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Abstract

Quasi-score equations derived from corrected mean and variance
functions allow for consistent parameter estimation under measure-
ment error. However, the practical use of some approaches relying
on this general methodological principle was strongly limited by the
assumptions underlying them: only one covariate was allowed to be
measured with non-negligible error, and, additionally, this covariate
had to be conditionally independent of the other covariates. This pa-
per extends basic principles of this method to multivariate and flexible
models in a way that, on the one hand, retains the neat statistical
properties, but on the other hand, manages to do without the restric-
tive assumptions needed up to now.
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1 Introduction

A typical problem in regression analysis is the presence of covariate measure-
ment error. Often there are covariates X (‘latent variables’) of particular
interest, which cannot be directly observed or measured correctly. However,
if one ignores the measurement error by just plugging in substitutes or incor-
rect measurements W instead of X (‘naive estimation’), then all the param-
eter estimates must be suspected to be severely biased. FError-in-variables
modeling provides a methodology, which is serious about that fact and de-
velops procedures to adjust for the measurement error. For the linear model
many basic results had already been achieved until the eighties. They are
summarized e.g. in the books by Schneeweif, Mittag (1986) and by Fuller
(1987). Recent developments in that area are covered by Cheng, van Ness
(1999), while Caroll et. al. (1995) present the state of the art in nonlinear
models up to the middle of the nineties.!

One general and powerful methodological principle to deal with measure-
ment error is quasi-likelihood based measurement error correction: corrected
mean and variance functions can be used to construct a measurement error
corrected quasi-score equation, which produces consistent parameter esti-
mates. In particular this idea underlies the work of Armstrong (1985), Liang,
Lu (1991), Caroll et. al. (1995, Section 7.8 and Appendix A.4), and also the
papers of Thamerus (1998A, 1998B) and Augustin (2000), which are closest
to the development here.

The present paper discusses basic ingredients of this method in an ex-
tended context which does not suffer from severe restrictions inherent to some
former approaches. Section 2 recalls a few essentials around the problem of
measurement error and then states the model used throughout the paper.
Special attention is paid to the question how to model the distribution of the
unknown variables with sufficient flexibility. Section 3 is devoted to measure-
ment error corrected quasi-likelihood estimation and demonstrates how the
requirements this technique needs can be satisfied by the model introduced.

! According to the literature the term ‘measurement error’ is only applied to contin-
uous variables. The corresponding problem for discrete variables (‘misclassification’) is
not addressed here. This paper will also concentrate on covariate measurement error by
assuming that the dependent variables are measured without error.



Figure 1: regression under covariate measurement error:
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2 Measurement Error

2.1 Some Basic Considerations

Measurement error occurs in very different areas of application: often for
all (or some of the) units i« = 1,...,n variables X; of primary interest are
not observable. Instead one has to be satisfied with so called surrogates W;,
i.e. with somehow related, but different variables. For instance, in physics
or medical science these surrogates are typically inexact measurements of
X;. In sociology or psychology measurement error naturally arises by the
insufficiency of operationalizations of complex theoretic constructs.

As symbolized in Figure 1, the problem caused by measurement error
is that one is interested in estimating effects of the variable X;, while the
data are realizations of a different variable W;. In estimating regression
parameters, however, this difference has to be taken into account: neglecting
it by just plugging in W, instead of X, in the estimating procedures will
typically lead to estimates with a considerable bias.

The theory of measurement error correction or error-in-variables model-
ing provides a framework which aims at deriving nevertheless consistent pa-
rameter estimates. It develops procedures to make sound conclusions from
realizations of W7, ..., W, on the effects of Xy,...,X,,. As is also suggested
by Figure 1, this can only be possible if one takes some relationship between
the X's and the W' into account. In the case of validation data, i.e. simul-



taneous observation of the Ws and the X's in a sub-sample, this relationship
can be estimated from the data. Otherwise, one has to model it as flexible
as possible. Here the following flexible model is used. (i=1,...,n)

2.2 The error model 1

e Assume all covariates X; to be continuous.

e Additive measurement error:?> W; = X; + U,.

e U; is independent of T}, X; and Uj, j # 1.
e Normal measurement error: U; ~ N (0, Xy) with ¥y known.
e Structural model: X; is stochastic. Xi,..., X, are independently and

identically distributed.

These assumptions imply that the measurement error is nondifferential:
T; and W; are conditionally independent given X;, i.e. W, possess no in-
formation with respect to 7; which is not contained in X;. So, knowing X;
would make knowledge of W; superfluous.

2.3 The Error Model I1 — the Distribution of X

In addition to the assumptions listed above, an appropriate class of para-
metric distributions for X has to be chosen. For sake of mathematical con-
venience there is a strong temptation to take a normal distribution as the
distribution law Px of X. Then, by additivity of normally distributed ran-
dom variables, also the W;s would be normal. However, in many applications
the empirical marginal distributions of W are heavily skewed and/or possess
several modes, which makes the assumption of normality for Py rather ques-
tionable.

To account for multi-modality and skewness turning to miztures of nor-
mals proves to be successful. The main idea is to allow for heterogeneity: one
takes the population to be divided into m different groups, where in prin-
ciple m need not be known a priori. Conditional on being in group j now
normality is assumed with group specific parameters: X; ~ N (y;, £;). With

2Note that this formulation also covers the case of correctly measured components of
the vector of covariates. If X;[j] is correctly measured then one puts U;[j] = 0.



kj as the unknown probability to belong to group j the overall distribution
is a so-called mizture of normals or mized normal distribution

X~ MZIXN (M5 Biy ooy By iy -« o s 1y« s 2 - (1)

This models is highly flexible?, but will nevertheless prove to be sufficiently
tractable from the mathematical point of view.

3 Quasi-Likelihood Based Correction for Co-
variate Measurement Error

3.1 A Look on Previous Work

As already discussed and also illustrated in Figure 1 the parameter estimation
has to take into account that the data are not realizations of the variables of
interest but are steaming from surrogate variables. So the likelihood relevant
for parameter estimation is the so-to-say data-based likelihood, i.e. the like-
lihood Lik(#||T;, W;) of the unknown parameter vector 6 given Wy, ..., Wp,.
For many models of interest it is however not manageable to calculate this
expression from the ideal likelihood, i.e. the likelihood Lik(#||T;, X;) derived
from the regression model formulated in terms of the unobservable quantities
Xi,..., X,

Then one is forced to search for another general estimation principle.
Here a successful choice will be quasi-score estimation based on mean and
variance functions. The basic ideas of this approach were introduced in Wed-
derburn (1974) and developed further especially by McCullagh (1983, 1991).
In the meanwhile they are embedded into the considerably extended frame-
work of general estimation functions (see Heyde (1997) for a comprehensive
monograph on this topic).

The quasi-score function which will prove to be successful in the context
considered here uses the data-based means IF [T;|W;; 0] and (co)variances
V [T;|W;;0]. In contrast to the full data-based likelihood these quantities
will prove to be obtainable from the ideal model formulated in terms of the

3See, for instance, Everitt & Hand (1981, p. 28f.), who give an impression of the quite
different shapes which can be produced by even only the mixture of two normals.



unobservable variables. The resulting quasi-score equation reads as
< a E Tz Wi; 0 B
32 EENSO g - ey =0, @

1=1

To the author’s knowledge Armstrong (1985) was the first to recognize the
power this principle possesses for measurement error correction. Also Caroll
et. al. (1995; Section 7.8 and Appendix A.4) briefly mention the importance
of this idea.

Thamerus (1998A, 1998B) and Augustin (2000) worked with simpler ver-
sions of the model used here letting some of the main aspects of the argu-
ments given below already shine up. For modeling the distribution of the
latent variable, Thamerus (1998B) and Augustin (2000) do only allow for
a single normal distribution, but not for mixtures. Even more important,
all three papers just quoted had to concentrate on the case where only one
dimension, X;[1] say, of the covariate vector is measured with error. This
assumption may not only be unrealistic in many empirical situations, but it
is also responsible for an additional requirement which may be even more
tricky: to enable the calculation of measurement error corrected mean and
covariance functions along the lines below, the conditional distribution of
X;[1] given the surrogate W;[1] and other dimensions X;[2], X;[3],... of the
vector of covariates de facto has to be independent of X;[2], X;[3],.. ..

3.2 The Main Idea

The central observation of quasi-likelihood based measurement error correc-
tion is that, via the theorem of iterated expectation and the nondifferential-
ity of the measurement error, the conditional moments IF (T7|W;;6) with
respect to the observable quantities can be derived from their counterparts
IE (T7|X;; 0) based on the unobservable quantities:

B[T{|Wi;6] = B (B [L7|X;, Wi 6] [Wi; 0)
= E(E[11X:0)] W 50) )
ideal model observable

Similar arguments hold for the covariance matrix & (7;|W;; 0).
Relation (3) is very helpful for calculating the corrected mean and vari-
ance functions. It separates the problem into two distinct steps:



e Firstly, determine the ‘ideal moments’ of first and second order of the
ideal model.

e Secondly, integrate over these moments with respect to the conditional
distribution of X; given W;.

The first step is an easy exercise for most models.*

The second step is prepared by the following proposition applying some
basic properties of mixtures of normals in the context under consideration.

Proposition. Let

X~ MIXN (M K1y ooy By s -+ o s P 215+ -+ 5 2m)

and denote the density of the j—ths component by ¢(- ||, ¥;). Furthermore,
let U; ~ N (0, Xy), and U; be independent of X;. Define W; := X; + U;.
Then

a) Wi ~ MIXN (m; K1, .o\ Km;
M1y -y Ums 21+EU;---72m+EU)
b) Xz | VVZ ~ MIXN(m, Ri,l;---;/_{/i,m;
ﬂi,la"'aﬂi,m; ila"'azm)
with (j =1,...,m)
K5 p(Willpg, X5 + Zp)
Sty s oW ||, X0+ Xu)
g = 1+ X (3 +S0) 7 - (Wi — )

Kij =

S, =% -5 (5 +%) 'Y

According to Part a) of this proposition, W1, ..., W, follow a mixture of
normals with the same set of unknown parameters as X, ..., X,. Therefore,
these unknown nuisance parameters can be estimated from the observable
quantities Wy, ..., W, by any algorithm suitable for parameter estimation
under mixtures of multivariate normals. These estimates can then be plugged
in, and one obtains the conditional distribution of X; given W; along the lines
of Part b).

4One interesting exception is the case of censored survival times, see Augustin (2000,
Section 6) for details.



Another basic result from the theory of mixture distributions states that
an expectation with respect to a mixture is just a weighted average of the
expectations with respect to the single components. Therefore, the final in-
tegration with respect to the conditional distribution of X; given W; consists
only of the evaluation of m integrals with respect to multivariate normals and
their summing up weighted by the &;s derived in Part b) of this proposition.

Solving the corresponding quasi-score equation (2) yields the measure-
ment error corrected quasi-likelihood estimates. Under quite mild regularity
conditions they can be shown to have appealing asymptotic properties. In
particular they are consistent: the bias caused by the measurement error is
eliminated.

4 Concluding Remarks

Though he was never concerned with measurement error modeling, this field
provides a vivid example supporting McCullagh’s (1991, p. 265) claim that
“[...via quasi-likelihood] useful inferences are possible even in problems for
which a full likelihood-based analysis is either intractable or impossible with
the given assumptions”. Quasi-likelihood provides an easy to handle tool
for measurement error correction; at least in the extended version presented
here, it promises to be widely applicable in many different models.

An area where the quasi-likelihood approach is particularly elegant is
the case of parametric survival models without censoring. The concept of
accelerated failure time models can serve as a superstructure which enables
one to handle the commonly used models in a unified way. The approach can
be extended to cover also the case of measurement error in the dependent
variables, i.e. in the lifetimes themselves. The arguments given in Augustin
(2000) carry over to the extended situation studied here.

Acknowledgement [ am grateful to Helmut Kiichenhoff and Hans Schnee-
weifl for helpful discussions and comments.
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