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Abstract

The sandwich estimator, often known as the robust covariance matrix estimator or
the empirical covariance matrix estimator, has achieved increasing use with the growing
popularity of generalized estimating equations. Its virtue is that it provides consistent
estimates of the covariance matrix for parameter estimates even when the fitted para-
metric model fails to hold, or is not even specified. Surprisingly though, there has
been little discussion of the properties of the sandwich method other than consistency.
We investigate the sandwich estimator in quasilikelihood models asymptotically, and
in the linear case analytically. Under certain circumstances we show that when the
quasilikelihood model is correct, the sandwich estimate is often far more variable than
the usual parametric variance estimate. The increased variance is a fixed feature of the
method, and the price one pays to obtain consistency even when the parametric model
fails. We show that the additional variability directly affects the coverage probability
of confidence intervals constructed from sandwich variance estimates. In fact the use
of sandwich estimates combined with ¢-distribution quantiles gives confidence intervals
with coverage probability falling below the nominal value. We propose a simple adjust-
ment to compensate this defect, where the adjustment explicitly considers the variance
of the sandwich estimate.
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1 Introduction

Sandwich variance estimators are a common tool used for variance estimation of param-
eter estimates. Originally introduced by Huber (1967) and White (1982), the method is
now widely used in the context of generalized estimating equations, see e.g. Liang & Zeger
(1986), Liang, Zeger & Qaqish (1992) and Diggle, Liang & Zeger (1994). Efficient estimation
of parameters in this setting requires the specification of a correlation structure among the
observations, which however typically is unknown. Therefore a so-called working covariance
matrix is used in the estimation step, which for variance estimation is combined with its
corresponding empirical version in a sandwich form. This approach yields consistent esti-
mates of the covariance matrix without making distributional assumptions; and even if the
assumed model underlying the parameter estimates is incorrect. Because of this desirable
model-robustness property, the sandwich estimator is often called the robust covariance ma-
triz estimator, or the empirical covariance matriz estimator. The argument in favor of the
sandwich estimate is that asymptotic normality and proper coverage confidence intervals
require only a consistent variance estimate, so there is no great need to construct a highly
accurate covariance matrix estimate. This consistency however has its price in an increase
of the variability, i.e. sandwich variance estimators generally have a larger variance than
model based classical variance estimates. In his discussion of the paper by Wu (1986), Efron
(1986) gives simulation evidence of this phenomenon. Breslow (1990) demonstrated this in
a simulation study of overdispersed Poisson regression. Firth (1992) and McCullagh (1992)
both raise concerns that the sandwich estimator may be particularly inefficient. Diggle et al.
(1994, page 77) suggest that it is best used when the data come from “many experimental
units”. An earlier discussion about small sample improvements for the sandwich estimate is

found in MacKinnon & White (1985), who propose jackknife sandwich estimates.

The objectives of this paper are twofold, first we investigate the sandwich estimate in

terms of efficiency and secondly we analyze the effect of the increased variability of the



sandwich estimate on the coverage probability of confidence intervals. For efficiency we
derive asymptotic as well as fairly precise small sample properties, neither of which appear
to have been quantified before. For example, the sandwich method in simple linear regression
when estimating the slope has an asymptotic efficiency equal to the inverse of the sample
kurtosis of the design values. This inefficiency holds in generalized linear models as well. For
example, in simple linear logistic regression, at the null value where there is no effect due
to the predictor, the sandwich method’s asymptotic relative efficiency is again the inverse
of the kurtosis of the predictors. In Poisson regression, the sandwich method has even less

efficiency.

The problem of coverage probability of confidence intervals built from sandwich variance
estimates is discussed in the second part of the paper. Simulation studies given by Wu
(1986) and Breslow (1990) report somewhat elevated levels of Wald-type tests based on
the sandwich estimator. Rothenberg (1988) derives an adjusted distribution function for
the t-statistic calculated from sandwich variance estimates. We give a different theoretical
justification for the empirical fact that confidence intervals calculated from sandwich variance
estimates and ¢-distribution quantiles are generally too small, i.e. the coverage probability
falls below the nominal value. We show that undercoverage is mainly determined by the
variance of the variance estimate. To correct this deficit we present a simple adjustment
which depends on normal distribution quantiles and the variance of the sandwich variance

estimate.

The paper is organized as follows. In Section 2 we compare the sandwich estimator
with the usual parametric regression estimator in the homoscedastic linear regression model.
Section 3 gives a discussion of the sandwich estimate for quasilikelihood and generalized
estimating equations (GEE). Some simulations are presented in Section 4 where we suggest
a simple adjustment which improves coverage probability. Section 5 contains concluding

remarks. Proofs and general statements are given in the Appendix.



2 Linear Regression

2.1 The Sandwich Estimator

Consider the simple linear regression model y; = x;/3 +¢;, i = 1,...,n where x] are 1 x p
dimensional vectors of covariates and e; ~ N(0,02). Let 8 = (XTX) XY be the ordinary
least squares estimator of 3 where YT = (y,...y,) and XT = (x;,...x,). Assume now

T

that we are interested in inference about the linear combination z* 3, where z' is a 1 x p

Ty = 1. The variance of z'/3 is given by

dimensional contrast vector of unit length, i.e. z
var(z'B) = 022" (XTX) "'z which can be estimated by the classical model based variance
estimator Vyoge = 6227 (XTX) 1z where 62 = Y7, €2/(n — p) with & = Y; — x'3 as fitted
residuals. A major assumption implicitly used in the calculation of V},,4e; is that the errors e;
are homoscedastic. If this assumption is violated V,,,,q¢; does not provide a consistent variance

estimate. In contrast even if the errors are not homoscedastic the sandwich variance estimate

Viana = 2" (X'X)™ sz N(X'TX) 'z = Za (1)
consistently estimates var(z”8), where a; = z7(XTX) 'x;. In linear regression, (1) is often

multiplied by n/(n — p) (Hinkley, 1977) to reduce the bias.
2.2 Properties of Sandwich Estimator

Let h; be the i-th digonal element of the hat matrix H = X(X'X)™'X" = (h;;). Under

homoscedasticity, F(é?) = 0?(1 — hy;). It then follows that

E(Vaana) = 0?2z (XTX) " z(1 - b,), (2)

where b, = Y0, hya?/ 3" a? < maxj<;<n hi;. Since b, > 0 one obtains that in general
the sandwich estimator is biased downward. The bias thereby depends on the design of x;
and it can be substantial when there are leverage points. Bias problems can be avoided by
replacing ¢ in (1) by & = €/(1— h;;)'/2. The resulting estimator is refered to as the unbiased

sandwich variance estimator and denoted by Viuua. (Wu, 1986, equation 2.6). It is easily
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seen that E(Vigngw) = var(z™B). Since var(é?) = 20* and cov(e?, &) = 2h%0t for i # j,

i1 €j

where Eij = hZ]/{(l — h”)(l — hjj)}l/Q, it follows that

var(Vsand,u) Za var(€%) + > a? a cov ez,e] = 204Za + 2042%2@?}112] (3)
1#£] 1]

We now compare the variance (3) to the variance of the model based variance estimator

V nodet Which equals var(Vige) & 20*{z" (X X)) '2}?/n = 20* (X a?)?/n.

Theorem 1: Under the homoscedastic linear model the efficiency of the unbiased sandwich
estimate V44, compared to the classical variance estimate V4 for ZTB satisty:

{n~! ﬁ;a;*}{n-l 2} > 1 (4)

Var(Vsand,u)
var (Vmodel)

The proof follows directly from the Cauchy Schwarz inequality. Theorem 1 states that
the sandwich estimate is less efficient when the model is correct, i.e. when the errors are

homescedastic.

Example 1 (the intercept): Suppose the first column of X is a vector of ones, the other
columns have means of zero, and z' = (1,0,...,0). We then have a; = n ! and the

asymptotic relative efficiency in (4) is 1.

Example 2 (the slope in simple linear regression): Assume x; = (1,u;) where > u; = 0.
Suppose z = (0,1) so that B, = z7[3 is the slope estimate. Because h; = n~H 1 + u?),
the design sequence is regular as long as max(|u;|) = o(n'/*), in which case the asymptotic
relative efficiency is k, !, where k, = n" 'Y u}/(n" 1 ¥, u?)? > 1. Note that s, is the
sample kurtosis of the design points ;. For instance if the design points (uq, ..., u,) were
realizations of a normal distribution, s, — 3 and hence the sandwich estimator V4nq, has
3 times the variability of the usual model based estimator V,,,q4¢;- If the design points were

generated from a Laplace distribution, the usual sandwich estimator is 6 times more variable.

The examples above show that the use of sandwich variance estimates in linear models can
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lead to a substantial loss of efficiency. A similar phenomena occurs in nonlinear models as

discussed in the next section.

3 Quasilikelihood and Generalized Estimating Equations

3.1 The Sandwich Estimate

In the following section we consider the sandwich variance estimate in generalized estimating
equations (GEE). Let Y; = (vi1,.-.,%m)", be a random vector taken at the i-th unit, for
t = 1,...,n. The components of Y; are allowed to be correlated while observations taken
at two different units are independent. The mean of Y; given the m X p dimensional design
matrix X} is given by the generalized linear model E(Y;|X;) = h(XI3), where h(-) is an
invertible m dimensional link function. We assume that the variance matrix of Y; depends
on the mean of V;, i.e. var(V;|X;) = 0%V (y;) =: 0?V; where p; = h(X8), V(-) is a known

2 is a dispersion scalar which is either unknown, e.g. for normal

variance function and o
response, or a known constant, e.g. o> = 1 for Poisson data. Models of this type are referred
to as marginal models, see e.g. Diggle et al. (1994) and references given there. If Y is a scalar,
i.e. if m = 1, models of this type are also known as quasilikelihood models ( Wedderburn,
1974) or generalized linear models ( McCullagh & Nelder, 1989). The parameter 3 can be

estimated using the generalized estimating equation ( e.g. Liang & Zeger, 1986 or Gourieroux,

Monfort and Trognon. 1984)

oyt
0=> 8/,2 Vi (Vi — ). (5)

i

In the previous section, we were able to perform exact calculations. In quasilikelihood
models, such exact calculations are not feasible, and asymptotics are required. We will not
write down formal regularity conditions, but essentially what is necessary is that sufficient
moments of the components of X and Y exist, as well as sufficient smoothness of A(-). Under

such conditions a Taylor expansion of (5) about the true parameter 3 provides the first order



approximation

B-p — Za‘“v (Vi — )+ Op(n ), (6)

where Q = ¥, 0p /(08) V' 0u;/(08). Assume that we are interested in inference about
z"B. If V; is correctly specified, i.e. 02V, = var(V;|X;), one gets var(z'8) = z'Q 'z0? in
first order approximation. Hence we can estimate Var(ZTB) by Vieder :== 0 2,TQ) Z where
Qisa simple plug in estimate of £ and 52 an estimate of the dispersion parameter, if this is
unknown. However in practice the covariance var(Y;|X;) may not be known so that V; serves
as prior estimate of the covariance in (5). In this case V; is called the working covariance

and the variance var(zTB) can be estimated by the sandwich formula

~ a,u ~ ~ — a.uz
Vi =2"Q Ve Vi i o
=0 (25 )% v

where ¢, = Y, — i; = Y; — h(XZ,B) are the fitted residuals and the hat notation refers to
simple plug in estimates. The fitted residuals can be expanded by €; = €; — a,ui/(a,BT)(@ —
B){1 + O,(n~"?)} which gives with (6) E(&€]) = 0>V, — 020u;/(08%) Q' dul /(0B){1 +
O(n 1)}, assuming that V; correctly specifies the covariance, i.e. E(e€l) = 0?V,. Since
Oui/(08") Q7 oul /(08) is positive definite one finds the sandwich estimate Vg4 to be
biased downward. As in the previous section the bias can be corrected. With H;; =
Api/ (08T 0ur /(08)V; ! we define the the leverage-adjusted residual €; = (I—H;;) 2 ¢

with I as identity matrix. Replacing now € in (7) by € gives the bias reduced sandwich esti-
mate Vgna, which fulfills E(Vgnau) = var(zTB){l + O(n~1)}, assuming that the variance

is correctly specified.
3.2 Examples

In quasilikelihood and generalized estimating equations, variance estimates have two different

sources of stochastic variation. The first occurs due to the estimation of the dispersion

2

parameter o, if this is unknown. The second occurs due to the use of plug in estimates,
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which applies if the variance function V(1) depends on the mean or if the link function A(-)
is not canonical. In the following two examples we investigate how the latter source affects
the loss of efficiency for the sandwich variance estimate. We consider a Poisson and Binomial
model where 02 = 1 is fixed, but variability of the variance estimate occurs due to plug in

estimation. A general theoretical derivation is given in the appendix.

Example 3 (Poisson loglinear regression): We consider the univariate model E(y;|x) =
exp(x} @) where x; = (1, u;) with u; as scalar, 3 = (8, 31)* and y; being Poisson distributed.
The slope §; is the parameter of interest and we investigate the null case 8 = (1,0)7T.
Then, as seen in the appendix, if u has a symmetric distribution, var(V suna)/var(Vieder) =
kn{l + 2exp(By)} where k, = n~ '3, ui/(n~' 3, u?)? is the sample kurtosis as in Example
2 above. The additional variability in the Poisson case is somewhat surprising, namely that
as the background event rate exp(/f3y) increases, at the null case the sandwich estimator has

efficiency decreasing to zero.

Example 4 (Logistic Regression): Let y; be binary with F(y;|x;) = logit '(x]3) with x;
as described above. Again, the slope (3, is the parameter of interest. We vary (3, while
choosing (3 so that marginally F(y|x) = 0.10. With §; = 0.0,0.5,1.0,1.5, the asymp-
totic relative efficiency var(Vgna)/var(Viae) varies for u; standard normally distributed
as 3.00,2.59,1.92, 1.62, respectively. When u; comes from a Laplace distribution (with unit
variance), the corresponding efficiencies are 6.00,4.36, 3.31,2.57. Note that in both cases, at
the null case 1 = 0, the efficiency of the sandwich estimator is exactly the same as the linear
regression problem. This is no numerical fluke, and in fact can be shown to hold generally

when u has a symmetric distribution.

The above two examples show that the loss of efficiency of the sandwich variance estimate

in non-normal models differs from and can be worse than compared to normal models.
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4 Confidence Intervals based on Sandwich Variance Estimates

4.1 The Property of Undercoverage

In the following section we investigate the effect of the additional variability of the sand-
wich variance estimate on the coverage probability of confidence intervals. As one would
expect, the excess variability of the sandwich estimate is directly reflected in undercover-
age of confidence intervals. We concentrate on normal response models. Let § = z*3 be
the unknown parameter of interest with § = zT3 ~ N(0,02/n) as unbiased estimate of 0
based on a random sample of size n. We consider the symmetric 1 — « confidence intervals
CI(0% a) := [0 % z,0/\/n] where z, is the p = 1 — /2 quantile of the standard normal
distribution. If o2 is estimated by an unbiased variance estimate 62 it is well known that
the confidence interval C1(5%, o) shows undercoverage and typically ¢-distribution quantiles
are used instead of normal quantiles. The following theorem shows how the variance of the

variance estimate 62 directly affects affect the undercoverage.

Theorem 2: Under the assumptions above and assuming that 62 and 0—0 are independent,

the coverage probability of the 1 — « confidence interval C'I(6%, o) equals

P{0 € CI(G* a)} = 1—a-— ¢(z)var(?) (Zg&%

Jrown

where ¢(-) is the standard normal distribution density.

The proof of the theorem is given in the appendix. One should note that the postulated
assumption of independence of 62 and f — 0 holds in a normal regression model if 52 is
calculated from fitted residuals. Hence it holds for sandwich variance estimates. It is seen
from (8) that the coverage probability of the confidence interval falls below the the nominal
value. Moreover, the undercoverage increases linearly with the variance of the variance

2

estimate 0°. Using the results of Theorem 1 we therefore find that the sandwich variance



estimator can be expected to have lower coverage probability for confidence intervals than
for model based variance estimates. Moreover, t—distribution quantiles instead of normal
quantiles do not correct the undercoverage. The result in Theorem 2 resembles that given
in Rothenberg (1988, p. 1005) who derives an adjustment for the distribution function of
the t statistic based on sandwich variance estimates. In contrast to Rothenberg, Theorem
2 points out the distinct role of the variance of the variance estimate which is used in the

following section to correct the undercoverage.
4.2 A Simple Coverage Adjustment

Formula (8) can be employed to construct a simple coverage correction for confidence inter-
vals. Instead of using the quantile z, directly we suggest choosing p > p and make use of
the z; quantile. We thereby select p such that P(6 € [0+ 2yG/+/n]) = p holds, i.e. using (8)

we solve

3 -
2=+ Z;

b= - dlpvar(e?) L ©)

for p iteratively which is easily carried out numerically.

Example 5 (t-distribution quantiles): We demonstrate the above correction in a setting
where an exact solution is available. Let the random sample y; ~ N(u,0?) be drawn from
an univariate normal distribution. The mean is estimated by fi = 27 y;/n so that n'/?(fi— )
is N(0,0?%) distributed. The variance o2 in turn is estimated by 62 = 7" (y; — 11)?/(n — 1).
Exact quantiles for confidence intervals based on the estimates ji and 52 are available from
t-distribution quantiles with n — 1 degrees of freedom. Approximative quantiles z; follow
from solving (9) using var(6?) = 20*/(n — 1). One should note that the unknown variance
in (9) cancels out so that estimation of o* is not required for the calculation of z;. In Table
1 we compare the exact quantiles with the corrected version z;. Even for small sample sizes

the corrected quantiles z; are distinctly close to the exact ¢-distribution quantiles. This also
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shows in the true coverage probability P(f < 6 + z;6/v/n) of the confidence intervals and

demonstrates that the adjustment applied in a standard setting behaves convincingly well.

We now return to the quasilikelihood and generalized estimating equation approach. We will
neglect the effect of plug in estimates in the following and concentrate on normal response
models first. For the calculation of the variance of Vgna, it is helpful to write (7) in

matrix form. Let Y denote the (mn) x 1 dimensional vector (Y{",...,¥,")T and set p =

(ui, ..., uH)T. The residual vector is defined by € = Y — p and with P we denote the

projection type matrix P = (I — H) where I is the (nm) x (nm) identity matrix and H is
the hat type matrix

a_”Q*IE
ot 0B

with diag,, (V; ') denoting the block diagonal matrix having V; ' on its diagonal, i = 1,... 7.

H = diag,,,(V;"),

Note that for m = 1 other versions of the hat matrix have been suggested (see Cook &
Weisberg, 1982, pages 191-192, for logistic regression or Carroll & Ruppert, 1987, page 74,
for other models). Let W be the block diagonal matrix W = diag,,(a}a;) with ala; on
the block diagonals where a; = zTﬂl%Vi_l. With D = diag,,(I — H;;)~'/2 we get the
leverage adjusted fitted residuals € = D{Y — i} = DP(Y — p){1 + O,(n"'/?)}. As above

we use the hat notation to denote plug in estimates. This allows us to write
Vindu = € Weé=e (PDWDP)e=e"Me{1+0(nh}, (10)

where M = oZdiag,,(V)/>)PD W D P diag,,(V)/?) and €* = (7,...,€") independent,
homoscedastic residuals defined by €, = V, Y 2ei/a, where we assumed again that o%V;
correctly specifies the variance of Y;. The quadratic form now easily allows calculation of

the variance of the sandwich variance. Let my; denote the k,[-th element of M and let ¢, be

the elements of €, where k,1 =1,2,...mn. Neglecting the effect of plug-in estimates we find

var(Vsandu) = 2trace(MM) + > {E(é;) — 3}mp,. (11)

10



If the (é;) are standard normal, (11) simplifies to var(Veng,u) = 2tr(MM). The variance of
the sandwich variance estimate again depends distinctly on the design of the covariates due

to du; /0B = X;0h(n)/0n with n = X} 3.

The coverage adjustment (9) can now easily be adopted to sandwich variance estimates.
Assume n/2zT(8—B) ~ N(0, 02) with 52 = nV sand and variance var(5?) = n*var(Vgnd.u)
calculated from (11). Inserting this into (9) directly gives the adjusted quantile z; which is
used to get the (1 — a) confidence interval [z"8 + z;Viﬁd’u] with a = 2(1 — p).

Simulation 1 (normal response): Let Y; ~ N(X;3,0%I) with X; = (1,,, U;) where 1,, is the
m x 1 dimensional unit vector and U; is an m x 1 covariate vector. We set 8 = (0.5,0.5)"
and consider 3; = (0,1)8 as parameter of interest. We simulate from the following designs
for the covariates: let U; = 1,,u; with scalar u; € R chosen (a) normally, (b) uniformly
or (c¢) from a Laplace distribution. Table 2 shows simulated coverage probabilities for 2000
simulations for the p = 0.9 confidence interval. Working independence is used for fitting 3,
but Y; is simulated from two settings, (i) with covariance var(Y;) = oL, i.e. correctly specified
working covariance, and (ii) with var(Y;) = 0%(3/41+1/41,,1}), i.e. correlated observations.
Drawings from the latter settings are shown as slanted numbers. For comparison we report
the coverage probabilities if ¢-distribution quantiles with n — 2 degrees of freedom are used.
Moreover we also report the coverage probability based on ¢-distribution quantiles and the
jackknife estimate as suggested by MacKinnon & White (1985, formula 13). Assuming

working independence and normality their jackknife estimate becomes

n— 1 n_lATA

2 T

Vjack =

T(xX™X)" Z X €€ X;) (XTX)

where 7 = z7(XTX) 1XTe.

For all three designs our proposed adjustment shows satisfactory behavior. The mis-

specification of the covariance thereby hardly has an effect on the coverage probability so

11



that the adjustment appears promising also for misspecified models. In contrast, both ¢, ,_»
distribution quantiles and jackknife estimates show undercoverage, although the jackknife

approach behaves more accurately, as already described in MacKinnon & White (1985).

The simulation above shows that undercoverage can be severe and should be corrected if
covariates vary between units. For individually balanced covariates on the other hand un-

dercoverage is not an issue as seen from the following example.

Example 6 (balance design): Consider again the multivariate normal model Y; ~ N (X3, 0*I),
with XT as m x p design matrix. We assume that the covariates are scaled and orthogonal

such that ©Q = 3, X;X¥ = nl. This gives 3, ala; = n and the variance is obtained from
var{Viuan} = 20'tr(MM) =2tr(WW){1+O(n ")} =2n ' (aa;)*{1+ O(n ')}

> 2n7 0" (Z aiTai> {1+0®m™H} =202 {1+0(n")}.

The lower bound is thereby reached if the covariates are individually orthogonal or balanced
in the sense XZ-XZ-T = I for all 7. This is the case for instance if the individual design X;
does not differ among the individuals. In this case one gets the lower bound var(Vuiu) =
20" /{n*(n — 1)}{1 + O(n™")} which equals the variance of the classical variance estimate
discussed in Example 5. Hence, one finds that in general z; > 7, , 1 holds asymptotically,
where the lower bound is reached if the design is individually balanced. As consequence,

undercoverage is not an issue in this case.
In a final simulation we show how the adjustment behaves for non-normal data.

Simulation 2 (Logistic and Poisson regression): It should be noted that the adjustment for
normal data depends only on the design but not on p or o2. This property does not hold for

non-normal data since V; typically depends on the mean p;. The calculation of var(Vsgnau)

12



therefore requires some plug-in estimates. In contrast to Section 3 we here neglect the effect
of plug in estimates and approximate the variance of the sandwich variance estimate by
(11). We make use of the adjusted quantiles z; from (9), where again plug in estimates
are used to calculate z;. We simulate (independent) binomial data with predictor XIB
B = (0.5,0.5)T and Poisson data with 3 = (1,1)T. The covariates X; are distributed as
in Simulation 1 and we are interested in the slope parameter ;. For comparison we again
compare our proposed correction with the jackknife estimate, which in this case is a weighted
version of (12). The results are given in Table 3. The corrected adjustment shows slight
overcoverage which results from neglecting the effect of the plug-in estimates. For Poisson
response and Laplace distributed covariates the adjustment can not entirely compensate the
undercoverage. The use of ¢-distribution quantiles in all cases clearly implies undercoverage.

The jackknife estimate behaves comparably to our approach in this example.
5 Discussion

We have shown that sandwich variance estimates are less efficient than model based variance
estimates. The loss of efficiency depends on the design and for standard cases it is propor-
tional to the inverse of the kurtosis of the design points. For non-normal data additional
components beside the kurtosis influence the loss of efficiency. The variance of the sandwich
variance estimate directly affects the coverage probability of confidence intervals. A simple
adjustment which depends on the design was suggested, which appears to have promising

behavior.

A Technical Details

A.1 Sandwich Estimates in Quasilikelihood and Generalized Es-
timating Equations

Below we derive the relative efficiency in quasilikelihood models. For simplicity of notation

we consider univariate regression models of the form FE(y;|x;) = u(x}fB) = h(x}B) with
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x; as 1 x p vector. The variance of y; is given by var(y;|x;) = o*V{u(x}3)} where V(-)

is a known variance function. In some problems, o?

is estimated, which we indicate by
setting € = 1, while when o2 is known we set £ = 0. We denote the derivatives of functions
by superscripts, e.g. u)(n) = d'u(n)/(0n)'. Let us assume that the variance is correctly
specified, i.e. var(y;|x;) = o2V {u(xIB)}, so that with expansion (6) we get var(n'/?zT3) =
Vasympil + O(n™)} where Viogm, = 0227Q, " (8)z and Q,(8) = n ' I, xxF Q(x'B)
with Q(n) = {u™(n)}?/V(n). The model based variance estimator for n'/?z" 3 is Vo4 =

52(8)z"Q; ' (B)z, where
52(8) = en”! z{y =BV (xTB) + 0?1 - ©).

Defining B,,(8) = n™' X0, x;x;i M (x} 8){y; — u(xB)}? and M (n) = {1V (n)/V(n)}?, the

sandwich estimator for n'/2zT 3 is written as Viong = 27, 1(8)B,(8)2,(B)z.

For the derivation of the following theorem we need some additional notation. Let R,, =

En ' g(xFB)xT where g(n) = (0/0n)log{V(n)}; & = {y; — n(xIB)}/V2(x]B); qim =
X/ Q2,1 (B)z; a, =2"Q,'(B)z; C, = n' T, ¢2,QW (% B)x; and

b = @ (B)xip® (I B)/VVA(x]B);
vi = {yi— p(xi B)M(x; B) - *Q(x; B);
K, = n '3 gV B)MY (x]B)x:.
i=1
In what follows, we will treat x; as a sample from a distribution. We assume that sufficient
moments of the components of x and y exist, as well as sufficient smoothness of (). Under

the conditions from above, at least asymptotically there will be no leverage points, so that

the usual and unbiased sandwich estimators will have similar asymptotic behavior. We write

Q(B) = E{2.(B)}, ¢ = X'Q ' (B)z, a = 22 (B)z, C = E{¢*QV(x"B)x}, etc., ie. the

14



bar notation refers to asymptotic moments.

Theorem 3 As n — oo, under the conditions above we have

nl/? (Vinodet — Vasymp) = Normal[0, X041 1= E{a&(e® — %) — o*(aR + C) " le}?];

n'/? (Vsand — Vasymp) = Normal[0, X404 := E{qQU + (I_{ — QUZC)TEG}Z].

For the proof reflect that n'/2(8 — B) ~ n /2" | £i,e;, where ~ means that the differ-
ence is of order 0,(1). We get by a simple delta-method calculation £n'/2{52(8) — 0%} ~

T gl - 0%) - o*Ryn!2(B — B). Thus,

0> {Vinoder = Vasymp}
~ n'3%(B) — o Yan + '/’ (R, (B) - 2,1 (B)}2
~ En'*6%(B) — 0}, — 0”027 (B){Q(B) — 2.(8)}92, (B)z
~ En'/*{5%(B) — o”}ta, — a*Cin'/* (B - B)

~ nl/? Z{anf(ef —0%) = 0%(a, Ry, + C,,) Linei },

=1

which shows the first part of Theorem 4.

We now turn to the sandwich estimator, and note that B, (8) — 02Q,(8) = O,(n~'/?).

Because of this, we have that

nl/z{vsand - Vasymp} ~ _20-277’1/2ZTQ;1(6){Q71(B) - Qn(ﬁ)}ﬂgl(ﬁ)z

+n'22"Q, (B){Ba(B) — o*Q(8)}2, ' (B)z

20t Y Ol + 02 S MK B)Y: — n(XIB)Y — 2 Q" B)]

Q

i=1 1=1

~ —20'n7 2 Clline + 072y gt 07t Y ¢ MY () B)Xi{Y; — p(x! B)}n' (B - B)
i=1 i=1 i=1

~ —20%n~1/? Z Czﬁmei +n~ /2 Z qfnvi +n! Z quM(l) (X;F,@)XZ'V(X;F,@)HI/Q (,@ - B)
i=1 i=1 i=1

n
I~ n71/2 Z(—202C32m6i + q?vi + KEEWGZ%

=1

15



as claimed.

Theorem 3 can now be used to prove the statements listed in Examples 3 and 4. For
the logistic case we have V() = u™M(n) = Q(n) = p(){1 — u(n)}, 0> =1, £ =0, R, =0,
QW (n) = pM(n){1—2u(n)}. All the terms in Theorem 3 can then be computed by numerical

integration which gives the numbers presented in Example 4.

For the Poisson case it is easily verified that Q(83) = exp(fy)Is, where I, is the 2 x 2 iden-
tity matrix. Also, g = U exp(—f), X8 = fh, QU (x"8) = exp(f), C = exp(—fh)(1,0)".
€= exp(~fo/2) (1,U)T, € = {V — exp(By)}/ exp(o/2) and hence Syt = exp(—34).

Let 0 = exp(f3y). Then E(Y?) = 6+62, E(Y?3) = 03+30%+0, and E(Y*) = 0*+603+70%+0.
If we define Z = Y — 0, then E(Z) = 0, E(Z%) = E(Z%) = 0 and E(Z*) = 36 + 0.
Further, M(n) = 1, MM (n) = 0, K = 0. A detailed calculation then shows that Y,.,q =

2k exp(—20y) + kexp(—30p) which shows the relative efficiency given in Example 3.
A.2 Proof of Theorem 2

Let n'/2(§—0) ~ Normal(0, %) and z, = ® !(p), where ®(-) is the standard normal distribu-
tion function. We define v, = 0z, and @, = 67z, such that F(v,) = P{n'/2(§ — ) < v,} =p
with F(v,) = ®(2,). The intention is to calculate P{n'/?(0 — 0) < ©,}. Let H, (-) denote
the distribution function of ¥, and take 62 as y/n consistent variance estimate independent

of @ — 6. This gives

PAO-0) iy} = [PLO-0) < vliy = 0)dHs, ()

- /F(U)dH@p(v) = E{F(3,)}.

Hence, we have to calculate the expectation of F(v,) to obtain the coverage probability.
Applying the delta method to the root function g(v) = v'/? we find

R R 62 _ 02 (62 _ 02)2 B
6—0 = (@) ~g(0”) = 5 — g+ Opn ).

16



This implies with v, = v, + 2,(6 — 0)

~2 2 ~2 _9\2
F(s,) = F{vp+zp“ o _ =) }+0,,(n3/2)

202

5% — o? (6% — o0%)? 1
= F(v) +F(1)(Up) {Zp 292 9
Since F'(v,) = p this yields

2 [(2) 1)
N _ ~9 ZpF (2p) 2 F'V(2p)
E{F(v,)} = p+var(c’) { o1 gyl

} + 0(n=?).
Inserting now the derivatives for F'(v) = ®(v/o) gives formula (8) in Theorem 2.
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Table 1: Comparison of coverage probability based on z; and ¢-distribution quantiles ¢, 1
for n — 1 degrees of freedom

P tywr  z PO 0420/

n=2>9
90 1.533 1.551 .902
95 2.132  2.095 .948
975 2,776 2.543 .968
n=15
90  1.345 1.346 .900
95 1.761 1.761 .950
975 2.145 2.137 975

Table 2: Coverage probability based on V4,4, with zy and t distribution quantiles ¢, ,_1
and jackknife estimate V. (Slanted numbers show simulations for correlated responses)

coverage based on

Vsand,u Vsand,u Vjack
design tp,n_g Z’ﬁ Z]j tp,n—? tp,n_g
n=10 (m =4)
(a) 210  88.8 (88.5) 84.9 (84.9) 86.4 (87.2)
(b) 1.86 2.03  88.5(90.2) 86.3(87.5) 87.6(89.0)
(c) 2.18  88.9(89.0) 84.2 (84.6) 86.7 (86.8)
n =20 (m=4)
(a) 1.86  89.5 (89.7) 87.0 (87.8) 88.3 (88.8)

(b) 171 1.81  90.3 (90.0

7.0
88.5 (88.4) 89.8 (89.9)
(c) 1.94  90.0 (90.5) 86.5

)
) 86.5 (87.1) 88.2(88.9)




coverage based on
Vsand,u Vsand,u Vjack

design t#,n,2 2y zy tpm—2  lpn—2
Logistic regression n = 15 (m = 4)

(a) 1.89 91.0 838  90.2

(b) 1.77  1.84 89.7 85.6 89.2

(c) 1.96 91.1 833  89.9
Poisson regression n = 15 (m = 4)

(a) 1.90 9.1 869  89.3

(b) 177 1.87 90.4 881  89.8

(c) 1.90 875 842  86.3

Table 3: Coverage probability of confidence based on V44, with zy calculated with true
and fitted parameters and ¢ distribution quantiles ¢, ,,_;
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