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Summary� Mapping of the human brain by means of functional magnetic resonance imaging

�fMRI� is an emerging �eld in medical sciences� Current techniques to detect activated areas

of the brain mostly proceed in two steps� First� conventional methods of correlation� regression

and time series analysis are used to assess activation by a separate� pixelwise comparison of the

MR signal time courses to the reference function of a presented stimulus� Spatial aspects caused

by correlations between neighboring pixels are considered in a second step� if at all� Aim of this

article is to present hierarchical Bayesian approaches that allow to simultaneously incorporate

temporal and spatial dependencies between pixels directly in the model formulation� For

reasons of computational feasibility� models have to be comparatively parsimonious� without

oversimplifying� We introduce parametric and semiparametric spatial and spatio�temporal

models that proved appropriate and illustrate their performance by application to fMRI data

from a visual stimulation experiment�

Key words� human brain mapping� functional magnetic resonance imaging� MCMC� semi�

parametric models� spatio�temporal models�

� Introduction

At the beginning of this decade an important advancement in medical imaging has been made�

Through a new non�invasive technique called functional magnetic resonance imaging �fMRI�

it has been made possible to examine sensory and higher cognitive functions in a living human

brain without using an external contrast agent or tracer� Utilizing the di�erent magnetic

properties of oxygenated and desoxygenated blood� non�invasive mapping of brain functions

has become feasible� The physiological changes induced by neuronal activation� known as the

neurovascular coupling� lead to a local increase in blood oxygenation� the so called BOLD

�blood oxygenation level dependent� e�ect� that may be directly visualized with specially

sensitized MR sequences� While acquiring a whole time series of MR images� through this
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BOLD e�ect changes in regional brain activity induce a systematic variation in the MR signal

that is related to a presented external stimulus� Thus� areas or pixels where the signal time

courses show a signi�cantly stimulus related variation are assumed to be activated by that

particular stimulus� Application of this new and intriguing methodology for human brain

mapping studies� however� is far from being simple encompassing a number of critical issues

regarding the physiology� physics and statistics involved� For the physiological and physical

fundamentals of this technique we refer to the excellent tutorial by Lange ��

��� In this article

we focus on the statistical part of fMRI�

Aim of the statistical analysis of fMRI experiments is the assessment of signi�cantly stimulus

related activated areas of the brain as the basis of functional mapping� For this purpose� a time

series of T MR volumes of the brain is acquired during the presentation of a certain stimulus

paradigm� These volumes consist usually of about � to �� slices each with �
��
 or ��	���	

pixels or voxels with dimensions of ca� � � � � � mm� For each of these pixels a complete

time series exists� In the classical fMRI experiments the stimulus is presented in a so called

boxcar paradigm� a sequence of ON and OFF periods �e�g� ��s OFF� ��s ON� ��s OFF� � � ���

in which every ��
 seconds an image is acquired� For illustration Figure � shows such a boxcar

stimulus together with � representative MR signal time courses of selected pixels� Current

standard methods for data evaluation are correlation �Bandettini et al�� �

�� and regression

models �Friston et al�� �

��� where the statistical dependence between the MR signal and the

stimulus is investigated and tested to be signi�cant� Regression models can be summarized

as follows� For each pixel i�i � �� � � � � I�� the time series fyit� t � �� � � � � Tg of MR signals is

assumed to obey a linear parametric relationship

yit � w�
tai � ztbi � �it� �it � N��� ��

i �� i � �� � � � � I� t � �� � � � � T� ���

Here wt is a known design vector� which is supposed to model the trend or baseline drift�

Design vectors that contain linear and quadratic trends or the �rst few terms of a Fourier

expansion are common examples� The variable zt denotes the transformed stimulus at time t�

in other words zt is a function of the presented ON�OFF�stimulus xt� t � �� � � � � T � With regard

to the transformation� we consider a temporal shift of the original stimulus by a time�delay d

and a convolution with a parametric hemodynamic response function �HRF� h� so that�

zt �
t�dX
s��

h�s� ��xt�d�s� ���

Generally Poisson �Po���� or Gamma �Ga��� u�� densities are chosen for this purpose� The

parameters � or �� u and the time lag d are either calculated in a pilot least squares estimation

algorithm prior to �tting model ��� to the fMRI data or are set in advance according to past

experience� The transformation ��� formalizes the fact that �a� due to hemodynamic latencies

the cerebral blood��ow �CBF�� the source of the MR signal� increases approximately ��	 s

after the onset of the stimulus� and that �b� the �ow responses do not occur suddenly� but
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rather continuously and delayed� Other speci�cations are also possible �Bullmore et al�� �

���

The parameter bi� i � �� � � � � I is interpreted as the e�ect of activation at pixel i� Testing now

whether bi is zero or not for all pixels yields a map� in fMRI literature often called �statistical

parameter map� �SPM�� that shows the �activated� areas of the brain for this particular exper�

iment� For a visual stimulation experiment such an activation map is displayed in Figure �a�

The white areas indicate the pixels whose test statistic exceeds a value of ��� that corresponds

to signi�cance level � �����

Substantial gain in �exibility is achieved in G�ossl� Auer and Fahrmeir ������ by a semiparamet�

ric Bayesian approach� Using state space modelling and Kalman �ltering both the baseline and

a time�varying stimulus e�ect are modelled and estimated without being constrained to any

particular parametric form� but allowing for a temporally smooth evolution� The observation

model ��� is generalized to a state space model�

yit � ait � zitbit � �it� �it � N��� ��
i �� ���

where second order random walks

ait � �ait�� � ait�� � 	it� 	it � N��� ��
�i

��

bit � �bit�� � bit�� � 
it� 
it � N��� ��
�i

��
�
�

enforce smoothness of the sequence ai � �ai�� � � � � aiT �� of the baseline trend and of the stimulus

e�ect bi � �bi�� � � � � biT ��� Further� the transformed reference function zit is estimated pixelwise

in advance� allowing the parameters � and the time lag d in ��� to depend on i and thus

the reference function to di�er from pixel to pixel� The main feature of this approach is the

description of a temporally varying stimulus related activation within an fMRI experiment

in contrast to the temporally constant parametric model ���� which assumes a time�constant

activation� This grants insight into the dynamics of the response pattern within an fMRI

experiment�

For all mentioned models� analysis is performed pixelwise� Dependencies between pixels are

considered by a smoothing of the data prior to the analysis and the application of results

of Gaussian random �eld theory �Poline et al� �

�� to correct the signi�cance level for

multiple comparisons or by simple cluster methods to reduce activations that occurred by

chance �Forman et al� �

��� For the latter� a pixel is assumed to be activated if itself exceeds

a certain threshold and also at least n of its nearest neighbors� The parameter n serves in this

context as a kind of smoothing parameter that controls the degree of noise reduction� Both

methods have in common that they have to be applied in a two step analysis and cannot be

incorporated simultaneously into a statistical model of the MR time series�

To overcome this limitation� we present Bayesian modelling approaches for fMRI space�time

data that explicitly allow for a simultaneous temporal and spatial analysis�

The paper is organized as follows� In Section � we introduce Bayesian formulations of fMRI

models� where the key issue relates to the formulation of prior distributions for the unknown
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model parameters� The models and the priors di�er in complexity� ranging from spatial exten�

sions of simple parametric models to spatio�temporal models based on Markov random �eld

priors� Section � gives a short outline of posterior estimation using Gibbs sampling� Section


 illustrates these models and points out the di�erences and advantages of the di�erent ap�

proaches by application to fMRI data from a visual stimulation experiment� The article closes

with a discussion of possible extensions of these models�

� Hierarchical Bayesian models for fMRI experiments

Hierarchical Bayesian models consist of an observation model for the data� given the para�

meters� and priors for the unknown parameters� Inference is then based on the posterior

distribution of the parameters given the data�

��� Observation models

In principle� there are numerous options for spatio�temporal modelling of fMRI data� A con�

ceptually straightforward option is to look at the data as a sequence yt � �y�t� � � � � yIt�
� of

images and to introduce spatial correlation through the covariance matrix � of the corres�

ponding error vectors �t � ���t� � � � � �It�
�� For diagonal � � diag���

�� � � � � �
�
I � we get back to the

pixelwise linear model ��� or the state space model ���� For non�diagonal � however� this op�

tion becomes quickly computationally infeasible because of the huge dimension �I in the order

of thousands�� With the state space model ��� for example� one would have to run Kalman

�lters and smoothers with �I � I��matrices� causing insurmountable problems with memory

and storage� Therefore we will not pursue this option� but introduce spatial correlation in

the second stage of the hierarchy by assuming spatial or spatio�temporal Markov random �eld

priors for the parameters�

In our experience a Gaussian assumption for the observations� conditional upon parameters�

is not critical� Therefore the general form of the observation model for pixel i� i � �� � � � � I� is

yitjait� bit� �
�
i � N�ait � zitbit� �

�
i �� t � �� � � � � T� ���

with zit as the transformed stimulus� ait as the trend and bit as the activation e�ect at time t�

Given the parameters� observations yit are conditionally independent�

Parametric models are obtained by modelling trend and activation e�ect as

ait � w�
tai� bit � v�tbi�






with design vectors wt and vt as for the linear model ���� and time�constant parameter vectors

ai � ���� � � � � �p�
� and bi � ���� � � � � �q�

� of �xed low dimension� For vt � �� the activation

e�ect is assumed to be time�constant� while inclusion of time�varying components� like t� t�

and sine�cosine terms into v allows for a time�varying activation e�ect�

Semiparametric models are obtained by assuming the whole sequence ai � �ai�� � � � � aiT �� and

bi � �bi�� � � � � biT �� of parameters as unknown and applying appropriate smoothness priors�

��� Prior distributions

The choice of prior distributions is less straightforward than formulation of the observation

model� In the following we show how a wide range of models for fMRI experiments can be

covered by simply applying di�erent kinds of prior distributions� We proceed from simple

parametric models to semiparametric spatio�temporal models� re�ecting the trade o� between

computational simplicity and model complexity� We start with a reformulation of the pixelwise

models ��� and ��� 
� �tting into our general Bayesian framework� Priors for a and b are mostly

of the same type� Thus� to avoid unnecessary repetitions� we de�ne them only for the stimulus

e�ect b� where most interest lies on�

Pixelwise parametric modelling

For a Bayesian version of the parametric model ��� the most simple prior is to assume a highly

dispersed di�use Gaussian distribution for every parameter component� For scalar bi� we get

bij� � N�
� ���� or p�bij�� � exp��
�

�
�b�i � ���

with 
 as the prior mean and � arbitrarily small to reduce the prior�s in�uence� With �� � the

prior is di�use� Taking additionally the posterior mean as point estimate� the Bayes estimator

and the least squares estimator become identical� Parameters are estimated pixelwise� i�e� for

each pixel separately� and temporally constant�

Spatial parametric modelling

One of the main advantages of the Bayesian approach is that spatial correlations can easily be

introduced into the modelling of the time series� For the parametric model ��� with scalar bi

this is achieved by assuming intrinsic autoregressive priors� also called pairwise di�erence priors

�see e�g� Besag� York and Mollie� �

��� It can be seen as a kind of stochastic interpolation of
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the adjacent neighbors and can be written down for b � �b�� � � � � bI�
� as follows�

p�bj�� � exp��
�

�
�b�Qb�� ���

The precision matrix Q has elements

Qij �

����
���

ni i � j

�� i � j

� else

�	�

with ni the numbers of neighbors of pixel i� or equivalently

p�bj�� � expf�
�

�
�
X
i�j

�bi � bj�
�g� �
�

This prior can also be rewritten in terms of conditional distributions�

bijbj ��i� � � N�
�

ni

X
j�i

bj�
�

ni�
�� ����

Compared to pixelwise parametric modelling� estimates are spatially smoothed� The number

of neighbors used is essential for the amount of smoothing� the larger the neighborhood the

spatially smoother becomes the parameter estimate� To avoid oversmoothing and blurring of

edges in the activation surface� we use the four nearest neighbors�

Pixelwise semiparametric modelling

For the semiparametric state space model ���
�� Gaussian priors for the sequences ai �

�ai�� � � � � aiT �� and bi � �bi�� � � � � biT �� are de�ned by the random walk models in �
�� As�

suming di�use initial priors for ai�� ai�� bi�� bi�� these priors can equivalently be rewritten in

form of global Gaussian smoothness priors� For bi we get

p�bij�i� � exp��
�

�
�ib

�
iQbi�� ����

with �i as the precision or inverse variance �i � ����
�i

of the prior� It controls the smoothness

of the estimated curves� The precision matrix Q penalizes too rough estimates of the sequence

bi � �bi�� � � � � biT ��� For a random walk of second order it has the following form�

Q �

�
BBBBBBBBBBBBB�

� �� �

�� � �� �

� �� � �� �
� � �

� � �
� � �

� � �
� � �

� �� � �� �

� �� � ��

� �� �

�
CCCCCCCCCCCCCA

���	

�



This prior can also be seen as a stochastic quadratic interpolation in the temporal dimen�

sion� The e�ect of this prior is a model with time�varying coe�cients� which vary slowly and

smoothly in time� This is appropriate for describing slow temporal �uctuations of an inert

underlying system as the convoluted blood �ow is supposed to be�

Semiparametric spatio�temporal modelling

Up to now we introduced spatial and temporal smoothness priors for fMRI experiments sep�

arately� To obtain models that simultaneously consider these two aspects a combination of

the above properties is necessary� This could be done by means of separable or non�separable

time space interactions� We present two models that are a reasonable compromise between

computational tractability and model complexity�

Separable time�space interactions can be thought of as a splitting of the particular parameter

into several components� A simple model of this kind is obtained by splitting the activation

e�ect bit into

bit � �i � �it� ����

assuming a spatial smoothness prior ��� for the time constant part �i and a pixelwise temporal

random walk prior ���� for the time�varying e�ects �it� For identi�ability reasons� the sequence

�i � ��i�� � � � � �iT �� has to be centered about zero� This model is useful� if the primary scienti�c

goal is detection of activation areas� It separates spatially correlated static activation e�ects

�i and additional time�varying �uctuations �it� In contrast� for the parametric spatial model

��� with time�constant activation e�ect� the �uctuations average over time and are implicitly

already added to bi�

However� as a result of the pixelwise modelling of the random e�ects the temporal variations

in adjacent pixels are still more or less independent� If main interest also includes these

�uctuations� non�separable interactions should be considered� In this case a splitting into

temporal and spatial components is not possible� Both dependencies have to be incorporated

into one prior� To do so� we modify a prior proposed by Clayton ��

�� and applied by Knorr�

Held ������ for the interaction of random e�ects� These interactions are modelled by using

the Kronecker product of two penalty matrices as a new penalty in the Markov random �eld

prior� Transfered to our problem at hand� this means with Qs as in ��� and Qt as in �����

p�bj�� � exp��
�

�
�b�Qb�� with Q � Qs �Qt ��
�

or equivalently�

p�bj�� � expf�
�

�
�
X
i�j

X
t

���bit ���bjt�
�g� ����

�



with ��bit � bit � �bit�� � bit�� denoting the second di�erences of bit� Penalizing di�erences in

the time courses of adjacent pixels� this prior should e�ect a temporally as well as a spatially

smooth evolution of the parameters� But in our case� due to the dominating spatial structure of

the fMRI data and a single global smoothness parameter �� spatial smoothness is overestimated

at the expense of the temporal� Therefore� we augment the above prior by a kind of main e�ect

to control temporal smoothness� With it not only spatial di�erences in the time courses are

penalized but also too rough evolutions itself� Additionally� to account for the high dimensions

of the data �� ��������� observations� pixelwise precisions are introduced� This results in a

spatio�temporal prior for fMRI experiments as follows�

p�bj�� � exp��
�

�
b�Q�b�� with Q� � �Qs �Qt� � ���Qt� � �Qs � ���Qt ����

with Qt as de�ned in ����� Qs with elements

Qs
ij �

����
���

P
k��i��i � �k� i � j

���i � �j� i � j

� else

� ����

and � as the diagonal matrix of pixelwise precisions �i� i � �� � � � � I� For a second order random

walk this can be rewritten with the above de�nitions�

p�bj�� � exp �
�

�

X
i

f�i

X
t

���b�it �
X
j��i

���bit ���bjt�
��g!� ��	�

The introduction of the temporal main e�ect can also be accounted for as a downweighting of

the spatial in�uence� that puts emphasis on the temporal smoothness of the estimated para�

meters�

In the last stage of the hierarchy� we assume priors for unknown hyperparameters� i�e�

precisions �i and inverse variances ����
i of the observation errors� A common choice are highly

dispersed gamma distributions GA��a� �b� where �a and �b have to be chosen appropriately�

Model speci�cation is completed by assuming �conditional� independence between �blocks

of� parameters� Gathering parameters in vectors a � �a��� � � � � a
�
I�� b � �b��� � � � � b

�
I�� � �

���� � � � � �I�
�� �� � ���

�� � � � � �
�
I � and observations Y � �yit� i � �� � � � � I� t � �� � � � � T � the

posterior distribution of the parameters given the observed data has the following form�

p�a� b� ��� �jY � � l�Y ja� b� ��� p�aj�� p�bj�� p��� p����� ��
�

The likelihood l�Y ja� b� ��� is determined by the observation model� the other factors by the

priors above�

	



� Inference

Complete Bayesian inference is based solely on the posterior distribution ��
�� Even though

this distribution is only known up to a normalizing constant� samples can be drawn by means

of Markov chain Monte Carlo �MCMC� methods� This is achieved by iteratively drawing

single parameters or groups of parameters from their full conditionals� i�e�� the conditional

distribution of these parameter given the rest and the data� For a thorough introduction

to these methods see e�g� Tierney ��


�� Gilks� Richardson and Spiegelhalter ��

�� or

Gamerman ��

��� Due to the choice of normal and gamma priors for the fMRI models full

conditionals can be written down in closed form and are itself normal or gamma distributions�

Thus� Gibbs sampling can be used to draw from univariate or multivariate full conditionals� In

the following we outline only the general strategy� Some details are provided in the Appendix�

In all approaches the parameters ai and bi� respectively �i and �i in the separable model �����

are drawn for each pixel separately� Scalar parameters are sampled univariately� vectors as

blocks� In both cases the full conditionals are normal distributions

p�aij�� � N�
a��a��

p�bij�� � N�
b��b��

with means and covariances of adequate dimensions� Due to the use of conjugate priors� for

the pixelwise parametric model ��� conditional means and variances are easy to calculate �see

e�g� Robert� �


�� The spatially correlated parameters of model ��� and the �i of model

���� can be sampled similarly� only replacing prior means and variances according to �����

Analogously one proceeds for the calculation of the mean vector and covariance matrix of the

semiparametric model ����� Updating can be done by direct sampling� exploiting the band

structure of the precision matrix� This method can also be applied to the parameters �i in

model ����� For the non�separable model ���� the mean vectors of the semiparametric model

have to be augmented by the weighted spatial in�uence of the neighbors� Further� neighboring

precisions have to be incorporated into the covariance matrix�

The variances of the observation errors are sampled separately from inverse Gamma distribu�

tions

p���
i j�� � IG�ay� by��

where number of time points and sum of residual squares of the observation errors determine

the parameters ay and by� Global or pixelwise precisions are drawn from Gamma distributions

p���a�i�j�� � GA�aa� ba��

p���b�i�j�� � GA�ab� bb��

where the rank of the precision matrix and the quadratic form in the prior determine the

parameters aa� ab� ba and bb�






As noted in Section �� the hemodynamic response function is determined in advance� In

theory a fully Bayesian approach is conceivable where also the HRF parameters are modelled

and estimated by MCMC� To keep computation time in a reasonable extent we decided to

exclude these parameters from the MCMC algorithm and calculate them in a pilot estimate

by least squares� However� with increasing computational power an incorporation can be

considered�

� Applications

The data set we use for illustration of the above approaches is a fMRI time series from a visual

stimulation experiment� The set of T�� images was acquired on a ��� T system �Echospeed� GE

Medical Systems� Milwaukee�� Seven slices parallel to the intercommissural line with a voxel

size of ��
 � ��
 � � mm were positioned to cover the occipital lobes� A series of �� images

consisting of ��	 � ��	 pixels was acquired with the initial three images being discarded to

avoid non�steady�state e�ects� With regard to the stimulation paradigm of the fMRI data� the

subsequent �� images were divided into four rest and three activation periods� with each period

consisting of �� images ��� s long�� The reference box car is shown in Figure �� During the

visual stimulation periods a rectangular checkerboard that alternated at a frequency of 
 Hz

was displayed with central �xation point� The �xation point was displayed with an uniformly

dark background in the rest periods� To correct for subject�s motion� an image registration

�Jiang et al�� �

�� was performed prior to the analysis�

All MCMC algorithms consisted of ���� iterations with the �rst ���� being discarded as

burn�in and every �th iteration included in the �nal sample� With this high�dimensional data�

convergence diagnostics were reduced to a selection of randomly chosen parameter chains�

Additionally� the sampling path of the Bayesian deviance was monitored� For all samples

autocorrelations were less than ��� and almost independent of starting values� Parameters of

the Gamma hyperpriors were both set to �� respectively � and ��� First order neighborhoods

were used in the spatial applications� i�e�� only the four nearest neighbors entered the calcula�

tions� Figure � shows the sampling paths� autocorrelations and histograms of a representative

parameter and the deviance of the non�separable model� The parameter histogram is super�

imposed with a normal distribution with same mean and variance� Exploiting the similarity

of these distributions� for working memory reasons in each iteration only �rst and second mo�

ments of the approximately normal posteriors for parameters were updated� The posterior

mean was used as point estimate�

Activation maps were calculated by testing whether the stimulus e�ect is zero or not� For

a con�dence level � this is equivalent to checking whether the � quantile covers the zero or

��



not� After standardizing the posterior to unit variance� this reduces to testing whether the

transformed mean of the approximately normal posterior distribution with unit variance is

su�ciently far apart from zero� For example� for such a distribution with mean ��
�� the �����

quantile does just not cover the zero� Thus� familiar activation maps can simply be calculated

by thresholding the map of standardized posterior means at a certain value determined by the

signi�cance level �� The maps in our example were thresholded at di�erent levels� to allow for

a qualitative comparison of approaches�

In Figure � an activation map �threshold ���� and surface plots of absolute and standard�

ized �tted values for the parametric pixelwise approach ��� are displayed� The results of the

classical parametric model ��� �tted by least squares are almost equivalent to the above� dif�

fering only marginally� Main activation is sited in the primary visual cortex� also called V��

in the occipital lobe� Additionally� small activated areas in the extrastriate cortex or second�

ary visual areas can be found in the post parietal areas on both sides of the brain� Further�

anterior or in front of V�� a few pixels in the precuneus show a signi�cant reaction to the

stimulus� Primary visual areas are the �rst cortical relay station for general processing of all

visual stimuli� Conversely� the secondary or associate regions coactivated in our experiment

are supposed to handle speci�c information about e�g� colour and shape of objects� Episodic

memory� a part of the declarative memory� is assumed to be located in the precuneus�

The results of the parametric spatial approach ��� are shown in Figure 
� It can be seen that

in comparison to the pixelwise model estimated regions appear smoother and more connected�

This is particularly so for the absolute �tted values� Single peaks are strongly reduced� This

result was to be expected because one of the main e�ects of the spatial prior is smoothing of

the parameter surface and reduction of single isolated peaks� Apart from that� spatial and

pixelwise activation maps are quite similar� di�ering only in the level �threshold ��� for the

spatial model�� This is thought to be the consequence of the strong dependence between neigh�

boring parameters and the resulting narrower credibility regions or posterior distributions�

Figure � shows the estimate for the dynamic model ��� with the parameter prior ����� Each

of the respective three maps represents one time point in the stimulation cycle indicated by

the asterisk on the boxcar on bottom of the �gure� We con�ne to these three maps because

activation varies only slowly in time and most interesting di�erences can be found between

stimulation periods in this activation paradigm� In all maps a static occipital activation in

V� can be seen� Additionally� semiparametric modelling reveals a remarkable temporal vari�

ation in the secondary visual areas on both sides� Further� �uctuations in the precuneus can

be observed� For illustration the e�ects of parametric and dynamic modelling are plotted in

Figure � for a selected time series from the extrastriate visual cortex� The di�erent quality of

modelling is apparent� with a substantial gain in �tting accuracy for the dynamic model� The

series of activation maps was thresholded at a level of ���� Indicated by the lower threshold�

in comparison to the parametric approaches standardized values are noticeable reduced� The

��



dramatically increased number of parameters seems to lead to a splitting of information and

thus to broadened credibility regions�

Comparable maps �Figure �� are also obtained for the separable spatio�temporal model

�thresholds 
���� Comparing the spatial average e�ect to the temporally constant model ����

primary visual areas are similarly well detected whereas extrastriate activation di�ers remark�

ably� This is consistent with the dynamic model� where temporal �uctuations occur mostly

in extrastriate areas whereas V� activation is temporally relatively invariant� Figure �c shows

the spatial e�ect superimposed with the temporal random e�ect� Temporal �uctuations in the

mentioned areas are described in accordance to the dynamic approach� whereas underlying

activated areas show the typical spatial smoothness induced by the prior� The surface plots

re�ect the strong in�uence of the spatial e�ect� Even though more parameters than in the

dynamic model are estimated� V� activation is striking as well as extrastriate in the last stim�

ulation cycle� As already mentioned� in this approach the temporal variations of neighboring

pixels are still assumed to be independent�

Interactions between dynamic e�ects can be accounted for by the non�separable model �����

The results are shown in Figure 	� The spatial e�ect of the spatio�temporal prior can be seen

especially in the surface plot� Through the principle of �borrowing strength�� posterior vari�

ances can be reduced and thus inference improved� The di�erence between the V� values and

the rest of the brain is appreciably increased� allowing for a more reliable discrimination of

activated and non�activated regions� But� the dependence between adjacent time courses also

implies reduced temporal variation found by this approach� especially in the secondary visual

areas and in the precuneus where activation is suppressed strongly� Because non�activated

pixels show no or few variation of the stimulus e�ect in time� the spatial prior also constrains

the e�ect of activated pixels to perform only minor changes� This property could perhaps be

eliminated by introducing robust versions of this type of prior that allow explicitly for edges

between adjacent activated and not activated pixels�

When comparing the results it has to be stated that activations are estimated very con�

sistently especially in the primary visual cortex� Also temporal �uctuations are covered in

all dynamic approaches similarly� The only di�erences observed are the degrees of temporal

smoothness estimated for the e�ects� In our experience these di�erences are not only a con�

sequence of the choice of the hyperparameters but are also model inherent� Even though the

hyperparameters have an e�ect on the results� data information mostly outweighs prior spe�

ci�cations� Consequently� this leads us directly to the problem of model comparison�

Table � contains posterior median� mean and standard deviation of the deviance as a global

measure of goodness of �t for the models considered� It can be seen that all three parameters

for the separable model are noticeable larger than for the other models� which are more or less

indistinguishable in terms of goodness of �t� The increased mean and variation might be a

consequence of the augmented parameter space for the baseline and the activation e�ect and

��



thus the higher complexity� Regarding the other approaches� the deviance alone is of limited

relevance for the problem of choosing the adequate model� Model choice will therefore need to

be based on the speci�c objectives of each study� If detection of activation areas averaged over

time is the primary goal� simpler models with time constant activation parameters seem to be

appropriate and taking care of spatial correlation is recommended to robustify segmentation

of activated and non�activated areas� If� however� additional interest exists in dynamic e�ects

of activation� the non�separable spatio�temporal model is a good choice�

Recently� Spiegelhalter� Best and Carlin ��

	� proposed a deviance�based model selection

criterion �DIC� also penalizing model complexity comparable to Akaike�s information criterion

for frequentistic approaches� But because experience with the performance of DIC is still lim�

ited� we do not use it here�

Currently� we are exploring the suitability of these models on other data sets and di�erent

experimental designs to allow for more reliable conclusions with respect to the problem of

model comparison�

� Conclusion and Outlook

We believe that Bayesian hierarchical modelling of the time�space structure underlying fMRI

experiments o�ers new and intriguing possibilities for human brain mapping� We have shown

that this approach is not only computationally feasible even with massive fMRI data sets�

comprising several thousands of spatially correlated time series� but that it has great potential

for detecting and analyzing spatio�temporal e�ects due to its �exibility� Some extensions and

modi�cations for future work are outlined in the following�

Gaussian priors as applied here are appropriate for comparably smooth underlying functions

of time or surfaces� However� they may blur edges or regions with high curvature between

areas of high and low activation� To avoid this� spatially robust priors could be incorpor�

ated in spatio�temporal models� without destroying the ability of modelling smooth trends

and time�varying e�ects� By penalizing larger di�erences between adjacent pixels less severely

than normal distributions such priors do not smooth over large systematic gaps but only small

irregularities induced by noise� In a purely spatial context Higdon ��


� suggested to extend

normal priors by introducing gamma distributed weights for the precision� This results in

heavier tailed student priors� Other robust distributions such as Laplace� Huber or truncated

Gaussian �K�unsch� �


� priors could also be useful� However� when using robust priors� full

conditionals are no longer explicitly given so that more time consuming Metropolis steps would

have to be introduced instead�

Further� parametric modelling of time�varying e�ects with a parsimonious number of basis func�

tions should be kept in view� Reducing the number of parameters and therefore computation

��



time� they represent an alternative to the computationally very expensive fully nonparametric

Bayesian methods�

Apart from the priors for time and space� Bayesian modelling of the hemodynamic response

function should be attempted� too� even though computation time would increase considerably�

Another extension might be the incorporation of further substantial prior information� Know�

ledge about the functional organisation of the brain has dramatically evolved over the last

decade by use of various mapping techniques such as positron emission tomography� EEG and

fMRI� The Bayesian approach is ideally suited to account for such comprehensive prior know�

ledge� The incorporation of this information may range from applying simple vague probability

gradients up to restricting activation to certain prede�ned sulci and gyri� However� plasticity

of the brain� the fact of a displacement of functional areas� should always be kept in mind

and carefully considered� An information that surely has to be included is that activation

only occurs in gray matter� Thus� results of brain segmentation into distinct classes of tissue�

certainly hold promise to improve the reliability of estimation in terms of reducing artefacts

in white matter or cerebro spinal �uid� A positive side e�ect would also be the reduction of

computation time by the exclusion of a substantial part of the data�
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Appendix

Full conditionals of parameters�

Full conditionals are proportional to the posterior distribution of the parameters ��
� given

the data

p�a� b� ��� �jY � � l�Y ja� b� ��� p�aj�� p�bj�� p��� p�����

with the likelihood determined by the observation model

yitjait� bit� �
�
i � N�ait � zitbit� �

�
i �� t � �� � � � � T� i � �� � � � � I�

�




where for time�constant models ait � w�
tai and bit � v�tbi with adequate wt and vt� The MR

signal for pixel i� i � �� � � � � I is denoted by yi � �yit� t � �� � � � � T � and zi � �zit� t � �� � � � � T � is

the transformed reference function� The prior distributions are speci�ed in Section ���� Thus�

full conditionals can be calculated as follows�

Pixelwise parametric modelling

Prior distributions of scalar parameters ai� bi and ��
i �

aij� � N�
� �����

bij� � N�
� �����

��
i � IG��a� �b��

Full conditionals�

aijY� bi� �� �
�
i � N�

��
i 
 � ���

P
t�yit � zitbi�

��
i � T��

�
��
i ��

��
i � T��

��

bijY� ai� �� �
�
i � N�

��
i 
 � ���

P
t zit�yit � ai�

��
i � z�it��

�
��
i ��

��
i � z�it��

��

��
i j� � IG��a � T��� �b �

�

�

X
t

�yit � ai � zitbi�
���

Spatial parametric modelling

Prior distributions of parameters a � �a�� � � � � aI�
� and b � �b�� � � � � bI�

��

p�a� � exp��
�

�
�aa

�Qa��

p�b� � exp��
�

�
�bb

�Qb��

with the precision matrix Q de�ned in �	�� or for scalar parameters ai and bi�

aijaj ��i� �a � N�
�

ni

X
j�i

aj�
�

ni�a

��

bijbj ��i� �b � N�
�

ni

X
j�i

bj�
�

ni�b

��

with ni the numbers of neighbors of pixel i� Prior distributions of variances ��
i and precisions

�a and �b �

��
i � IG��a� �b��

�a � GA��a� �b��

�b � GA��a� �b��

��



Full conditionals of aij� and bij� as for the pixelwise model with adequately replaced prior mean


 and precision �� Further full conditionals�

��
i j� � IG��a � T��� �b �

�

�

X
t

�yit � ai � zitbi�
���

�aj� � GA��a � rk�Q���� �b �
�

�
a�Qa��

�bj� � GA��a � rk�Q���� �b �
�

�
b�Qb��

Pixelwise semiparametric modelling

Prior distributions of parameters ai � �ai�� � � � � aiT �� and bi � �bi�� � � � � biT ���

p�ai� � exp��
�

�
�ai

a�iQai��

p�bi� � exp��
�

�
�bib

�
iQbi��

with the precision matrix Q de�ned in ����� Prior distributions of variances ��
i and precisions

�ai
and �bi �

��
i � IG��a� �b��

�ai
� GA��a� �b��

�bi � GA��a� �b��

Full conditionals for parameters ai and bi�

aijY� bi� �ai
� ��

i � N��
�

�i

I � �ai
Q���f

�

�i

�yi � "zibi�g� �
�

�i

I � �ai
Q�����

bijY� ai� �bi� �
�
i � N��

�

�i

"z�i"zi � �biQ���f
�

�i

"zi�yi � ai�g� �
�

�i

"z�i"zi � �biQ�����

with "zi � diag�zit� t � �� � � � � T ��

Further full conditionals�

��
i j� � IG��a � T��� �b �

�

�

X
t

�yit � ait � zitbit�
���

�ai
j� � GA��a � rk�Q���� �b �

�

�
a�iQai��

�bi j� � GA��a � rk�Q���� �b �
�

�
b�iQbi��

Semiparametric spatio�temporal modelling

Full conditionals of the separable model ���� are straightforward modi�cations of the above

sections�

��



For the non�separable model ����� prior distributions of parameters a � �ait� i � �� � � � � I� t �

�� � � � � T �� and b � �bit� i � �� � � � � I� t � �� � � � � T �� run as follows�

p�a� � exp��
�

�
�aa

�Qa��

p�b� � exp��
�

�
�bb

�Qb��

with the precision matrix Q de�ned in ����� For aija�i this can be transformed into�

p�aija�i� � exp��
�

�
"�a�ai � 
a�

�Qt�ai � 
a���

p�bija�i� � exp��
�

�
"�a�bi � 
b�

�Qt�bi � 
b���

with Qt as in ����� Further� 
a � �
a�� � � � � 
aT ���


ai � f�i�ni � �� �
X
j��i

�jg
��
X
j��i

f��i � �j�ajtg and

"�a � f�i�ni � �� �
X
j��i

�jg�

with ni as the number of neighbors of pixel i� The parameters 
b and "�b are calculated

equivalently� Prior distributions of variances ��
i and precisions �ai

and �bi �

��
i � IG��a� �b��

�ai
� GA��a� �b��

�bi � GA��a� �b��

Full conditionals for parameters ai and bi�

aijY� a�i� b� �a� �
�
i � N��

�

�i

I � "�aQ
t���f

�

�i

�yi � "zibi� � "�aQ
t
ag� �

�

�i

I � "�aQ
t�����

bijY� b�i� a� �b� �
�
i � N��

�

�i

"z�i"zi � "�bQ
t���f

�

�i

"zi�yi � ai� � "�bQ
t
bg� �

�

�i

"z�i"zi � "�bQ
t�����

with "zi � diag�zit� t � �� � � � � T ��

Further full conditionals�

��
i j� � IG��a � T��� �b �

�

�

X
t

�yit � ait � zitbit�
���

�ai
j� � GA��a � �ni � ���T � ����� �b �

�

�
 
X
t

f��a�it �
X
j��i

���ait ���ajt�
�g!��

�bi j� � GA��a � �ni � ���T � ����� �b �
�

�
 
X
t

f��b�it �
X
j��i

���bit ���bjt�
�g!��

with ��xit � xit � �xit�� � xit���
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a�

b�

c�

d�

e�

Figure �� Stimulus paradigm and representative time series ranging from strongly activated

�a�b� over weak activation �c�d� to no activation �e��
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a� sampling path �selected parameter� b� sampling path �deviance�

c� autocorrelation �selected parameter� d� autocorrelation �deviance�

e� histogram �selected parameter� f� histogram �deviance�

Figure 	� MCMC diagnostics�
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a� activation map b� standardized values c� absolute values

Figure �� Results for the pixelwise parametric model�

a� activation map b� standardized values c� absolute values

Figure �� Results for the spatial parametric model�
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a� activation map

b� standardized values

Figure �� Results for the pixelwise semiparametric model�
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a� parametric model

b� dynamic model

Figure �� Fitted models�

��



a� activation map �spatial e�ect ��

b� standardized values �spatial e�ect ��

c� activation map �activation e�ect � � ��

d� standardized values �activation e�ect � � ��

Figure 
� Results for the separable spatio�temporal model�
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a� activation map

b� standardized values

Figure 
� Results for the non�separable spatio�temporal model�
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