962 0.998 0.962 0.998 0.979 0.999
(0.991)  (0.999) | (0.991)  (0.999) | (1.000)  (1.000)
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Table 5: Power I and power II for the situation of no main effects of the factors A

and B and no true null hypotheses for the interactions, i.e. all possible interactions

present.
BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.42 | 0.045 0.892 | 0.045 0.892 | 0.043 0.902
0.45 | 0.217 0.927 | 0.217 0.927 | 0.178 0.932
0.48 | 0.486 0.964 | 0.486 0.964 | 0.406 0.963
0.51 | 0.623 0.975 | 0.623 0.975 | 0.524 0.971
0.54 | 0.796 0.988 | 0.796 0.988 | 0.699 0.984
0.57 1 0.936 0.996 | 0.936 0.996 | 0.878 0.994
0.60 | 0.953 0.998 | 0.953 0.998 | 0.923 0.997
0.63 | 0.972 0.999 | 0.972 0.999 | 0.959 0.998
0.66 | 0.996 1.000 | 0.996 1.000 | 0.977 0.999
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Table 6: Power I and power II for the situation of all three main effects of factor

A and B being present and no interactions.

BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.36 | 0.083 0.752 | 0.138 0.577 | 0.000 0.407
0.39 | 0.168 0.878 | 0.265 0.701 | 0.000 0.469
0.42 | 0.398 0.899 | 0.544 0.852 | 0.000 0.535
0.45 | 0.636 0.950 | 0.759 0.924 | 0.030 0.621
0.48 | 0.822 0.975 | 0.893 0.963 | 0.080 0.728
0.51 | 0.939 0.994 | 0.972 0.992 | 0.259 0.877
0.54 | 0.989 0.998 | 0.995 0.997 | 0.454 0.889
0.57 | 0.996 0.999 | 0.997 0.998 | 0.742 0.954
0.60 | 0.998 0.999 | 0.999 0.999 | 0.849 0.973
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Table 7: Power I and power II for the situations of no (all) main effects of factor
A, all (no) main effects of factor B, and 12 (in brackets 5) true null hypotheses for
the interactions. The results are the same for both constellations of factors A and
B.

BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.48 | 0.065 0.642 0.078 0.651 0.083 0.722
(0.077)  (0.825) | (0.005)  (0.718) | (0.152)  (0.878)
0.51 | 0.168 0.759 0.198 0.780 0.207 0.842
(0.196)  (0.881) | (0.037)  (0.786) | (0.314)  (0.932)
0.54 | 0.207 0.826 0.279 0.842 0.344 0.897
(0.340)  (0.934) | (0.092) (0.849) | (0.484) (0.961)
0.57 | 0.319 0.880 0.379 0.907 0.487 0.935
(0.535)  (0.968) | (0.262)  (0.908) | (0.668)  (0.981)
0.60 | 0.494 0.930 0.550 0.948 0.603 0.961
(0.719)  (0.985) | (0.568)  (0.956) | (0.831)  (0.992)
0.63 | 0.628 0.965 0.701 0.972 0.788 0.980
(0.788)  (0.990) | (0.783)  (0.984) | (0.879)  (0.995)
0.66 | 0.769 0.982 0.831 0.987 0.874 0.993
(0.918)  (0.996) | (0.915)  (0.995) | (0.927)  (0.998)
0.69 | 0.871 0.994 0.909 0.996 0.959 0.998
(0.953)  (0.998) | (0.948)  (0.997) | (0.978)  (0.999)
0.72 | 0.923 0.996 0.950 0.998 0.983 0.999
(0.979)  (0.999) | (0.972)  (0.999) | (0.992)  (0.999)

23




Table 8: Power I and power II for the situations of no (all) main effects of factor
A, all (no) main effects of factor B, and all interactions present. The results are the

same for both constellations of factors A and B.

BHM I BHM II BH
d/o | Power I Power II | Power I Power II | Power I Power II
0.42 1 0.026 0.889 | 0.035 0.805 | 0.074 0.907
0.45 | 0.198 0.933 | 0.221 0.864 | 0.241 0.943
0.48 | 0.446 0.960 | 0.458 0.913 | 0.483 0.968
0.51 | 0.642 0.979 | 0.664 0.950 | 0.672 0.983
0.54 | 0.786 0.993 | 0.817 0.980 | 0.829 0.995
0.57 | 0.893 0.995 | 0.907 0.988 | 0.903 0.996
0.60 | 0.954 0.997 | 0.964 0.995 | 0.959 0.997
0.63 | 0.971 0.999 | 0.986 0.999 | 0.976 0.999
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