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Abstract

Little and Wang (1996) introduced the pattern mixture model for wave
nonresponse as a special case of multivariate normal longitudinal data
with fixed covariate matrix. This paper was the theoretical foundation
and the induce to investigate the pattern mixture model compared with
complete case analysis by means of simulations. The main point of inter-
est was the mean square error of the estimated model parameters and the
efficiency of the estimations. To estimate the variance of the model pa-
rameters we examine the Jackknife method. Parameter estimates by the
pattern mixture model are very satisfying under ignorable mechanism but
they have to be scanned carefully under nonignorable mechanism. The
Jackknife method seems to be, with restrictions, a good estimator for the
variance of the model parameters.

1 Introduction

In longitudinal data we can’t prevent to have wave nonresponse in our measure
points caused by the absence of subjects during the study. One approach to
treat this lack of information is to replace nonresponse with Maximum Like-
lihood (ML) methods (Little and Rubin, 1987). Selection models (SM) and
pattern mixture models (PMM) are two approaches belonging to this kind of
strategy. The paper about a new class of pattern mixture models for multivari-
ate incomplete data (Little, 1993) introduces an arbitrary unspecified missing
function of a linear combination of two variables. Little (1994) has a look on
PMM in the bivariate normal case and extent this idea in Little and Wang
(1996) to multivariate normal data with fixed covariate matrix.

The aim of this paper is to show how influence factors, which can not be
influenced by the analyst, will influence the estimate of the parameters in the
PMM. The subject of our investigation were the influence of correlation among
the measure points, number of subjects and share of missing values. In one
investigation we also examine the effect when misspecification of the missing
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mechanism occurs. Our valuation criteria were the mean square error (MSE)
and the exactness of the estimates (efficiency). Another investigation field was
the assessment of the Jackknife method by comparing the estimated with the
theoretical confidence interval. All surveys were made for the ignorable and non-
ignorable nonresponse and compared with the available case (AV) and complete
case (CC) method.

In section 2 we want to have a short look on the theory of PMM. In Section
3 we will give an introduction to the C++ Program. The valuation criteria and
the structure of the simulation is described in Section 4 and 5. In Section 6 we
present the results.

2 Theory

We want to analyze longitudinal data with one dropout point. So we have a
data Matrix Y including n subjects measured at T time points with a fixed
covariate matrix X including the treatment group of the subject. To separate
the completers from subjects dropped out we introduce a missing indicator
variable m with m = 0 for completers and m = 1 else. Additional we want to
divide the data matrix in two parts: Y7 including 77 complete observed time
points and Y5 including 75 remaining time points.

Using ML methods we have to factorize the joint distribution of Y and m
given X. So we have two possibilities: the selection model

fY,m | X) = fY | X)f(m|Y,X)
and the pattern mixture model
fY,m | X) = f(m | X)f(Y |m,X) (1)

A typical feature of PMM is that the distribution of Y has to be specified for
every strata indicated by m and that the distribution of the missing mecha-
nism is independent of Y. In contrast SM demands to estimate the marginal
distribution of Y given X and the distribution of m depends on Y.

We want to have a closer look to the PMM factorization (1). It could be
easily seen, that we are able to estimate the parameters of f(m | Y, X) by logistic
regression from m on X. Not so f(Y | m,X), it has to be factorized again, due
to the lack of moments relating to the data of not completers and missing time
points. To get unbiased estimates of these model parameters we have to face the
missing mechanism. We separate two main groups: the ignorable mechanism
depending on the full observed time points:

Pm=1|Y;,Ys,X)=P(m=1]|Y1;,X) 2)

and the nonignorable mechanism depending on the unobserved outcome and
the covariates

Pm=1|Y,,Ys,X)=Pm=1]|Y,X) (3)



(2) and (3) will be changed to identifying restrictions. In the ignorable case (IM)
the factorization and the restriction will lead to a just-identified solution of the
ML equations. In the nonignorable case we have to distinguish the estimates by
the dimension of 77 and 75. Is 77 = T5 then we got a just-identified ML model.
We want to call this situation NIMED (nonignorable mechanism with equal
dimension). A iterative method is necessary when we have an overidentified
model 77 > T» called NIMUD (nonignorable missing mechanism with unequal
dimension). For this situation we used the EM algorithm. The third situation
could be reduced to the the previous ones by deleting one or more time points
until we have the situation 7} < Ts,.

3 C++ program

A useful tool for multivariate regression is the sweep-operator from Dempster
(1969). Here we follow the suggestion of Little and Wang (1996) to implement
the PMM. The algorithm is implemented using C++ (Stroustrup, 1997). Basic
data structures were supplied by the library of Fieger, Heumann, Kastner and
Watzka (1997). Random numbers are generated using the DRAND48 generator,
which is supplied by SunOS 5.5 as a C-library function (SunOS, 1995, man
Pages(3C)).

In the following we want to present all new implemented class. Existing basic
calculations were supplied by library of Heumann, Fieger and Kastner (1998).
The new implemented classes for the simulation are presented in detail in the
appendix. An overview of the course of the program is given in Figure 1-2

check Analyses the simulations by calculating the MSE, theoretical confidence
intervall, estimated confidance intervall and the kernel distribution estimate.

ergebnis This class transforms the C++ output to a TeX document. Text
and numbers have to be handed over by a variable or matrix.

completecase Calculates the CC and AV estimator.

sweepelements Calculates the PMM estimates by the method of Little and
Wang (1996)

aufbereitung Edits the data for the calculations.
initial Produces the random sample data.

sweepoperator Calculates the sweep-operator on row and column.



Main program

Parameter settings: number of subjects, number of measure points,
correlation, variance, parameter of the model, share of missing values

parameters Initialise data

Generates a multivariate normal data set with

data set missing values

data set Pattern-mixture

Calculation of the estimate with the missing

PM-estimate mechanism: IM, NIMED or NIMUD

data set

Complete-/Available-Case

CC-/AC- Calculation of the comparing estimates.

estimate

Check Estimate of
Calculation of the MSE, ECI and kemel
TCI distribution
Result

data set of

data of esults ) Results of the simulation are results

adapted into a TeX-file
End of program
Summary of the results and summary

creating and output file with all
partial results of the simulations.

Figure 1: The main program

4 The valuation criterias for the estimators

We decided to choose the mean square error to compare the three estimators.
This choice is theoretical based on the matrix-valued MSE criterion as discussed
in full detail e.g. in Rao and Toutenburg (1999). The MSE will cover as well
bias as variance of the estimates. So we will not assess an estimator higher
than another when he has little bias but too strong variance and the other way
round. Let b be the estimated and b the real parameter vector of the model. To
calculate the MSE we used the equation:

E{(E—b) (B—b)'}

The exactness of the estimate was assessed by the covering frequency of the
theoretical confidence interval (TCI) over the estimated parameters.

o= (T 1 ). o

where V(b) is the real variance of the parameter b and o = 0,05. We want to
call this the efficiency of the model.



Main procedure pattern-mixture for missing
mechanism IM and NIMED

Dataset from main program

original
data set

Edition of data set
reduced
data set

Separates subjects into a
matrix of completers and a

sorted

data set matrix of subjects dropping out
sorted
data set Arrange data-set to matrices
) Condenses data to matrices of sums
matrices »
[}
£
matrices <
Sweep-operator
swept Runing the sweep-operator with the data-sets
matrices
swept
matrices Estimate of the parameters
. Calculation of the PMM estimate
PM-estimate
Deletion of the i-th subject
original X . o reduced
data set Dglgtlon of the i-th subject in the data set
original data set
End of procedure .
matrices of

Summary of the results and hand results
over to the main program

Figure 2: The main procdure for IM and NIMED

Another investigation field was to assess the Jackknife method (Efron and
Tibshirani, 1993), which estimates the variance of b. Therefore we compared
the TCI with the estimated confidence interval (ECI)

[13 — t(1=2/2\ [V (), b + t1—/2) V(B)} , (5)

where V(l;) is the variance of b estimated by the Jackknife method and a = 0, 05.

5 Design of the simulation study

Aim of the survey was to investigate small sample properties and efficiency
of PMM compared with those of complete case (CC) and available case (AC)
estimator. Therefore, the conduct of the estimators was investigated by chang-
ing the frame conditions of the data namely correlation structure between time
points, number of subjects, missing mechanism and share of missing values. The
second investigation unit became necessary, due to appearing problems in the
nonignorable case. Further we investigate the small sample properties under
misspecification with regard to the missing mechanism.



Main procedure pattern-mixture for missing
mechanism NIMUD

Dataset from main program

original
data set

Edition and arranging data-
set to matrices reduced

Separates data set and con- data set

matrices denses it to matrices of sums

original .
data set Complete-Case estimate
Replacing missing values with the CC-
completed estimate
data set
completed Edition and arranging the completed data-
data set set to matrices
. Separates completed data set and con-denses
matrices . . )
it to matrices of sums 4
1S
matrices M-step: sweep-operator z
Runing the sweep-operator with
matrices the data-sets and calculate 3
parameters for the E-step 3
3
/\’ E-step: estimate of the matrix [}
elements 2
swept matrix for M-step is generated
matrices new
swept
matrices Estimate of the parameters
) Calculation of the PMM estimate
PM-estimate
Deletion of the i-th subject
original . . o reduced
data set Ds_ele_mon of the i-th subject in the data set
original data set
End of procedure )
matrices of
Summary of the results and hand results

over to the main program

Figure 3: The main procedure for NIMUD

Following the example in Little and Wang (1996) we create datasets with
three treatment groups when we have 250 subjects and two treatment groups
when we have 50 subjects. The regression parameters are related on the time
points and the treatment group. The distribution of the error term was multi-
variate normal. The regression parameters were modeled like in Figure 4 shown.

After data generation missing values were produced using the function P(m =
1]Y1,Ys,X) = aYy + bYs + ¢X. With the suitable specification of a, b and ¢
the missing mechanism mentioned above can be simulated. With every sim-
ulation adjustment we investigate the three missing mechanisms IM, NIMED
and NIMUD. Every single simulation contains 1000 runs under the same adjust-
ment. We want to give a short view on the different adjustments for the three
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Figure 4: model 1 with three and model 2 with two treatment groups. Measure
parameters depending on measure time points.

investigation units.

Unit one has to compare CC, AC and PMM in regard to the MSE criterion.
For that we combine the adjustments: number of subjects (n € {50,250}), share
of missing value (mis € {30%,60%}), correlation (p € {0.1,0.3,0.5,0.7,0.9}).
Hence we have 60 Simulations in our first unit (Table 1).

number of share of
subjects | missing values | missing mechanism correlation
250/50 0.3 /0.6 IM/NIMED/NIMUD | 0.1/0.2/0.5/0.7/0.9

Table 1: Adjustments for investigation unit one

One occurring problem during the simulation was that the NIMED type
delivered very bad results when correlation was low. So we decided to calcu-
late NIMED with the EM algorithm of NIMUD. This is subject of our sec-
ond investigation with ten simulations (Table 5). Possibilities of adjustments
were n = 250 with mis = 30% or n = 50 with mis = 60% combined with
p €40.1,0.2,0.5,0.7,0.9}

share of missing values
number of subject with | missing mechanism correlation
250 mit 0.3/50 mit 0.6 NIMED 0.1/0.2/0.5/0.7/0.9

Table 2: Adjustments for investigation unit two

In the third unit, containing 15 simulations, we were interested in what will
happen if the prior assumption is wrong (Table 5). For this case we chose fixed
assumptions with n = 250, mis = 30% and p = 0.5 and combine those with
the extent of misspecification. The misspecification will range from 0 (which
means right assumption) to 1 (total wrong assumption). Between this invervall
(namely 0.2, 0.4, 0.6, 0.8), missingness will depend on Y; and Y5 in different
weights.



missing mechanism | extent of misspecification
IM/NIMED/NIMUD 0.2/0.4/0.6/0.8/1

Table 3: Adjustments for investigation unit three

6 Results

For AV and PMM there was no reason to complain for the estimate of the
parameters for the completely observed time points, right through all missing
mechanisms. For CC we could see, that only under low correlation and nonig-
norable mechanism the estimate have a MSE close to zero. For the ignorable
mechanism we notify that even at a very low correlation the CC has a high MSE,
which will increase with a stronger correlation (Figure 5). The efficiency for the

M NIMED NIMUD
4+ |4 4+
~

- -

24 ~ 2 2 P
— ~
— —

0~ o— © 0 — o—o—0 04 e—o—o—o—o

I [ I I [ I I [ I
0 02040608 1 0 02040608 1 0 02040608 1

Figure 5: MSE of the full observed time points depending on the correlation.
Investigation unit one with 250 subjects and 30% of missing values. line: PMM;
dashed line: CC; circles: AC.

AC estimator is very satisfying. It is always near to 95%. Not so the PMM the
efficiency was in the IM and NIMED case less efficient than the AC estimator.
In the NIMUD case PMM and AC were equal. Of course the efficiency of CC
got increasingly bad.

For the incomplete time points, as one can see in Figure 6, AV and CC
deliver only under low correlation and IM assumption estimates with low MSE
and high efficiency. If missingness depends on Y5 (NIMED and NIMUD) AC
and CC have a stable high MSE and stable low efficiency independent on the
correlation. The share of missing values make it even worse, but it seems that the
number of subjects is not relevant for the height of the MSE and the efficiency
in this case. PMM estimated the parameters of the incomplete time points
to our complete satisfaction under IM. Even a low number of subjects with a
high share of missing values didn’t influence the MSE and the efficiency, it was
always zero or near to 95%. In contrast the PMM did disappointingly on the
estimates in the NIMED case. We notified, that the MSE will become close to
zero only when the correlation grows to a particular strength. This was with
250 subjects about 0.3 and with 50 subjects about 0.7, independent on the share
of missing values. Under this correlation barrier the PMM is even worser than
the AC and CC model. But it could be mentioned that the efficiency was not
too bad in this case. A more positive idea of PMM we got under the NIMUD



assumption, where the parameters were estimated via the EM algorithm. Under
a low correlation we could see, that the PMM is of the same quality as the AC
or CC estimates. But with increasing correlation PMM will get much better
than the AC or the CC model. Even though we reached a MSE close to zero
only under the very high correlation of 0.9. In an analogous way the efficiency
got only under a high correlation of 0.9 close to 95%.
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Figure 6: MSE of the incomplete time points depending on the correlation.
Investigation unit one with 250 subjects and 30% of missing values. Line: PMM;
dashed line: CC; circles: AC.

Because of the very bad result in the NIMED case under low correlation
structure in the data, we made the next investigation unit and tried to get
better results, when we calculate the NIMED case with the EM algorithm of
the NIMUD case. Here we just want to have a look on the interesting incomplete
time points. The statement we can make is that the EM algorithm is only an
advantage only in case that we have a low correlation. In our model with 250
subjects and a share of missing values about 0.3 the correlation barrier is about
0.3, then the exact estimate method will be better than the asymptotic one
(Figure 7), but we can say that it is always a loss of efficiency using the EM
algorithm.

Another important question was what will happen, when me make the wrong
assumption about the missing mechanism. The estimate of the complete time
points are not affected by this assumption, so we have only a look on the incom-
plete time points. Starting with IM we could see, that the MSE of the PMM
was increasing while we intensified the wrong assumption, nevertheless the MSE
was always smaller than those of AC and CC (Figure 8). The height of efficiency
react in the same way. While increasing the misspecification the efficiency got
worser. At the NIMED case we notified a very strong reaction with respect to
the wrong assumption. Already with a medium misspecification of the missing
mechanism we had a worser MSE and a lower efficiency than AC and CC. For
the NIMUD type of missingness we can remark, that a wrong assumption have
only a positive effect on the MSE and the efficiency. As these simulations run
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Figure 7: MSE of the incomplete time points depending on the correlation
using the EM algorithm for NIMED situation. Investigation unit two compares
simulations having 250 subjects and 30% of missing values with 50 subjects and
60% of missing values. Line: PMM; stars: PMM with EM algorithm; circles:
AC.
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Figure 8: MSE of the incomplete time points depending on the extent of misspec-
ification of the missing mechanism. Investigation unit three with 250 subjects
and 30% of missing values. Line: PMM; dashed line: CC; circles: AC.

under the fixed adjustments of n = 250, p = 0.5 and mis = 0.3 we could proceed
from the assumption that an increasing correlation or share of missing values
have the same effects on the estimate quality like described above.

The Jackknife method was a good tool to estimate the variance of the pa-
rameters except of PMM in the NIMED case for the incomplete time points.
Otherwise right through all missing mechanisms and investigation units the ECI
was close to the TCI.
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Figure 9: Efficiency of the full observed time points depending on the correla-
tion. Investigation unit one with 250 subjects and 30% of missing values. line:
PMM; dashed line: CC; circles: AC.

A The classes

A.1 check

Analyses the simulations.

public

check (const matrix& mat_mu, const realArray& ar_varianz, const matrix&
beta, const matrixArray2D& gesamt_block, const matrix& mat_varbeta,
const intArray& para, const int& graph): of the class.

const double& get_MSE (void): Gives MSE back.

const matrix& get_dif (void): Gives the difference between expected mean
and real mean.

const double& get_konfidenzellipsoid (void): Gives confidence ellipsoid back.

const matrix& get_konfidenzintervall (void): Gives estimated confidence
interval back.

11
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Figure 10: Efficiency of the incomplete time points depending on the correlation.
Investigation unit one with 250 subjects and 30% of missing values. Line: PMM;
dashed line: CC; circles: AC.

const matrix& get_theokonfidenzintervall (void): Gives theoretical confi-
dence interval back.

void kerndichte (const matrix& cc_mp_matrix, const int& graph: Writes data
for the kernel distribution estimator.

A.2 ergebnis

Writes TeX document.

public

ergebnis (){kopf()}: Initializes the class and fixes the head of the document.
~ergebnis (){fuss()}: Closes the document.

void text (const string& text): Ads some text.

void text (const double& zahl): Ads number into text.

void graphik (const string& figurnummer): Ads graphic.

12
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Figure 11: Efficiency of the incomplete time points depending on the correlation
using the EM algorithm for NIMED situation. Investigation unit two compares
simulations having 250 subjects and 30% of missing values with 50 subjects and
60% of missing values. Line: PMM; stars: PMM with EM algorithm; circles:
AC.

void spalten (const  Array2D<string>&  inhalt,const int&  zeilen):
Writes text in column.

void absatz (void): Ads paragraph into text.

void section (const string& ueberschrift): Ads heading into text.

void subsection (const string& ueberschrift): Ads sub heading into text.
void paragraph (const string& ueberschrift): Ads little heading into text.
void formel (const string& text): Ads formula into text.

void tabellel (const int& anz zeilen, const inté& anz_spalten, const string& ue-
berschrift, const  Array<string>&  horizontal, const  Array
<string>& vertical, const realArray2D& zellen): Ads tabular containing
numbers with string in first vertical column.

void tabellel (const int& anz zeilen, const inté& anz_spalten, const string& ue-
berschrift, const  Array<string>&  horizontal, const  Array

13
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Figure 12: Efficiency of the incomplete time points depending on the extent of
misspecification of the missing mechanism. Investigation unit three with 250
subjects and 30% of missing values. Line: PMM; dashed line: CC; circles: AC.

<string>& vertical, const stringArray2D& zellen): Ads tabular contain-
ing text.

void tabellel (const int& anz_zeilen, const int& anz_spalten, const string&
ueberschrift, const Array<string>& horizontal, const matrix& vertical,
const realArray2D& zellen): Ads tabular containing numbers with num-
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bers in first vertical column.

A.3

Calculates the CC and AV estimator.

public

completecase (const matrixArray2D& gesamt_block, const intArray& para,

completecase

const int& jack): Initializes the class.

completecase (void):

~completecase (void): Destructor.




const matrix& get_beta_cc (void): Gives estimator back.

const matrixArray& get_beta_ar (void): Gives CC estimator back for “swee-
pelements”.

const matrix& get_variance_cc (void): Gives estimated CC variance back.

const matrix& get_varbeta_cc (void): Gives variance of the CC estimator
back.

const matrix& get_beta_av (void): Gives AV estimator back.
const matrix& get_variance_av (void): Gives estimated AV variance back.

const matrix& get_varbeta_av (void): Gives variance of AV estimator back.

A.4 sweepelements

Calculates the estimator by the method of Little and Wang (1996)

public

sweepelements (const matrixArray2D& gesamt_block, const intArray& para):
Initializes the class.

int chefl (void): MAR case

int chef2 (void): MNAR case pl=p2

int chef3 (void): MNAR case p1>p2

const matrix& get_mittelwert (void): Gives estimator back.

const matrix& get_variance (void): Gives estimated variance back.
const matrix& get_roh (void): Gives correlation back.

const matrix& get_varbeta (void): Gives back variance of the estimator.
const double& get_px1 (void): Gives share of missing values back.

const matrix& get_ak_mis (void): Gives share of missing values within the
group back.

~sweepelements (): Destructor.

A.5 aufbereitung

Edits the data for the calculations.

15



public

aufbereitung (): Initializes the class.

~aufbereitung (): Destructor.

const matrix& get_y (void): Gives back the y-matrix.

const matrix& get_x (void): Gives back the x-matrix.

const matrix& get_m_y (void): Gives back the missing indicator matrix.
const matrixArray& get_y_block (void): Gives back the y-matrix as block.
const matrixArray& get_x_block (void): Gives back the x-matrix as block.

const matrixArray& get_m_y_block (void): Gives back the missing indica-
tor matrix as block.

const int& get_pl (void): Gives back the number of missing time points.

void uebersicht (const matrixArray& gesamt, const intArray& para): Print
an overview of the data, when the matrices are not divided by the time
points.

void uebersicht (const matrixArray2D& gesamt, const intArray& para): Prints
an overview of the data, when the matrices are divided by the time points.

matrixArray umstellen (const matrixArray& gesamt, const intArray& para):
Sorts an optional data to be ready for estimate.

matrixArray2D blocken (const matrixArray& gesamt, const intArray& para):
Separates the matrix by the time points.

matrixArray2D separieren (const matrixArray2D& gesamt, const intArray&
para): Separates a matrix, which was already divided by the time points,
by the missing indicator.

A.6 initial

Produces the random sample data.

public

initial (const realArray& para, const realArray& varianz, const matrix& mat_mu,
const matrix& beta, const matrixArray& ar_gamma): Initializes the class.

~initial (void): Destructor.

const matrixArray2D get_gesamt_block (void): Gives back the random
sample data.

const intArray get_parameter (void): Gives back the model parameters.
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A.7 sweepoperator

Calculates the sweep-operator on row and column.

public
sweepoperator (void): Constructor.
~sweepoperator (void): Destructor.

const matrixArray2D sweep (const int& zeilen, const matrixArray2D& mat_array2d,
const int& block): Takes block matrix and sweeps it on the requested col-
umn and row.

const matrix sweep (const matrix& mat, const int& block): Takes block ma-
trix and sweeps it on the requested block.

const stringArray2D sweep (const int& zeilen, const stringArray2D& mat_ar_string,
const int& block): Takes block matrix containing strings and sweeps it on
the requested row and column.
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