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Abstract

Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the
synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases
(PARP). Little is known about the role of this modification during cellular stress responses. We show here that the
nucleosome remodeler dMi-2 is recruited to active HS genes in a PARP–dependent manner. dMi-2 binds PAR suggesting
that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to
active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the
chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene
activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription
and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for
dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent
RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for
an efficient and timely transcriptional response.
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Introduction

The activity of eukaryotic genomes is regulated by dynamic

changes in chromatin structure. A multitude of nucleosome

remodeling enzymes, histone modifying activities and chromatin

binding proteins cooperate to establish, maintain and reprogram

chromatin structures that determine genome activity.

Drosophila heat shock (HS) genes provide a textbook example of

how dramatic changes in the organismal and cellular environ-

ment affect chromatin structure in a manner that promotes

transcriptional activation of genes coding for molecular chaper-

ones required during the HS response. Upon temperature shift,

the HS loci of polytene chromosomes form transcriptionally

active ‘‘puffs’’. This rapid chromatin decondensation correlates

with a strong decrease in nucleosome density [1]. Puff formation

can be uncoupled from transcription and much of the

nucleosome loss at the hsp70 gene occurs prior to the first round

of transcription [1,2]. Recently, heat shock factor (HSF), GAGA

factor and poly-[ADP-ribose] polymerase (PARP) have been

shown to be required for the rapid removal of nucleosomes upon

activation of the hsp70 gene [1]. In addition, HS puffs accumulate

PARylated proteins and puff formation depends on PARP

activity [3]. The mechanisms underlying PARP action during

HS gene activation are not clear. It has been suggested that

PARylation may be removing proteins, including histones - which

are themselves a good PARP substrate - thereby promoting

chromatin opening [1]. The accumulation of PARylated proteins

at HS loci has recently been proposed to build up a ‘‘transcription

compartment’’ which hinders the diffusion of proteins into and

out of the compartment, thus favouring factor recycling [4]. In

addition to histone displacement and transcription compartment

formation at HS genes, recent evidence suggests that PARylation

could also act as a signaling scaffold for the recruitment of PAR-

sensing factors during DNA damage. In mammals PARylation at

DNA damage sites can mediate the recruitment of several ATP-

dependent nucleosome remodeling enzymes [5-10]. Here we

sought to address whether and how nucleosome remodelers may

be recruited to PARP activation sites upon environmental stresses

other than DNA damage. We have investigated a paradigm of

environmental stress, the activation of HS loci in Drosophila and

have analyzed the mechanism through which the nucleosome

remodeler dMi-2 is recruited to HS genes.

Mi-2 (CHD3/CHD4) is a conserved ATP-dependent nucleo-

some remodeler. In both vertebrates and invertebrates, it is a

subunit of Nucleosome Remodeling and Deacetylation (NuRD) complex-

es. NuRD complexes repress cell type specific genes during

differentiation [11–13]. dMi-2 is also a subunit of the Drosophila-

specific Mep-1 complex (dMec) which represses neuron-specific genes

during differentiation of the peripheral nervous system [12,14].
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Mi-2 containing complexes lack subunits with sequence-specific

DNA binding activity. Two main mechanisms for their recruit-

ment to chromatin have been suggested. First, NuRD complexes

contain subunits with methylated DNA binding domains (MBD) which

direct NuRD to methylated DNA [15,16]. This is unlikely to be a

major recruitment mechanism for Drosophila Mi-2 complexes,

however, given the low and transient levels of DNA methylation in

this organism [17]. A second mode of Mi-2 recruitment involves

interactions with DNA bound transcription factors [11,12,14,18–

22]. In addition, SUMOylation of transcription factors can

increase their affinity for Mi-2 complexes [21,22].

Despite its well established role in repression, dMi-2 localises to

actively transcribed chromosome regions suggesting an unexpect-

ed potential function of dMi-2 in transcription [23]. Here we

sought to establish how dMi-2 is recruited to actively transcribed

chromatin and to clarify its role in transcriptional activation using

genetic, biochemical and pharmacological assays. We show that

dMi-2 rapidly associates with activated HS loci, covering the entire

transcribed region of the hsp70 gene. dMi-2 recruitment is not

affected when transcriptional elongation is blocked but is

abrogated when PARP is inhibited. Indeed, we find that dMi-2

specifically binds PARP’s oligomeric product PAR in vitro.

Significantly, a dMi-2 mutant unable to bind PAR is not recruited

to active HS loci in vivo. We have identified several regions of dMi-

2 that bind PAR in vitro. These include the chromodomains and a

series of K/R-rich motifs near the N-terminus. Further, dMi-2

depletion or expression of an inactive enzyme greatly decreases

transcript levels, suggesting that dMi-2 actively supports efficient

HS gene expression. Indeed, dMi-2 associates with nascent hsp70

transcripts in vivo and ablation of dMi-2 function results in

inefficient RNA processing. RNA and PAR compete for dMi-2

binding suggesting a two step process of dMi-2 association with

HS genes: intial recruitment of dMi-2 is effected by its binding to

PAR which is produced prior to the onset of transcription, dMi-2

then switches to interacting with the emerging nascent transcripts.

Taken together, our results uncover PAR binding as a novel

mechanism for the recruitment of the nucleosome remodeler dMi-

2 to targeted sites of PARP activitation upon environmental stress

and demonstrate that dMi-2 acts as a co-activator for the full

transcriptional activation of HS genes. This study provides the first

evidence for an in vivo function of PARylation in promoting the

recruitment of a nucleosome remodeler to support the transcrip-

tion of stress induced genes.

Results

dMi-2 is recruited to HS genes in a PARP–dependent
manner

As shown previously, dMi-2 colocalised with active RNA

polymerase II (Pol II) on polytene chromosomes [23] (Figure 1A).

In addition, dMi-2 significantly colocalised with different forms of

elongating Pol II (Ser2P and Ser5P) and elongation factors (Spt5).

This suggests that dMi-2 may play an unanticipated role in active

transcription. Upon HS, dMi-2 associated with the loci 87A and

87C which contain multiple copies of the hsp70 gene (Figure 1B),

further strengthening a potential link between dMi-2 and active

transcription.

Chromatin immunoprecipitation (ChIP) analysis of dMi-2

binding to the activated hsp70 gene in Kc cells revealed an

enrichment of dMi-2 in the transcribed region (Figure 2A and 2B).

dMi-2 association was detected as early as 2 min after HS and

progressively increased for 20 min (Figure S1).

We considered three recruitment mechanisms:

First, dMi-2 might bind histone modifications enriched in

actively transcribed genes, such as H3K4me3 or H3K36me3.

However, we did not find a methylation sensitive interaction of

recombinant dMi-2 with histone peptides in pulldown assays (data

not shown).

Second, dMi-2 might bind and travel with RNA Pol II or

elongation factors. This hypothesis predicts that HS-dependent

dMi-2 recruitment to the transcribed part of hsp70 is transcription-

dependent. To test this hypothesis, we inhibited transcriptional

elongation with DRB (Figure 2C). Although this treatment

efficiently ablated production of hsp70 transcripts, it did not

significantly reduce HS-dependent recruitment of dMi-2. In

addition, we failed to detect robust biochemical interactions of

dMi-2 with RNA Pol II or elongation factors in co-immunopre-

cipitation assays (data not shown). We conclude that the HS-

dependent recruitment of dMi-2 to the hsp70 gene can be

uncoupled from the transcriptional activity of hsp70.

Third, dMi-2 might be recruited by interaction with PAR, a

modification that rapidly accumulates over the hsp70 locus upon

HS [3]. We therefore treated Kc cells with the small molecule

PARP inhibitor PJ34 (Figure 2D). This led to a significant decrease

of global PARylation levels, but did not abrogate hsp70

transcription or nucleosome depletion (Figure 2D and Figure

S2). Nevertheless, dMi-2 recruitment to hsp70 was severely

decreased during HS, suggesting that efficient PARylation of the

locus is a requirement for stress-dependent enrichment of dMi-2.

dMi-2 binds PAR
To determine whether dMi-2 binds PAR directly, we auto-

PARylated PARP1 in vitro and incubated the reaction with

immobilised dMi-2. mH2A1.1 which contains a macrodomain

known to interact with PAR was used as a positive control in this

assay. Western blot analysis revealed that dMi-2, like mH2A1.1,

bound PARylated PARP1 efficiently (Figure 3A). We confirmed

that dMi-2 also interacted with radioactively labeled PARylated

PARP1 (Figure S3). To ensure that dMi-2 interacted directly with

the PAR polymer, we assayed binding to purified PAR using a dot

blot assay (Figure S4). This verified the apparent direct interaction

between dMi-2 and PAR.

Author Summary

Cells respond to elevated temperatures with the rapid
activation of heat shock genes to ensure cellular survival.
Heat shock gene activation involves the synthesis of poly-
[ADP-ribose] (PAR) at heat shock loci, the opening of
chromatin structure, and the coordinated recruitment of
transcription factors and chromatin regulators RNA poly-
merase II and components of the RNA processing
machinery. The molecular roles of PAR and and ATP-
dependent chromatin remodelers in heat shock gene
activation are not clear. We show here that the chromatin
remodeler dMi-2 is recruited to Drosophila heat shock
genes in a PAR–dependent manner. We provide evidence
that recruitment involves direct binding of dMi-2 to PAR
polymers and identify novel PAR sensing regions in the
dMi-2 protein, including the chromodomains and a series
of motifs rich in K and R residues. Upon HS gene activation,
dMi-2 associates with nascent transcripts. In addition, we
find that dMi-2 and its catalytic activity are important for
heat shock gene activation and co-transcriptional RNA
processing efficiency. Our study uncovers a novel role of
PAR during heat shock gene activation and establishes an
unanticipated link between chromatin remodeler activity
and RNA processing.

PAR Recruits dMi-2 to Heat Shock Genes
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Next, we sought to define the dMi-2 region required for PAR

binding. We tested an array of dMi-2 truncation mutants for their

ability to interact with PARylated PARP1 in vitro (Figure 3B). This

revealed that the N-terminal region had a high affinity for PAR.

Within this part of dMi-2, both the PHD finger containing region

N-terminal of the chromodomains (aa 1-485) and (to a lesser

extent) the chromodomains (aa 484-690) were capable of binding

PAR. To verify these results we also tested binding of dMi-2

mutants to PAR in dot blot assays (Figure S4). We conclude that

dMi-2 possesses at least two PAR-sensing regions that can function

independently of each other.

PAR–binding activity is required for dMi-2 recruitment to
active HS loci

To assess the functional importance of dMi-29s PAR bind-

ing activity, we compared recruitment of GFP-dMi-2 fusion

proteins to the activated hsp70 loci in transgenic flies

(Figure 3C). GFP fused to full length dMi-2 and a GFP-dMi-2

fusion lacking the N-terminal PAR-binding regions were

expressed to similar levels in 3rd instar larvae and correctly

localised to salivary gland nuclei (Figure S5). Full length GFP-

dMi-2 was enriched at active HS loci, the PAR binding mutant,

however, failed to accumulate. This supports the notion that

dMi-2 binding to PAR makes an important contribution to the

recruitment of this nucleosome remodeler to the stress-activated

hsp70 gene.

Mapping of the PAR–binding regions
The N-terminal PAR binding region of dMi-2 contains two

highly conserved domains, a pair of PHD fingers (residues 377 to

484) and a tandem chromodomain (residues 488 to 673). We

generated GST fusions containing these domains and tested their

ability to bind PAR in dot blot assays (Figure S6). This confirmed

that the chromomodomains can bind PAR independently.

However, the PHD fingers did not display PAR binding activity.

We next sought to better define the PAR binding region near

the N-terminus of dMi-2. The N-terminal 375 residues of dMi-2

are characterised by a high content in charged residues (24% D/E,

21% R/K). This general feature is conserved between dMi-2 and

mammalian CHD4 proteins (Figure 4A). In addition, these

proteins share a region with high sequence similarity, the CHDNT

domain (Pfam family PF08073). The function of this domain is not

known. A number of diverse PAR binding motifs have recently

been identified [24–26]. A common feature of these motifs is that

they all contain several R/K residues that are interspersed by

hydrophobic residues which often play critical roles in mediating

PAR binding [24–26]. We subjected different dMi-2 fragments to

the PAR binding assay, including four K/R-rich fragments (K/R I

to IV in Figure 4A). This analysis revealed strong PAR binding

activity for three of the four K/R-rich fragments (K/R I, K/R II

and K/R IV; Figure 4B). By contrast, K/R-rich fragment II and a

fragment encompassing the CHDNT domain failed to interact

with PAR.

Taken together, our results suggest that dMi-2 contains multiple

PAR binding regions in its N-terminus: three are characterised by

a high content of basic amino acid residues (K/R I, K/R III and

K/R IV) and one region containing the tandem chromodomain.

dMi-2 interacts with nascent HS gene transcripts
PARylation of the hsp70 locus has been proposed to assist in the

opening of chromatin structure and to increase access of factors to

DNA and nascent hsp70 transcripts [1]. Given that dMi-2 localises

to the entire transcribed region and given that PAR exhibits

chemical and structural similarity to RNA, we speculated that

dMi-2, once recruited, might interact with nascent hsp70 RNA.

We immunoprecipitated dMi-2 from nuclear extracts of heat

shocked Kc cells and probed for the co-precipitation of nascent

(unprocessed) hsp70 and hsp83 RNA (Figure 5A). Indeed, two

independent dMi-2 antibodies precipitated these transcripts

arguing for a physical, potentially direct interaction. In agreement

with this, dMi-2 bound to single-stranded hsp70 RNA in an

electrophoretic mobility shift assay in vitro (Figure 5B).

Next, we performed competition assays to gain insight into the

relative affinities of dMi-2 for DNA, RNA and PAR and to

determine if dMi-2 can bind to several types of nucleic acid

simultaneously or if binding is competitive. First, we tested dMi-2

binding to RNA and DNA, respectively, in the presence of

increasing amounts of PAR in electrophoretic mobility shift assays

(mass ratios 1:1, 1:2 and 1:4; Figure 5C). In this assay, PAR was

able to compete with RNA and DNA for dMi-2 binding.

However, whereas dMi-2 no longer bound to DNA at a

DNA:PAR mass ratio of 1:2, residual dMi-2/RNA complexes

were still detectable at an RNA:PAR mass ratio of 1:4. This

suggests that dMi-2 has a higher binding affinity for RNA than for

DNA. We confirmed this hypothesis by incubating dMi-2 with

different mass ratios of RNA and DNA (Figure 5C): At a

DNA:RNA mass ratio of 1:1, dMi-2/RNA complexes formed

readily but dMi-2/DNA complexes were not detected. dMi-2/

RNA complexes formed even at DNA:RNA mass ratios of 4:1.

To test if RNA or DNA can compete with dMi-2 for binding to

the branched PAR polymer we performed dot blot assays (Figure

S7). RNA competed with immobilised PAR for binding to dMi-2

whereas DNA failed to do so.

Taken together, our results suggest that dMi-2 has a higher

affinity for binding to RNA and PAR than for binding to DNA. In

addition, dMi-2 appears to bind RNA and PAR in a mutually

exclusive manner. These results are consistent with the hypothesis

that dMi-2 is first recruited to HS loci by interaction with PAR

(which is produced prior to and independent of transcription) and,

once RNA synthesis has been strongly activated, switches to

binding the nascent RNA.

dMi-2 is required for efficient HS gene transcription and
processing

We hypothesised that dMi-2 binding to nascent RNA might

influence hsp70 transcription or processing. We used transgenic fly

lines to deplete dMi-2 by RNAi (Figure 6A). We subjected

transgenic larvae to HS and determined the HS gene transcription

by RT-QPCR. Although hsp70, hsp26 and hsp83 genes were all

activated by HS, transcript levels were severely reduced in dMi-2

depleted larvae compared to controls. Importantly, transcription

of a housekeeping gene was not significantly affected. We conclude

that dMi-2 makes a positive contribution to transcription and is

essential for full HS gene activation in larvae.

We next determined whether dMi-2 enzymatic activity was

required to activate HS genes. We generated transgenic fly lines

Figure 1. dMi-2 is recruited to HS genes. Immunofluorescence (IF) staining of polytene chromosomes with dMi-2, RNA polymerase II (pol IIser2
and pol IIser5), Spt5 antibodies and DAPI as indicated. (A) Untreated chromosomes. Arrows show prominent sites of colocalization. Lower panels
show magnified sections of individual chromosome arms. (B) Heat shocked chromosomes. Upper panels show magnified section containing the
hsp70 loci 87A and 87C (arrows).
doi:10.1371/journal.pgen.1002206.g001
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Figure 2. dMi-2 recruitment to HS genes requires PARP activity. (A and B) ChIP analyses of dMi-2 binding to the hsp70 gene in Kc cells. (A)
Upper panel: hsp70 gene and position of amplimers analysed (1: centred at -154, 2: +681). Middle panel: dMi-2 ChIP from cells treated with dsRNA
against luciferase or dMi-2 as indicated. prom (amplimer 1): promoter; ORF (amplimer 2): open reading frame; NHS: non heat shock; HS: heat shock.

PAR Recruits dMi-2 to Heat Shock Genes
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overexpressing wild type dMi-2 or a dMi-2 mutant carrying a

point mutation in the ATP binding site (K761R) predicted to

prevent ATP binding (Figure 6B). Indeed, dMi-2K761R could not

hydrolyse ATP in vitro (Figure S8). We subjected 3rd instar larvae

to HS and determined effects on HS gene transcription as before.

Whereas overexpression of wild type dMi-2 had little effect, levels

of HS gene transcripts were greatly reduced in larvae overex-

pressing the enzymatically inactive dMi-2 (Figure 6B). We

conclude that the ATPase activity of dMi-2 is essential for full

HS gene activation.

Next, we sought to assess whether dMi-2 influences RNA

processing. Because dMi-2 depletion and expression of enzymat-

ically inactive dMi-2 resulted in an overall reduction of hsp70

transcript levels we determined the ratio of 39 unprocessed to

total hsp70 RNA as a measure of RNA processing efficiency. We

reasoned that a mere reduction in hsp70 activation (e.g. a

reduction in the number of initiation events per time) would not

change the ratio of unprocessed to total hsp70 RNA. By contrast,

processing defects might give rise to a higher relative proportion

of unprocessed RNA and, therefore, to a higher unprocessed:total

RNA ratio. Depletion of dMi-2 increased the relative proportion

of unprocessed hsp70 RNA (Figure 7A). An even more striking

effect was observed in larvae overexpressing inactive dMi-2,

whereas overexpression of wild type dMi-2 was of little

consequence. Similar effects on 39 RNA processing were

observed with the hsp83 gene (data not shown). Hsp83 is one of

the few HS genes possessing an intron. Therefore, we determined

the ratio of unspliced to total hsp83 transcripts in transgenic

larvae (Figure 7B). Again, we observed a significant increase in

the relative proportion of unspliced RNA in dMi-2-depleted

larvae and in larvae overexpressing inactive enzyme. This

suggests that dMi-2 activity is required for the efficient processing

of HS gene transcripts and that dMi-2 affects both RNA 39 end

cleavage and splicing.

Discussion

dMi-2 associates with active genes
Mi-2 is strongly linked to transcriptional repression in both

vertebrate and invertebrate organisms. Within NuRD and dMec

complexes it contributes to the repression of cell type-specific

genes [11,14,19–21]. Therefore, the widespread colocalisation of

dMi-2 with active Pol II and elongation factors at many

chromosomal sites is surprising and suggests that dMi-2 might

play an unappreciated role during active transcription, at least (or

specifically) during environmental stresses such as HS. Indeed,

dMi-2 is recruited to HS genes within minutes of HS. This

property is not shared by other chromatin remodelers: Brahma

(BRM) is not enriched at HS puffs and HS gene activation is

independent of BRM function ([27] and data not shown).

Moreover, although imitation switch (ISWI) containing complexes

are important for HS gene transcription, ISWI does not

accumulate to high levels at active HS loci ([28,29] and data not

shown). Recruitment to HS puffs has previously been reported for

Drosophila CHD1 [30]. Thus, accumulation at active HS genes is

shared by at least two members of the CHD family of nucleosome

remodelers but not by SWI/SNF and ISWI proteins.

dMi-2 contributes to efficient HS gene transcription
Depletion of dMi-2 or a reduction of dMi-2 recruitment does

not significantly perturb hsp70 transcription in Kc cells and,

therefore, dMi-2 is dispensable for HS gene activation in this

system (Figure 2D and data not shown). By contrast, depletion of

dMi-2 in larvae strongly decreases hsp70, hsp26 and hsp83

activation (Figure 6A). It is possible, that the RNAi-mediated

depletion of dMi-2 is more efficient in transgenic flies compared to

cell lines. In addition, it is believed that several factors contributing

to HS gene activation are highly abundant or redundant in Kc

cells but more limiting in other contexts. Accordingly, FACT and

Spt6 are required for a HS gene activation in flies but are not

essential in Kc cells [31,32].

The strong decrease of HS gene activation in dMi-2 RNAi

larvae indicates a positive contribution of dMi-2 to transcription in

vivo. Overexpression of inactive dMi-2 also results in reduced HS

gene transcription implying that its enzymatic activity is critical

(Figure 6B). It is presently unclear whether this reflects a

requirement for dMi-2 catalysed nucleosome remodeling or

whether its activity is directed towards different substrates.

dMi-2 contributes to efficient RNA processing
While dMi-2 could indirectly influence transcription by

remodeling nucleosomes within the transcribed part of hsp70, its

physical association with nascent HS gene transcripts argues for a

more direct effect. Indeed, dMi-2 is not only required for high HS

gene mRNA levels, but also affects the efficiency of co-

transcriptional 39 end formation and splicing. A role of chromatin

remodelers in splicing has been suggested before: Both CHD1 and

BRG1 bind components of the splicing apparatus [33,34]. CHD1

associates with Pol II and binds nucleosomes containing

H3K4me3, which are enriched near the 59 end of active genes

[34,35]. BRG1 is present at the coding region of genes and

influences splice site choice [33,36]. It has been proposed that

CHD1 and BRG1 physically recruit splicing factors but it is

unclear if their ATPase activities play a role. Indeed, inactive

BRG1 retains the ability to affect exon choice [33,34]. Inefficient

processing of the hsp70 and hsp83 transcripts is not only observed

in larvae expressing reduced levels of dMi-2. Importantly, even

stronger processing defects are generated by overexpression of

inactive dMi-2 (Figure 7). This strongly suggests, for the first time,

that the catalytic activity of a chromatin remodeler is required for

correct co-transcriptional RNA processing. It remains to be

determined whether dMi-2 nucleosome remodeling activity

influences RNA processing indirectly, e.g. by altering Pol II

elongation rates, or whether it has a more direct role.

PAR–dependent recruitment of dMi-2
A series of complementary results support our hypothesis that

dMi-2 interacts with PAR polymers that are rapidly synthesized at

activated HS loci. First, the broad distribution of dMi-2 over the

entire transcribed region correlates with the distribution of PAR

polymer [3]. Second, pharmacological inhibition of PARP greatly

decreases dMi-2 binding to activated hsp70. Third, dMi-2 directly

binds PAR polymers in vitro. Fourth, an dMi-2 mutant unable to

bind PAR also fails to localise to active HS loci. As discussed

above, dMi-2 physically associates with nascent HS gene

Lower panel: Verification of RNAi knockdown by Western blot. (B) Upper panel: hsp70 gene and position of amplimers analysed (1: centred at -350; 2:
-154; 3: +58; 4: +681; 5: +1702; 6: +2065; 7: +2549). Lower panel: dMi-2 ChIP from NHS (black graph) and HS (gray graph) cells. (C and D) Effect of
elongation inhibitor DRB (C) and PARP inhibitor PJ34 (D) on dMi-2 recruitment to hsp70 gene. hsp70 gene and position of amplimers analysed are
shown on top (1: centred at +58; 2: +681; 3: +1702; 4: +2549). Left panels: ChIP analyses of dMi-2 binding to hsp70 gene. Right panels: RT-QPCR
analysis of hsp70 transcription. (D) Rightmost panel: anti-PAR Western blot of extracts from untreated and PJ34 treated Kc cells.
doi:10.1371/journal.pgen.1002206.g002
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Figure 3. dMi-2 binds PAR. (A) PAR was synthesised in vitro by recombinant PARP1 in the presence (+) or absence (-) of PJ34. Reactions were incubated
with control anti-Flag beads (beads) and beads loaded with dMi-2 or mH2a1.1 as indicated on top. Lanes 1, 2: input; Bound material was analysed by
Western blot using PARP1 (upper panel) and PAR (lower panel) antibodies. (B) Mapping PAR binding regions. Left panel: Schematic representation of dMi-2
constructs used. Amino acid boundaries are as follows: dMi-2WT: dMi-2 1-1982; dMi-2DCD: dMi-2 D485-690; dMi-2DN: 691-1982; dMi-2DC: dMi-2 1-1271;
dMi-2-CD+ATPase: dMi-2 484-1271; dMi-2-ATPase: dMi-2 691-1271; dMi-2N: dMi-2 1-690; dMi-2(1-485): dMi-2 1-485. Upper right panel: PAR binding assays
with dMi-2 mutants were performed as in (A). dMi-2 mutants are shown on top. Bound material was analysed by anti-PAR Western blot. Lane 1: input. Lower
right panel: Coomasie stained gel showing the dMi-2 constructs used. (C) Polytene chromosomes from transgenic larvae expressing GFP-dMi-2 transgenes
(dMi-2WT and dMi-2DN) were analysed by IF using GFP antibody (green) and DAPI (gray). Arrows point to hsp70 HS loci 87A and 87C.
doi:10.1371/journal.pgen.1002206.g003
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transcripts and binds RNA in vitro. While this interaction is

potentially important for the efficiency of transcription and

processing, it likely plays a minor role in dMi-2 targeting.

Accordingly, inhibition of transcriptional elongation has no

significant effect on dMi-2 recruitment (Figure 2C).

It is important to note, that while our results argue for an

important role of PAR binding in the recruitment of dMi-2 to HS

loci, we cannot exclude that protein-protein interactions with

histone or non-histone proteins also play a role.

dMi-2 PAR–binding
Our analysis indicates that dMi-2 harbours several PAR binding

motifs in its N-terminal region. Polo and colleagues have recently

demonstrated that human CHD4 is recruited to double stranded

DNA breaks in a PARP-dependent manner [10]. They have

mapped PAR binding activity to the region N-terminal of the

ATPase domain of CHD4. This agrees well with our data and

suggests that the PAR binding function of CHD4/dMi-2 has been

conserved in evolution.

Two structural protein modules directly interact with PAR, the

macrodomain and the PBZ domain; however, these domains are

not present in dMi-2 [5,7,37]. In addition, several shorter PAR

binding motifs have been identified [5,26]. These motifs bear little

sequence similarity but share the presence of several K/R residues

which are interspersed by hydrophobic residues. Our results have

uncovered three K/R-rich regions with PAR binding activity near

the N-terminus of dMi-2. Two of these three K/R-rich regions

(K/R III and K/R IV) consist of interspersed basic and

hydrophobic residues and are therefore reminiscent of the

previously described PAR binding motifs [24,25], the third (K/

R I) lacks hydrophobic residues completely. None of the three K/

R regions matches the consensus PAR binding motifs. It is possible

that a consensus motif should generally be chosen less stringently

and that a high content of K and R-residues in these regions is

sufficient to provide PAR binding activity in vitro. Further

characterisation of these regions will be required to resolve this

issue. In addition to the K/R regions, the tandem chromodomains

of dMi-2 bind PAR in vitro. We have previously shown that the

chromodomains are required for interacting with nucleosomal

DNA in vitro [38]. Our new data suggests that these domains can

interact with different nucleic acids.

Different functions of PAR in HS gene transcription
Several potential molecular functions of PARylation at HS

genes have been suggested. First, PARP activity is required for the

rapid loss of nucleosomes at hsp70 within the first two minutes after

HS [1]. It has been suggested that PARylation of histones aids

rapid nucleosome disassembly [1]. Second, at later stages of the

HS response (20–60 minutes after HS), PARP activity is required

to establish a compartment which restricts the diffusion of factors

such as Pol II and Spt6 and promotes efficient factor recycling [4].

Our results suggest that PARylation carries out a third task,

namely, to recruit factors via their direct interaction with PAR.

The earliest time point when we can detect dMi-2 binding to hsp70

is between 2 and 5 minutes after HS. This places dMi-2

recruitment between the early PARP-dependent nucleosome

removal (0–2 minutes after HS) and effects of the transcription

compartment (20–60 minutes after HS).

PAR versus RNA binding
The ability of dMi-2 to bind both PAR and RNA and the

finding that RNA can compete for PAR binding to dMi-2 is

consistent with the hypothesis that dMi-2 association with active

HS genes is a two step process (Figure 8). We propose that dMi-2 is

initially recruited via interaction with PAR polymers. Synthesis of

these starts prior to the onset of hsp70 transcription [1]. This results

in a rapid local increase of the dMi-2 concentration. In the second

step, when hsp70 transcripts are produced by elongating RNA

polymerase II at high rates, dMi-2 can switch from binding PAR

to interacting with nascent transcripts.

PAR signals rapid and efficient factor recruitment to
chromatin during stress

Severe cellular stresses, such as DNA strand breaks and acute

HS, must be dealt with quickly and efficiently. In both cases, a

multitude of factors are rapidly recruited to orchestrate the

repair of DNA and the massive transcriptional activation of HS

genes, respectively. We postulate that rapid synthesis of PAR

polymers at both DNA damage sites and HS genes affords

an efficient mechanism to recruit chromatin remodelers and

other factors. It has recently been shown that PARylation of

DNA breaks is instrumental in recruiting chromatin remo-

delers, including mammalian dMi-2 homologs, to damaged sites

[8,9,10,39,40,41]. Here, we show that dMi-29s recruitment to

activated HS genes requires PARP activity and that dMi-2 binds

PAR directly. The high local concentration of PAR polymers at

DNA breaks and HS genes might exploit the general affinity of

dMi-2 for nucleic acids. Indeed, dMi-2 binds both DNA and RNA

as well as PAR in vitro ([38] and this study). In this manner, PAR

polymers might act as a scaffold to redirect dMi-2 to chromatin

regions where high levels of dMi-2 activity are required, thus

acting as a stress-dependent, transient affinity site for chromatin

remodeling and possibly RNA processing activities (Figure 8).

Our results highlight a signaling and scaffolding function for

PARP activity during transient environmental stresses other than

DNA damage, suggesting that PARylation carries out important

modulatory functions in the stress-dependent reprogramming of

nuclear activities.

Materials and Methods

Chromatin immunoprecipitation (ChIP)
Kc cell HS treatment and ChIP was performed as decribed

using dMi-2C antibody [14,42]. For primer sequences see Dataset

S2. Triplicate mean values of percentage input DNA and standard

deviations are plotted. dMi-2 knockdown by RNAi was described

previously [23]. For RNAi primer sequences see Dataset S4.

Pharmacological treatments
Kc cells were treated with 125 mM DRB (Sigma) to inhibit

transcription and with 5 mM PJ34 (Alexis) to inhibit PARP activity

for 20 min before subjecting cells to HS.

Figure 4. PAR–binding regions of dMi-2. (A) Multiple sequence alignment of N-terminus of dMi-2 and human and mouse CHD4. All K and R
amino acid residues are coloured in red. Red lines indicate the four K/R rich regions. The black line indicates the CHDNT domain. (B) Mapping of PAR
binding regions in the N-terminal part of dMi-2. Upper panel: Schematic representation of dMi-2 constructs used. Numbers indicate the amino acid
borders of the constructs. (+) and (-) indicate binding to PAR. Middle panel: Coomasie stained gels with purified GST-dMi-2 fragments used for PARP
pulldown assays. Lower panel: PAR binding assays with GST-dMi-2 fragments were performed as in Figure 3B. Bound material was analysed by anti-
PAR Western blot. Lanes 1 and 8: inputs.
doi:10.1371/journal.pgen.1002206.g004
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Polytene chromosomes
Chromosomes were prepared as before [23]. The following

antibodies were used: Primary antibodies: anti-dMi-2N (rabbit)

1:200, anti-pol II (mouse H5, Covance) 1:50, anti-GFP (rabbit,

Abcam) 1:50, anti-Spt5 (guinea pig) 1:200. Secondary antibodies:

Alexa Fluor 488 goat anti-rabbit 1:200, Alexa Fluor 546 goat anti-

mouse or anti-guinea pig 1:200 (Invitrogen).

Analysis was performed with a Zeiss fluorescence microscope

(Axioplan).

Generation of baculovirus and GST-fusion vectors
For baculovirus production, dMi-2 mutants (aa 1-691) and (aa

1-485) were generated by PCR using appropriate sets of primers

and cloned with NotI and XbaI into the pVL1392 transfer vector.

Vectors for dMi-2 WT and other mutants were described

previously [38]. dMi-2 GST-fusion fragments were generated by

PCR using appropriate sets of primers and cloned with NotI and

SalI into the pGEX4T1 vector. All constructs were verified by

DNA sequencing. For primer sequences see Dataset S1.

Preparation of protein extracts, purification of
recombinant proteins, and ATPase assay

Protein extracts from 3rd instar larvae were prepared as

described in [14].

Purification of recombinant dMi-2 and ATPase assays are

described [23]. Recombinant mH2A1.1 was purified as in [43].

GST-fusion proteins were expressed in E.coli BL21(DE3) and

purified with Glutathione Sepharose 4 Fast flow (GE Healthcare)

according to the manufacturer’s instructions.

Electrophoretic mobility shift assays (EMSA)
A typical DNA or RNA binding reaction (25 ml) was performed

in the presence of 0.2 mg of dMi-2F and 80 ng of nucleic acid

(DNA or ssRNA) in 40 mM KCl, 20 mM Tris pH 7.6, 1.5 mM

MgCl2, 0.5 mM EGTA, 10% glycerol, BSA (200 ng/ml), 1 mM

DTT (supplemented with 0.4 units of RNAsin). For competition

assays, samples were preincubated for 15 min at 26uC before the

different amounts of competitor (PAR or DNA or RNA) were

added. Reactions were further incubated at 26uC for 75 min.

Products were analyzed on 6% native PAA gel and visualized

with ethidium bromide (EtBr) staining. ssRNA was synthesized

by in vitro transcription using a fragment of hsp70 DNA

as a template. This template (also used for the DNA band-

shift assays) was produced by PCR amplification of cDNA

derived from heat shocked Kc cells using the following primers:

T7-hsp70_f - TAATACGACTCACTATAGGGCCTACGGA-

CTGGACAAGAAC and hsp70_r -AGGGTTGGAGCGCA-

GATCCTTCTTGTAC.

RNA isolation and RT-QPCR
Total RNA was isolated from 3rd instar larvae using PeqGold

total RNA Kit (PeqLab). 10-12 larvae from each cross were pestled

in 400 ml of lysis buffer before loading the material on the column.

1 mg of RNA was reverse transcribed by incubation with 0.3 mg of

random primers (Invitrogene) and 100 U of M-MLV reverse

transcriptase (Invitrogen). cDNA synthesis was performed accord-

ing to the manufacturer’s protocol. cDNA was analyzed by QPCR

using Absolute SybrGreen Mix (Thermo Fisher) and the Mx3000P

real-time detection system (Agilent). For primer sequences used in

RT-QPCR see Dataset S3. All amplifications were performed in

triplicate using 0.6 ml of cDNA per reaction. Triplicate mean

values were calculated according to the DDCt quantification

method using rp49 gene transcription as reference for normaliza-

tion. Relative mRNA levels in uninduced control larvae were set

to 1 and other values were expressed relative to this. The RT-

QPCR results were reproduced several times using independent

fly crosses and representative data sets are shown.

RNA immunoprecipitation
RNA immunoprecipitation was performed as described previ-

ously [44]. Briefly, Kc cells were crosslinked as for ChIP. Cells

were washed once with PBS buffer and lysed on ice for 15 min in

FA buffer (50 mM Hepes- KOH, pH 7,6, 140 mM NaCl, 1%

Triton X-100, 0,1% sodium deoxycholate, proteinase inhibitors,

RNAsin (100 u/ml of buffer)). Cells were sonicated, spun down

and chromatin was digested with DNAse I. The chromatin

containing solution was adjusted to 25 mM MgCl2 and 5 mM

CaCl2. 1 ul of DNAse I (Qiagen) was added and reactions were

incubated for 10 min at room temperature and then stopped with

20 mM EDTA. Chromatin was spun down for 10 min

(13000 rpm) at 4uC. 300 ml of chromatin was used for IP. 2 ml

of anti-dMi-2(C) and anti-dMi-2(N) antibodies, 2 ml rabbit IgG,

2 ml rabbit preimmuneserum and beads only (control) and were

used for IP. Samples were incubated over night at 4uC. RNA-

protein complexes were precipitated with 30 ul of 50% protein G

Sepharose beads for 2 hr at 4uC. IPs were washed 5 times in FA

buffer, twice with TE buffer and eluted twice with 100 ml of

elution buffer (100 mm Tris HCl, pH 8,0, 10 mM EDTA, 1%

SDS) – once at room temperature and once at 65uC. All buffers

were supplemented with RNAse inhibitor (RNAsin, Promega). All

samples were digested with proteinase K for 1 hr at 42uC and

decrosslinking was performed at 65uC over night. Immunopre-

cipitated RNA was purified using PeqGold total RNA Kit

(PeqLab), digested with DNAse on the column and eluted with

30 ml of RNAse free dH20. cDNA was synthesized with 10 ml of

eluted RNA and 2 ml of input with random hexamers and

analysed by Q-PCR with appropriate primer pairs.

Figure 5. dMi-2 binds RNA. (A) RNA immunoprecipitation (RIP) of hsp70 and hsp83 unprocessed transcripts from heat shocked Kc cells. RIP was
performed with two independent dMi-2 antibodies (dMi-2C and dMi-2N), IgG, preimmune serum and protein G beads as indicated. Primer pairs that
specifically amplify actin5c, rp49 and unprocessed hsp70 and hsp83 transcripts (see Figure 7) were used for RT-QPCR. (B) RNA electrophoretic mobility
shift assay. Single stranded hsp70 RNA was incubated with recombinant dMi-2. Lane 2: 0.1 mg dMi-2, lane 3: 0.2 mg dMi-2, lane 1: no protein. RNA and
RNA:protein complexes were resolved by electrophoresis and visualized with ethidium bromide. Position of unbound RNA probe is indicated. (C)
Competition mobility shift assays. Upper left panel: Single stranded hsp70 RNA was incubated with 0.2 mg of recombinant dMi-2 in the absence or in
the presence of increasing amounts of PAR polymer, as indicated. Upper right panel: hsp70 DNA was incubated with 0.2 mg of recombinant dMi-2 in
the absence or in the presence of increasing amounts of PAR polymer, as indicated. The following mass ratios of RNA to PAR or DNA to PAR were
used: lane 3 - 1:1, lane 4 -1:2, lane 5 -1:4. Positions of unbound RNA and DNA probes are indicated. Lower left panel: Single stranded hsp70 RNA was
incubated with 0.2 mg of recombinant dMi-2 in the absence or in the presence of increasing amounts of DNA, as indicated. Lower right panel: hsp70
DNA was incubated with 0.2 mg of recombinant dMi-2 in the absence or in the presence of increasing amounts of RNA, as indicated. The following
weight ratios of RNA to DNA or DNA to RNA were used: line 3 - 1:1, lane 4 -1:2, lane 5 -1:4. Positions of unbound RNA and DNA probes and dMi-2/DNA
and dMi-2/RNA complexes are shown on the right.
doi:10.1371/journal.pgen.1002206.g005
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PARP/PAR pulldowns
Non-radioactive PAR synthesis was performed according to

the standard protocol [45]. Briefly, PARP reactions were set up in

a final volume of 0.5 ml: 2 mg recombinant Parp1, 100 mM Tris-

HCl, pH 7.5, 50 mM NaCl, 10 mM MgCl2, 2 mg/ml DNA

oligonucleotides, 1 mM NAD+, 1 mM DTT. Reactions were

incubated at 37uC for 25 min. PJ34 inhibitor was added before

the reaction to control samples to a final concentration of 5 mM.

All reactions were stopped with PJ34. Control beads and beads

with bound proteins (dMi-2, dMi-2 mutants and mH2A1.1 or

GST fusions) were equilibrated in binding buffer (50 mM Tris,

pH 8.0, 0,2 mM DTT, 4 mM MgCl2, 200 mM NaCl, 0,1% NP-

40). 10 ml of bead-bound proteins were used for each pulldown.

Pulldowns were performed with the whole PARP reaction

(0.5 ml) and 500 ml of binding buffer (for baculovirus expressed

proteins) or in 250 ml of PARP reaction and 250 ml of binding

buffer (for GST fusions) for 1 hr at 4uC. After extensive washing

(5 times), beads were boiled in SDS loading buffer, loaded on 4–

12% gradient SDS-Page gels and analysed by Western blot. For

Western blot anti-PAR (10H, 1:500) antibodies were used.

mH2A1.1 was used as a positive control. Radioactive pulldown

reactions were prepared in the same way, in the presence of 2 ml

of radioactive NAD+ (PerkinElmer). After washing, samples were

resuspended in 30 ml of SDS-loading buffer and 10 ml was

resolved by SDS PAGE. The gel was dried and and subjected to

autoradiography.

Generation of transgenic fly strains and the PAR dot blot assay

are described in Text S1.

Figure 6. dMi-2 is required for efficient HS gene transcription. (A) Left panel: Verification of dMi-2 knockdown in control and dMi-2 RNAi
larvae. Control flies and flies carrying an dMi-2 RNAi transgene under UAS control were crossed with a da-GAL4 driver strain. Extracts from third instar
larvae were subjected to Western Blot. Antibodies used are indicated on the right. Right panel: RT-QPCR analysis of hsp70, hsp26, hsp83 and actin5c
expression in control and dMi-2 RNAi larvae. Values are expressed relative to the value in NHS control larvae. (B) Left panel: Verification of dMi-2
transgene expression in larvae by anti-Flag Western blot. Right panel: RT-QPCR analysis of hsp70, hsp26, hsp83 and GAPDH expression in control and
transgenic larvae.
doi:10.1371/journal.pgen.1002206.g006

PAR Recruits dMi-2 to Heat Shock Genes

PLoS Genetics | www.plosgenetics.org 12 July 2011 | Volume 7 | Issue 7 | e1002206



Figure 7. dMi-2 is required for efficient RNA processing. (A and B) Upper panels: Schematic representations of the hsp70 and hsp83 genes.
RT-QPCR amplimers, hsp70 cleavage site, hsp83 intron and transcriptional start sites (TSS) are shown. (A) Lower panel: RT-QPCR from control and
transgenic larvae. The ratio between 39 unprocessed and total hsp70 RNA was determined (hsp70: amplimer 2/amplimer 1). The ratio obtained for
control larvae was set to 1, other ratios were expressed relative to this. (B) Lower panel: The ratio between unspliced and total hsp83 RNA was
determined (hsp83: amplimer 1/amplimer 2) and plotted as in (A).
doi:10.1371/journal.pgen.1002206.g007

Figure 8. Model. Upon HS, PARylation of the locus creates binding sites for PAR-sensing regions of dMi-2. dMi-2 is recruited and, subsequently,
interacts with nascent transcripts to support transcription and processing. GAF: GAGA Factor, HSE: HS elements.
doi:10.1371/journal.pgen.1002206.g008
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Dataset S1 Sequences of primers used for cloning.

(DOCX)

Dataset S2 Sequences of primers used for ChIP.

(DOCX)

Dataset S3 Sequences of primers used for RT-QPCR.

(DOCX)

Dataset S4 Sequences of primers used for ds RNA synthesis

(RNAi).

(DOCX)

Text S1 Supporting protocols: Fly strains, transgenesis and dot

blot assay.

(DOC)

Figure S1 Kinetic analysis of dMi-2 binding to hsp70 gene during

heat shock. dMi-2 binding to hsp70 gene was determined by ChIP

under NHS conditions and at different time points following heat

shock as indicated. Amplimers were centered as follows: 1, -154 bp;

2, +58 bp; 3, +681 bp; 4, +1427 bp; 5, + 2549 bp.

(TIF)

Figure S2 H3 ChIP on hsp70 gene upon PJ34 treatment. dMi-2

binding to hsp70 gene was determined by ChIP under NHS

conditions and at different time points in the absence or in the

presence of PJ34, as indicated. Amplimers were centered as follows:

1, -154 bp; 2, +58 bp; 3, +681 bp; 4, +1427 bp; 5, + 2549 bp.

(TIF)

Figure S3 Pulldown with whole PAR reaction. Experiment was

performed as in Figure 3A with a difference that radioactive

NAD+ was used for PAR synthesis. Samples were run on the gel,

gel was dried and exposed overnight on the X-ray film.

(TIF)

Figure S4 PAR binding assay. Dot blot with purified PAR.

BSA or recombinant dMi-2 WT and indicated mutants were

spotted on the nitrocellulose and incubated with PAR. Upon

extensive washes, membrane was subjected to Western Blot

analysis with anti-PAR antibodies. After stripping, membrane

was probed with anti-Flag antibodies to monitor the amount of

proteins spotted.

(TIF)

Figure S5 PAR binding assay. Upper panel: Dot blot with

purified PAR. GST-fusion proteins and GST were spotted on the

nitrocellulose and incubated with PAR. Upon extensive washes

with low salt (150 mM) or high salt (500 mM), membranes were

subjected to Western Blot analysis with anti-PAR antibodies.

Lower panel: Coomasie stained gel with purified proteins used for

PAR binding assay. Chromo - chromodomains of dMi-2 (aa 488-

712), PHDs – PHD fingers of dMi-2 (aa 377-490).

(TIF)

Figure S6 Expression analysis of GFP-tagged transgenes. Left

panel – whole salivary glands from flies crossed to the salivary

gland-specific sgs58ABGAL4 driver were analysed for GFP

expression. Right panel: larval extracts derived from control

(w1118) larvae (line 1) and larvae expressing GFPtagged dMi-

2WT (lane 3) or dMi-2DN transgene (lane 2) crossed to daughterless-

GAL4 driver were analysed by western blot using GFP antibodies.

(TIF)

Figure S7 Competition of PAR binding with RNA and DNA.

(A) Dot blot with purified PAR. dMi-2 WT was spotted on the

nitrocellulose and incubated with PAR. Upon extensive washes

membranes were subjected to Western Blot analysis with anti-PAR

antibodies (upper panel), Ponceau staining indicates the amount of

protein spotted (lower panel). When indicated, membranes were

preincubated with increasing amounts of RNA (lanes: 2,3 and 4)

followed by incubation with PAR. Lane 1: dMi-2 was preincu-

bated with buffer only. (A) Dot blot with purified PAR. dMi-2 WT

was spotted on the nitrocellulose and incubated with PAR. When

indicated, membranes were preincubated with increasing amounts

of DNA (lanes: 2,3 and 4) followed by incubation with PAR. Lane

1: dMi-2 was preincubated with buffer only.

(TIF)

Figure S8 dMi-2 K761R mutant is catalytically inactive. Upper

panel: a Coomasie gel with dMi-2 WT and dMi-2 K761R mutant.

Lower panel: ATPase assay with wild type and mutant form of

dMi-2 in the presence of nucleosomes.

(TIF)
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