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SUMMARY: Mapping of the human brain by means of functional magnetic resonance imaging
(fMRI) is an emerging field in medical sciences. Current techniques to detect activated areas
of the brain mostly proceed in two steps. First, conventional methods of correlation, regression
and time series analysis are used to assess activation by a separate, pixelwise comparison of the
MR signal time courses to the reference function of a presented stimulus. Spatial aspects caused
by correlations between neighboring pixels are considered in a second step, if at all. Aim of this
article is to present hierarchical Bayesian approaches that allow to simultaneously incorporate
temporal and spatial dependencies between pixels directly in the model formulation. For
reasons of computational feasibility, models have to be comparatively parsimonious, without
oversimplifying. We introduce parametric and semiparametric spatial and spatio-temporal
models that proved appropriate and illustrate their performance by application to fMRI data

from a visual stimulation experiment.

KEY WORDS: human brain mapping, functional magnetic resonance imaging, MCMC, semi-

parametric models, spatio-temporal models.

1 Introduction

At the beginning of this decade an important advancement in medical imaging has been made.
Through a new non-invasive technique called functional magnetic resonance imaging (fMRI)
it has been made possible to examine sensory and higher cognitive functions in a living human
brain without using an external contrast agent or tracer. Utilizing the different magnetic
properties of oxygenated and desoxygenated blood, non-invasive mapping of brain functions
has become feasible. The physiological changes induced by neuronal activation, known as the
neurovascular coupling, lead to a local increase in blood oxygenation, the so called BOLD
(blood oxygenation level dependent) effect, that may be directly visualized with specially

sensitized MR sequences. While acquiring a whole time series of MR images, through this



BOLD effect changes in regional brain activity induce a systematic variation in the MR signal
that is related to a presented external stimulus. Thus, areas or pixels where the signal time
courses show a significantly stimulus related variation are assumed to be activated by that
particular stimulus. Application of this new and intriguing methodology for human brain
mapping studies, however, is far from being simple encompassing a number of critical issues
regarding the physiology, physics and statistics involved. For the physiological and physical
fundamentals of this technique we refer to the excellent tutorial by Lange (1996). In this article

we focus on the statistical part of fMRI.

Aim of the statistical analysis of fMRI experiments is the assessment of significantly stimulus
related activated areas of the brain as the basis of functional mapping. For this purpose, a time
series of 7" MR volumes of the brain is acquired during the presentation of a certain stimulus
paradigm. These volumes consist usually of about 7 to 30 slices each with 64 x 64 or 128 x 128
pixels or voxels with dimensions of ca. 3 x 3 x 5 mm. For each of these pixels a complete
time series exists. In the classical fMRI experiments the stimulus is presented in a so called
boxcar paradigm, a sequence of ON and OFF periods (e.g. 30s OFF, 30s ON, 30s OFF, ...),
in which every 1-4 seconds an image is acquired. For illustration Figure 1 shows such a boxcar
stimulus together with 5 representative MR signal time courses of selected pixels. Current
standard methods for data evaluation are correlation (Bandettini et al., 1993) and regression
models (Friston et al., 1995), where the statistical dependence between the MR signal and the
stimulus is investigated and tested to be significant. Regression models can be summarized
as follows. For each pixel i(i = 1,...,I), the time series {y;,t = 1,...,T} of MR signals is

assumed to obey a linear parametric relationship
Vit = wia; + zb; + ey, €y~ N(0,02), i=1,...,1, t=1,...,T. (1)

Here w; is a known design vector, which is supposed to model the trend or baseline drift.
Design vectors that contain linear and quadratic trends or the first few terms of a Fourier
expansion are common examples. The variable z; denotes the transformed stimulus at time ¢,
in other words z; is a function of the presented ON-OFF-stimulus z;,t = 1,...,T. With regard
to the transformation, we consider a temporal shift of the original stimulus by a time-delay d

and a convolution with a parametric hemodynamic response function (HRF) h, so that:

t—d

2= > h(s,0)zi_as. (2)

s=0
Generally Poisson (Po())) or Gamma (Ga(A, u)) densities are chosen for this purpose. The
parameters A or A\, u and the time lag d are either calculated in a pilot least squares estimation
algorithm prior to fitting model (1) to the fMRI data or are set in advance according to past
experience. The transformation (2) formalizes the fact that (a) due to hemodynamic latencies
the cerebral blood-flow (CBF), the source of the MR signal, increases approximately 6-8 s

after the onset of the stimulus, and that (b) the flow responses do not occur suddenly, but



rather continuously and delayed. Other specifications are also possible (Bullmore et al., 1996).
The parameter b;,7 = 1,..., 1 is interpreted as the effect of activation at pixel i. Testing now
whether b; is zero or not for all pixels yields a map, in fMRI literature often called ’statistical
parameter map’ (SPM), that shows the ’activated’ areas of the brain for this particular exper-
iment. For a visual stimulation experiment such an activation map is displayed in Figure 3a.
The white areas indicate the pixels whose test statistic exceeds a value of 5.0 that corresponds
to significance level < 1076,

Substantial gain in flexibility is achieved in Gossl, Auer and Fahrmeir (2000) by a semiparamet-
ric Bayesian approach. Using state space modelling and Kalman filtering both the baseline and
a time-varying stimulus effect are modelled and estimated without being constrained to any
particular parametric form, but allowing for a temporally smooth evolution. The observation

model (1) is generalized to a state space model:
Yir = Qi + zitbig + €, €y ~ N(0,07), (3)

where second order random walks

it = 2031 — Gig—2 + Gty G ~ N(0,0,).
bit = 2051 — i + Nie, Mie ~ N(0, 072“)-

(4)

enforce smoothness of the sequence a; = (a;1, ..., a;r) of the baseline trend and of the stimulus
effect b; = (b1, ..., bir)". Further, the transformed reference function z;; is estimated pixelwise
in advance, allowing the parameters 6 and the time lag d in (2) to depend on i and thus
the reference function to differ from pixel to pixel. The main feature of this approach is the
description of a temporally varying stimulus related activation within an fMRI experiment
in contrast to the temporally constant parametric model (1), which assumes a time-constant
activation. This grants insight into the dynamics of the response pattern within an fMRI
experiment.

For all mentioned models, analysis is performed pixelwise. Dependencies between pixels are
considered by a smoothing of the data prior to the analysis and the application of results
of Gaussian random field theory (Poline et al. 1997) to correct the significance level for
multiple comparisons or by simple cluster methods to reduce activations that occurred by
chance (Forman et al. 1995). For the latter, a pixel is assumed to be activated if itself exceeds
a certain threshold and also at least n of its nearest neighbors. The parameter n serves in this
context as a kind of smoothing parameter that controls the degree of noise reduction. Both
methods have in common that they have to be applied in a two step analysis and cannot be

incorporated simultaneously into a statistical model of the MR time series.

To overcome this limitation, we present Bayesian modelling approaches for fMRI space-time
data that explicitly allow for a simultaneous temporal and spatial analysis.
The paper is organized as follows. In Section 2 we introduce Bayesian formulations of fMRI

models, where the key issue relates to the formulation of prior distributions for the unknown



model parameters. The models and the priors differ in complexity, ranging from spatial exten-
sions of simple parametric models to spatio-temporal models based on Markov random field
priors. Section 3 gives a short outline of posterior estimation using Gibbs sampling. Section
4 illustrates these models and points out the differences and advantages of the different ap-
proaches by application to fMRI data from a visual stimulation experiment. The article closes

with a discussion of possible extensions of these models.

2 Hierarchical Bayesian models for fMRI experiments

Hierarchical Bayesian models consist of an observation model for the data, given the para-
meters, and priors for the unknown parameters. Inference is then based on the posterior

distribution of the parameters given the data.

2.1 Observation models

In principle, there are numerous options for spatio-temporal modelling of fMRI data. A con-
ceptually straightforward option is to look at the data as a sequence y; = (yis,...,yn)" of
images and to introduce spatial correlation through the covariance matrix ¥ of the corres-
ponding error vectors ¢; = (ey, ..., €)' . For diagonal ¥ = diag(o?,...,0%) we get back to the
pixelwise linear model (1) or the state space model (3). For non-diagonal ¥ however, this op-
tion becomes quickly computationally infeasible because of the huge dimension (7 in the order
of thousands). With the state space model (3) for example, one would have to run Kalman
filters and smoothers with (I x I)-matrices, causing insurmountable problems with memory
and storage. Therefore we will not pursue this option, but introduce spatial correlation in
the second stage of the hierarchy by assuming spatial or spatio-temporal Markov random field

priors for the parameters.

In our experience a Gaussian assumption for the observations, conditional upon parameters,

is not critical. Therefore the general form of the observation model for pixel 7,7 =1,...,1, is
Yirl @i, big, 07 ~ N(ay + zubi,07), t=1,....T, (5)

with z; as the transformed stimulus, a; as the trend and b;; as the activation effect at time ¢.

Given the parameters, observations y;; are conditionally independent.
Parametric models are obtained by modelling trend and activation effect as

! !
@i = W,a;, by = v,b;,



with design vectors w; and v; as for the linear model (1), and time-constant parameter vectors
a; = (o,...,qp) and b; = (fy,...,[,)" of fixed low dimension. For v, = 1, the activation
effect is assumed to be time-constant, while inclusion of time-varying components, like ¢, ¢
and sine/cosine terms into v allows for a time-varying activation effect.

Semiparametric models are obtained by assuming the whole sequence a; = (a1, ..., a;7)" and

b; = (bi1, ..., b;r)" of parameters as unknown and applying appropriate smoothness priors.

2.2 Prior distributions

The choice of prior distributions is less straightforward than formulation of the observation
model. In the following we show how a wide range of models for fMRI experiments can be
covered by simply applying different kinds of prior distributions. We proceed from simple
parametric models to semiparametric spatio-temporal models, reflecting the trade off between
computational simplicity and model complexity. We start with a reformulation of the pixelwise
models (1) and (3, 4) fitting into our general Bayesian framework. Priors for a and b are mostly
of the same type. Thus, to avoid unnecessary repetitions, we define them only for the stimulus

effect b, where most interest lies on.

Pixelwise parametric modelling

For a Bayesian version of the parametric model (1) the most simple prior is to assume a highly

dispersed diffuse Gaussian distribution for every parameter component. For scalar b;, we get
1
bi)A ~ N(p, 1/X) or  p(bi|A) o exp(—i)\b?) (6)

with p as the prior mean and A arbitrarily small to reduce the prior’s influence. With A — 0 the
prior is diffuse. Taking additionally the posterior mean as point estimate, the Bayes estimator
and the least squares estimator become identical. Parameters are estimated pixelwise, i.e. for

each pixel separately, and temporally constant.

Spatial parametric modelling

One of the main advantages of the Bayesian approach is that spatial correlations can easily be
introduced into the modelling of the time series. For the parametric model (6) with scalar b;
this is achieved by assuming intrinsic autoregressive priors, also called pairwise difference priors

(see e.g. Besag, York and Mollie, 1991). It can be seen as a kind of stochastic interpolation of



the adjacent neighbors and can be written down for b = (by,...,by)" as follows:

PO o exp(— S AVQD). (7)

The precision matrix () has elements

ng =]
Qij=13 —1 i~ (8)
0 else

with n; the numbers of neighbors of pixel 7, or equivalently
PN o exp{— AT (0~ b)) (9
ing
This prior can also be rewritten in terms of conditional distributions:
bilbjgi, A~ N(~ > bj,

n; jri

1
—). 10
—) (10)
Compared to pixelwise parametric modelling, estimates are spatially smoothed. The number
of neighbors used is essential for the amount of smoothing, the larger the neighborhood the
spatially smoother becomes the parameter estimate. To avoid oversmoothing and blurring of

edges in the activation surface, we use the four nearest neighbors.

Pixelwise semiparametric modelling

For the semiparametric state space model (3,4), Gaussian priors for the sequences a; =
(ai1,...,a;r) and b; = (b;,...,bip)" are defined by the random walk models in (4). As-
suming diffuse initial priors for a;i, a2, b;1, bia, these priors can equivalently be rewritten in

form of global Gaussian smoothness priors. For b; we get

1
p(bil\;) o GXP(—i)\ibéQbi% (11)

with A; as the precision or inverse variance \; =1/ agi of the prior. It controls the smoothness
of the estimated curves. The precision matrix ) penalizes too rough estimates of the sequence

b; = (bi1, ..., bir)'. For a random walk of second order it has the following form:
1 -2 1
-2 5 —4 1
1 -4 6 —4 1
Q= (12)




This prior can also be seen as a stochastic quadratic interpolation in the temporal dimen-
sion. The effect of this prior is a model with time-varying coefficients, which vary slowly and
smoothly in time. This is appropriate for describing slow temporal fluctuations of an inert

underlying system as the convoluted blood flow is supposed to be.

Semiparametric spatio-temporal modelling

Up to now we introduced spatial and temporal smoothness priors for fMRI experiments sep-
arately. To obtain models that simultaneously consider these two aspects a combination of
the above properties is necessary. This could be done by means of separable or non-separable
time space interactions. We present two models that are a reasonable compromise between
computational tractability and model complexity.

Separable time-space interactions can be thought of as a splitting of the particular parameter
into several components. A simple model of this kind is obtained by splitting the activation

effect b;; into
bir = a; + P, (13)

assuming a spatial smoothness prior (7) for the time constant part «; and a pixelwise temporal
random walk prior (11) for the time-varying effects ;. For identifiability reasons, the sequence
Bi = (Bi1, - - -, Bir)' has to be centered about zero. This model is useful, if the primary scientific
goal is detection of activation areas. It separates spatially correlated static activation effects
«; and additional time-varying fluctuations ;. In contrast, for the parametric spatial model
(7) with time-constant activation effect, the fluctuations average over time and are implicitly
already added to b;.

However, as a result of the pixelwise modelling of the random effects the temporal variations
in adjacent pixels are still more or less independent. If main interest also includes these
fluctuations, non-separable interactions should be considered. In this case a splitting into
temporal and spatial components is not possible. Both dependencies have to be incorporated
into one prior. To do so, we modify a prior proposed by Clayton (1996) and applied by Knorr-
Held (2000) for the interaction of random effects. These interactions are modelled by using
the Kronecker product of two penalty matrices as a new penalty in the Markov random field

prior. Transfered to our problem at hand, this means with Q° as in (7) and Q' as in (11):

1
PIOIA) o exp(=SAWQD),  with Q= Q" & Q! (14)
or equivalently:
1
p(b|\) o exp{—§)\ D> (A% — A%hj)?}, (15)
i~j t



with A2b;, = by — 2b;;_1 + by denoting the second differences of b;,. Penalizing differences in
the time courses of adjacent pixels, this prior should effect a temporally as well as a spatially
smooth evolution of the parameters. But in our case, due to the dominating spatial structure of
the fMRI data and a single global smoothness parameter A, spatial smoothness is overestimated
at the expense of the temporal. Therefore, we augment the above prior by a kind of main effect
to control temporal smoothness. With it not only spatial differences in the time courses are
penalized but also too rough evolutions itself. Additionally, to account for the high dimensions
of the data (~ 2-300.000 observations) pixelwise precisions are introduced. This results in a

spatio-temporal prior for fMRI experiments as follows:
1
pOIN) x exp(—5D@uD), with Q= (@ ©Q)+(A@Q)=(Q +M)oQ" (1)
with Q" as defined in (11), Q° with elements

Sreoi(Ni+Ap) i=

g=1 —Ai+A)  i~g, (17)
0 else
and A as the diagonal matrix of pixelwise precisions A;,72 =1,..., 1. For a second order random

walk this can be rewritten with the above definitions:

1
p(bIA) oc expl=2 3 AN D O(A%E + 3 (A% — A%;)°)}]. (18)
i t j€di

The introduction of the temporal main effect can also be accounted for as a downweighting of
the spatial influence, that puts emphasis on the temporal smoothness of the estimated para-

meters.

In the last stage of the hierarchy, we assume priors for unknown hyperparameters, i.e.
precisions \; and inverse variances 1/0? of the observation errors. A common choice are highly

dispersed gamma distributions GA(7,,7,) where 7, and v, have to be chosen appropriately.

Model specification is completed by assuming (conditional) independence between (blocks
of) parameters. Gathering parameters in vectors a = (a},...,a}), b = (by,...,0;), A =
(A1, .- A7)s 0% = (0},...,0%) and observations Y = (yu,i = 1,...,1,t = 1,...,T) the

posterior distribution of the parameters given the observed data has the following form:
pla,b,0* YY) o< 1(Y|a, b, 0?) p(a|A) p(b|A) p(\) p(a?). (19)

The likelihood [(Y|a, b, 0?) is determined by the observation model, the other factors by the

priors above.



3 Inference

Complete Bayesian inference is based solely on the posterior distribution (19). Even though
this distribution is only known up to a normalizing constant, samples can be drawn by means
of Markov chain Monte Carlo (MCMC) methods. This is achieved by iteratively drawing
single parameters or groups of parameters from their full conditionals, i.e., the conditional
distribution of these parameter given the rest and the data. For a thorough introduction
to these methods see e.g. Tierney (1994), Gilks, Richardson and Spiegelhalter (1996) or
Gamerman (1997). Due to the choice of normal and gamma priors for the fMRI models full
conditionals can be written down in closed form and are itself normal or gamma distributions.
Thus, Gibbs sampling can be used to draw from univariate or multivariate full conditionals. In
the following we outline only the general strategy. Some details are provided in the Appendix.
In all approaches the parameters a; and b;, respectively «; and [; in the separable model (13),
are drawn for each pixel separately. Scalar parameters are sampled univariately, vectors as

blocks. In both cases the full conditionals are normal distributions

plail.) ~ N(paXa),
p(bil.) ~ N(up, Zs),

with means and covariances of adequate dimensions. Due to the use of conjugate priors, for
the pixelwise parametric model (6) conditional means and variances are easy to calculate (see
e.g. Robert, 1994). The spatially correlated parameters of model (7) and the «; of model
(13) can be sampled similarly, only replacing prior means and variances according to (10).
Analogously one proceeds for the calculation of the mean vector and covariance matrix of the
semiparametric model (11). Updating can be done by direct sampling, exploiting the band
structure of the precision matrix. This method can also be applied to the parameters j3; in
model (13). For the non-separable model (16) the mean vectors of the semiparametric model
have to be augmented by the weighted spatial influence of the neighbors. Further, neighboring
precisions have to be incorporated into the covariance matrix.

The variances of the observation errors are sampled separately from inverse Gamma distribu-

tions
p(02'2|‘) ~ IG(ay, by),

where number of time points and sum of residual squares of the observation errors determine

the parameters a, and b,. Global or pixelwise precisions are drawn from Gamma distributions
psil) ~ GA(aa,ba),
Pyl ~ GA(as, be),

where the rank of the precision matrix and the quadratic form in the prior determine the

parameters a,, ay, b, and by.



As noted in Section 1, the hemodynamic response function is determined in advance. In
theory a fully Bayesian approach is conceivable where also the HRF parameters are modelled
and estimated by MCMC. To keep computation time in a reasonable extent we decided to
exclude these parameters from the MCMC algorithm and calculate them in a pilot estimate
by least squares. However, with increasing computational power an incorporation can be

considered.

4 Applications

The data set we use for illustration of the above approaches is a fMRI time series from a visual
stimulation experiment. The set of T2* images was acquired on a 1.5 T system (Echospeed, GE
Medical Systems, Milwaukee). Seven slices parallel to the intercommissural line with a voxel
size of 2.9 x 2.9 x 5 mm were positioned to cover the occipital lobes. A series of 73 images
consisting of 128 x 128 pixels was acquired with the initial three images being discarded to
avoid non-steady-state effects. With regard to the stimulation paradigm of the fMRI data, the
subsequent 70 images were divided into four rest and three activation periods, with each period
consisting of 10 images (30 s long). The reference box car is shown in Figure 1. During the
visual stimulation periods a rectangular checkerboard that alternated at a frequency of 4 Hz
was displayed with central fixation point. The fixation point was displayed with an uniformly
dark background in the rest periods. To correct for subject’s motion, an image registration

(Jiang et al., 1995) was performed prior to the analysis.

All MCMC algorithms consisted of 6000 iterations with the first 1000 being discarded as
burn-in and every 5th iteration included in the final sample. With this high-dimensional data,
convergence diagnostics were reduced to a selection of randomly chosen parameter chains.
Additionally, the sampling path of the Bayesian deviance was monitored. For all samples
autocorrelations were less than 0.1 and almost independent of starting values. Parameters of
the Gamma hyperpriors were both set to 1, respectively 1 and 10. First order neighborhoods
were used in the spatial applications, i.e., only the four nearest neighbors entered the calcula-
tions. Figure 2 shows the sampling paths, autocorrelations and histograms of a representative
parameter and the deviance of the non-separable model. The parameter histogram is super-
imposed with a normal distribution with same mean and variance. Exploiting the similarity
of these distributions, for working memory reasons in each iteration only first and second mo-
ments of the approximately normal posteriors for parameters were updated. The posterior

mean was used as point estimate.

Activation maps were calculated by testing whether the stimulus effect is zero or not. For

a confidence level « this is equivalent to checking whether the a quantile covers the zero or

10



not. After standardizing the posterior to unit variance, this reduces to testing whether the
transformed mean of the approximately normal posterior distribution with unit variance is
sufficiently far apart from zero. For example, for such a distribution with mean 1.96, the 0.025
quantile does just not cover the zero. Thus, familiar activation maps can simply be calculated
by thresholding the map of standardized posterior means at a certain value determined by the
significance level . The maps in our example were thresholded at different levels, to allow for

a qualitative comparison of approaches.

In Figure 3 an activation map (threshold 5.0) and surface plots of absolute and standard-
ized fitted values for the parametric pixelwise approach (6) are displayed. The results of the
classical parametric model (1) fitted by least squares are almost equivalent to the above, dif-
fering only marginally. Main activation is sited in the primary visual cortex, also called V1,
in the occipital lobe. Additionally, small activated areas in the extrastriate cortex or second-
ary visual areas can be found in the post parietal areas on both sides of the brain. Further,
anterior or in front of V1, a few pixels in the precuneus show a significant reaction to the
stimulus. Primary visual areas are the first cortical relay station for general processing of all
visual stimuli. Conversely, the secondary or associate regions coactivated in our experiment
are supposed to handle specific information about e.g. colour and shape of objects. Episodic
memory, a part of the declarative memory, is assumed to be located in the precuneus.

The results of the parametric spatial approach (7) are shown in Figure 4. It can be seen that
in comparison to the pixelwise model estimated regions appear smoother and more connected.
This is particularly so for the absolute fitted values. Single peaks are strongly reduced. This
result was to be expected because one of the main effects of the spatial prior is smoothing of
the parameter surface and reduction of single isolated peaks. Apart from that, spatial and
pixelwise activation maps are quite similar, differing only in the level (threshold 6.5 for the
spatial model). This is thought to be the consequence of the strong dependence between neigh-
boring parameters and the resulting narrower credibility regions or posterior distributions.

Figure 5 shows the estimate for the dynamic model (3) with the parameter prior (11). Each
of the respective three maps represents one time point in the stimulation cycle indicated by
the asterisk on the boxcar on bottom of the figure. We confine to these three maps because
activation varies only slowly in time and most interesting differences can be found between
stimulation periods in this activation paradigm. In all maps a static occipital activation in
V1 can be seen. Additionally, semiparametric modelling reveals a remarkable temporal vari-
ation in the secondary visual areas on both sides. Further, fluctuations in the precuneus can
be observed. For illustration the effects of parametric and dynamic modelling are plotted in
Figure 6 for a selected time series from the extrastriate visual cortex. The different quality of
modelling is apparent, with a substantial gain in fitting accuracy for the dynamic model. The
series of activation maps was thresholded at a level of 3.0. Indicated by the lower threshold,

in comparison to the parametric approaches standardized values are noticeable reduced. The

11



dramatically increased number of parameters seems to lead to a splitting of information and
thus to broadened credibility regions.

Comparable maps (Figure 7) are also obtained for the separable spatio-temporal model
(thresholds 4.0). Comparing the spatial average effect to the temporally constant model (7),
primary visual areas are similarly well detected whereas extrastriate activation differs remark-
ably. This is consistent with the dynamic model, where temporal fluctuations occur mostly
in extrastriate areas whereas V1 activation is temporally relatively invariant. Figure 7c shows
the spatial effect superimposed with the temporal random effect. Temporal fluctuations in the
mentioned areas are described in accordance to the dynamic approach, whereas underlying
activated areas show the typical spatial smoothness induced by the prior. The surface plots
reflect the strong influence of the spatial effect. Even though more parameters than in the
dynamic model are estimated, V1 activation is striking as well as extrastriate in the last stim-
ulation cycle. As already mentioned, in this approach the temporal variations of neighboring
pixels are still assumed to be independent.

Interactions between dynamic effects can be accounted for by the non-separable model (16).
The results are shown in Figure 8. The spatial effect of the spatio-temporal prior can be seen
especially in the surface plot. Through the principle of 'borrowing strength’, posterior vari-
ances can be reduced and thus inference improved. The difference between the V1 values and
the rest of the brain is appreciably increased, allowing for a more reliable discrimination of
activated and non-activated regions. But, the dependence between adjacent time courses also
implies reduced temporal variation found by this approach, especially in the secondary visual
areas and in the precuneus where activation is suppressed strongly. Because non-activated
pixels show no or few variation of the stimulus effect in time, the spatial prior also constrains
the effect of activated pixels to perform only minor changes. This property could perhaps be
eliminated by introducing robust versions of this type of prior that allow explicitly for edges

between adjacent activated and not activated pixels.

When comparing the results it has to be stated that activations are estimated very con-
sistently especially in the primary visual cortex. Also temporal fluctuations are covered in
all dynamic approaches similarly. The only differences observed are the degrees of temporal
smoothness estimated for the effects. In our experience these differences are not only a con-
sequence of the choice of the hyperparameters but are also model inherent. Even though the
hyperparameters have an effect on the results, data information mostly outweighs prior spe-
cifications. Consequently, this leads us directly to the problem of model comparison.

Table 1 contains posterior median, mean and standard deviation of the deviance as a global
measure of goodness of fit for the models considered. It can be seen that all three parameters
for the separable model are noticeable larger than for the other models, which are more or less
indistinguishable in terms of goodness of fit. The increased mean and variation might be a

consequence of the augmented parameter space for the baseline and the activation effect and
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thus the higher complexity. Regarding the other approaches, the deviance alone is of limited
relevance for the problem of choosing the adequate model. Model choice will therefore need to
be based on the specific objectives of each study. If detection of activation areas averaged over
time is the primary goal, simpler models with time constant activation parameters seem to be
appropriate and taking care of spatial correlation is recommended to robustify segmentation
of activated and non-activated areas. If, however, additional interest exists in dynamic effects
of activation, the non-separable spatio-temporal model is a good choice.

Recently, Spiegelhalter, Best and Carlin (1998) proposed a deviance-based model selection
criterion (DIC) also penalizing model complexity comparable to Akaike’s information criterion
for frequentistic approaches. But because experience with the performance of DIC is still lim-
ited, we do not use it here.

Currently, we are exploring the suitability of these models on other data sets and different
experimental designs to allow for more reliable conclusions with respect to the problem of

model comparison.

5 Conclusion and Outlook

We believe that Bayesian hierarchical modelling of the time-space structure underlying fMRI
experiments offers new and intriguing possibilities for human brain mapping. We have shown
that this approach is not only computationally feasible even with massive fMRI data sets,
comprising several thousands of spatially correlated time series, but that it has great potential
for detecting and analyzing spatio-temporal effects due to its flexibility. Some extensions and
modifications for future work are outlined in the following.

Gaussian priors as applied here are appropriate for comparably smooth underlying functions
of time or surfaces. However, they may blur edges or regions with high curvature between
areas of high and low activation. To avoid this, spatially robust priors could be incorpor-
ated in spatio-temporal models, without destroying the ability of modelling smooth trends
and time-varying effects. By penalizing larger differences between adjacent pixels less severely
than normal distributions such priors do not smooth over large systematic gaps but only small
irregularities induced by noise. In a purely spatial context Higdon (1994) suggested to extend
normal priors by introducing gamma distributed weights for the precision. This results in
heavier tailed student priors. Other robust distributions such as Laplace, Huber or truncated
Gaussian (Kiinsch, 1994) priors could also be useful. However, when using robust priors, full
conditionals are no longer explicitly given so that more time consuming Metropolis steps would
have to be introduced instead.

Further, parametric modelling of time-varying effects with a parsimonious number of basis func-

tions should be kept in view. Reducing the number of parameters and therefore computation
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time, they represent an alternative to the computationally very expensive fully nonparametric
Bayesian methods.

Apart from the priors for time and space, Bayesian modelling of the hemodynamic response
function should be attempted, too, even though computation time would increase considerably.
Another extension might be the incorporation of further substantial prior information. Know-
ledge about the functional organisation of the brain has dramatically evolved over the last
decade by use of various mapping techniques such as positron emission tomography, EEG and
fMRI. The Bayesian approach is ideally suited to account for such comprehensive prior know-
ledge. The incorporation of this information may range from applying simple vague probability
gradients up to restricting activation to certain predefined sulci and gyri. However, plasticity
of the brain, the fact of a displacement of functional areas, should always be kept in mind
and carefully considered. An information that surely has to be included is that activation
only occurs in gray matter. Thus, results of brain segmentation into distinct classes of tissue,
certainly hold promise to improve the reliability of estimation in terms of reducing artefacts
in white matter or cerebro spinal fluid. A positive side effect would also be the reduction of

computation time by the exclusion of a substantial part of the data.
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Appendix

Full conditionals of parameters:

Full conditionals are proportional to the posterior distribution of the parameters (19) given
the data

pla,b,0® NY) o 1Y |a, b, 0%) p(alA) p(b|A) p(A) p(o?).
with the likelihood determined by the observation model

yit|aitabit70—i2NN(ait+Zitbit70-Z'2)7 t:]-a---uT7 izlu"'7]7
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where for time-constant models a; = wja; and b; = v;b; with adequate w, and v;. The MR
signal for pixel i,i = 1,..., [ is denoted by y; = (yir,t = 1,...,T) and z; = (zis,t =1,...,T) is
the transformed reference function. The prior distributions are specified in Section 2.2. Thus,

full conditionals can be calculated as follows.

Pixelwise parametric modelling

Prior distributions of scalar parameters a;, b; and o?:

al|)‘ ~ N(:uv 1/)‘>7
bil A ~ N(u, 1/A),
o7 ~ IG(Va, 1)-

Full conditionals:

o+ 1A (i — zabi) 07 /A )
a2+ T/\ To2 4TI\

oip+ NS Zie(yie — i) 0 /A )
o2+ 22 /A To? 4 A N

1
0'12| ~ IG(7a+T/2,7b+§Z(yit—ai—zitbi)Q).
t

Y bi, N, of ~ N(

bi|Y7ai7)\,cri2 ~ N(

Spatial parametric modelling

Prior distributions of parameters a = (ay,...,a;) and b = (by,...,b;)":
1
pa) o exp(— 1A Qa),

p(b) o exp(— %)\bb'Qb),

with the precision matrix @ defined in (8), or for scalar parameters a; and b;:

1
Cli|6lj¢i, )\a ~ N(— Z a;,

)
n nilg

3 ]N’L

with n; the numbers of neighbors of pixel 7. Prior distributions of variances ¢? and precisions
Ag and Ny :

0—1'2 ~ [G(’Yav ’Yb)v
)\a ~ GA(’YLH ’Yb)v
Ap ~ GA(”YM%)-
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Full conditionals of a;|. and b;|. as for the pixelwise model with adequately replaced prior mean

i and precision A. Further full conditionals:
1
01'2|- ~ IG(v+T/2,% + 5 Z(th —a; — Zitbi>2)7
t
1
Al ~ GA(a +7R(Q)/2, 7 + 50'Qa),

RS GA(7a+rk(Q)/2,%+%b’Qb).

Pixelwise semiparametric modelling

Prior distributions of parameters a; = (a;1, ..., a;r) and b; = (b1, ..., bir)":
1
pla;) exp(—i)\aia;Qai),
1
p(b) o exp(—§/\bib§Qbi),

with the precision matrix @ defined in (12). Prior distributions of variances o2 and precisions
Aa; and Ap,:

07 ~ IG(Ya, ),
)\ai ~ GA(/‘YM 717)7

Ao, ~ GA(Ya, )
Full conditionals for parameters a; and b;:
Y. bihas0? ~ NI+ 2@ o= 500) (T +20Q) ),
bIY, a0 Ny 0? ~ N((Uiiz;zi + )\biQ)l{%z(yi —a)), (Uizz @),

with z; = diag(zy,t =1,...,T).

Further full conditionals:
1
02'2|‘ ~ IG(va +T/2,7 + B Z(ta — Qi — Zitbit>2>7
t

Ail-

1 !
~ GA(va +7k(Q) /2,7 + 5%@%),

1
Ao|- ~ GA(va +1E(Q) /2,7 + 552@%)-

Semiparametric spatio-temporal modelling

Full conditionals of the separable model (13) are straightforward modifications of the above

sections.
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For the non-separable model (16), prior distributions of parameters a = (a;, i =1,...,I,t =
L,...,T) and b= (by,i=1,...,I,t=1,...,T) run as follows:
Lo
pla) o exp(—3AaQu),

p(b) o< exp(— %)\bb'Qb)7

with the precision matrix @ defined in (16). For a;|a_; this can be transformed into:

plardass) o esp(=3hale — 1) Qe — o)),
p(bila—;) o eXp(_%j\a(bi — )" Q" (b — 1)),

with Q" as in (11). Further, u, = (tta1, - - -, fat)’s

Mai — {/\Z(TLZ + 1) + Z )\j}_l Z{(/\Z + )\j)@jt} and
S\G = {/\Z(TLZ + 1) + Z )\j}7

jeadi

with n; as the number of neighbors of pixel 7. The parameters u, and )\, are calculated

equivalently. Prior distributions of variances o7 and precisions \,, and Ap,:

07 ~ IG(Va, ),
)\ai ~ GA(/Yav /Yb>7
)\bi ~ GA(%H%)-

Full conditionals for parameters a; and b;:
2 1 g t\y—1 1 ~ Y t 1 3 t\—1
ai|Yv G,i,b, )\aaai ~ N((O__[+)\aQ ) {0__(,%—21[71) +)‘aQ Ma}v(_1+)\aQ ) )7
1 ~ 1
bilY,b_iya, Ny, 0}~ N((;%"gi + )\th)fl{;fi(yi ai) + Q' ( 2% + QDY)

with Z; = diag(zy, t =1,...,T).

Further full conditionals:
1
ofl ~ IG(u+T/2,m+ 5 Z(yz-t — @y — zibu)?),

Ay~ GA(a+ (g + 1) (T —2)/2, % + = Z{A2 + > (A%ay — A%aj)?}),

jEdI

M|~ GA(Ye+ (i +1)(T —2)/2, % + = Z{AzbftJr > (A% — A%jp)?Y),

JEN

with A%z = @ — 2041 + Tip_o-

17



References

Bandettini, P. A., Jesmanowicz, A., Wong, E. C., and Hyde, J. S. (1993). Processing Strategies
for Time-Course Data Sets in Functional MRI of the Human Brain. Magnetic Resonance
m Medicine, 30, 161-173.

Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration with two applications
in spatial statistics. Annals of the Institute of Statistical Mathematics, 43, 1, 1-59.

Bullmore, E., Brammer, M., Williams, S. C. R., Rabe-Hesketh, S., Janot, N., David, A.,
Mellers, J., Howard, R., and Sham, P. (1996). Statistical Methods of Estimation and
Inference for Functional MR Image Analysis. Magnetic Resonance in Medicine, 35, 261
277.

Clayton, D. (1996). Generalized linear mixed models. In Markov Chain Monte Carlo in
Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (eds), pp. 275-301. Chapman
& Hall, London.

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., and Noll, D. C.
(1995). Improved assessment of significant activation in functional magnetic resonance

imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33,
636-647.

Friston, K. J., Holmes, A. P.; Poline, J.-B., Grasby, P., Williams, S. C. R., Frackowiak, R.
S. J., and Turner, R. (1995). Analysis of fMRI Time-Series Revisited. Neuroimage, 2,
45-53.

Gamerman, D. (1997). Efficient Sampling from the posterior distribution in generalized linear
models. Statistics and Computing, 7, 57-68.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in
Practice. Chapman & Hall, London.

Gossl, C., Auer, D. P., and Fahrmeir, L. (2000). Dynamic models in fMRI. Magnetic Resonance
m Medicine, 43, 72-81.

Higdon, D. (1994). Spatial applications of Markov chain Monte Carlo for Bayesian Inference.
Ph.D. thesis, Department of Statistics, University of Washington.

Jiang, A. P., Kennedy, D. N., Baker, J. R., Weisskoff, R., Tootell, R. B. H., Woods, R. P.,
Benson, R. R., Kwong, K. K., Brady, T. J., Rosen, B. R., and Belliveau, J. W. (1995).
Motion detection and correction in functional MR imaging. Human Brain Mapping, 3,
224-235.

18



Knorr-Held, L. (2000). Bayesian Modelling of Inseparable Space-Time Variation in Disease
Risk. Statistics in Medicine, to appear.

Kiinsch, H. R. (1994). Robust priors for smoothing and image restoration. Annals of the
Institute of Statistical Mathematics, 46, 1, 1-19.

Lange, N. (1996). Statistical Approaches To Human Brain Mapping By Functional Magnetic
Resonance Imaging. Statistics in Medicine, 15, 389—428.

Poline, J. B., Worsley, K. J., Evans, A. C., and Friston, K. J. (1997). Combining Spatial
Extent and Peak Intensity to Test for Activations in Functional Imaging. Neuroimage, 5,
83-96.

Robert, C. P. (1994). The Bayesian Choice. Springer Verlag, New York.

Spiegelhalter, D. J., Best, N. G., and Carlin, B. P. (1998). Bayesian deviance, the effective
number of parameters and the comparison of arbitrarily complex models. Technical report,
MRC Biostatistics Unit, Institute of Public Health, Cambridge.

Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Stat-
1stics, 22, 4, 1701-1762.

19



Model Median  Mean STD
pixelwise parametric model 211536 211527 622
spatial parametric model 211539 211543 638
pixelwise semiparametric model 211458 211444 630
separable spatio-temporal model 221730 221709 1722
non-separable spatio-temporal model 211511 211515 643

Table 1: Posterior summaries of the deviance.
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Figure 1: Stimulus paradigm and representative time series ranging from strongly activated

(a,b) over weak activation (c¢,d) to no activation (e).
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Figure 2: MCMC diagnostics.
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a) activation map b) standardized values ¢) absolute values

Figure 3: Results for the pixelwise parametric model.

a) activation map b) standardized values c) absolute values

Figure 4: Results for the spatial parametric model.
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a) activation map

b) standardized values

Figure 5: Results for the pixelwise semiparametric model.
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Figure 6: Fitted models.
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a) activation map (spatial effect «)

¢) activation map (activation effect o + 3)

d) standardized values (activation effect a + [3)

Figure 7: Results for the separable spatio-temporal model.
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b) standardized values

Figure 8: Results for the non-separable spatio-temporal model.
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