Sulfasalazine reduces bile acid induced apoptosis in human hepatoma cells and perfused rat livers

C Rust, K Bauchmuller, C Bernt, T Vennegeerts, P Fickert, A Fuchsbiichler, U Beuers

Background: Bile acid induced apoptosis in hepatocytes can be antagonised by nuclear factor xB (NFkB) dependent survival pathways. Sulfasalazine modulates NFkB in different cell types. We aimed to determine the effects of sulfasalazine and its metabolites sulfapyridine and 5-aminosalicylic acid (5-ASA) on bile acid induced apoptosis in hepatocytes.

Methods: Apoptosis was determined by caspase assays and immunoblotting, NFkB activation by electrophoretic mobility shift assay and reporter gene assays, generation of reactive oxygen species (ROS) fluorometrically, bile secretion gravimetrically, and bile acid uptake radiochemically and by gas chromatography in HepG2-Ntcp cells and isolated perfused rat livers.

Results: Glycochenodeoxycholic acid (GCDCA 75 µmol/l) induced apoptosis was reduced by sulfasalazine dose dependently (1–1000 µmol/l) in HepG2-Ntcp cells whereas its metabolites 5-ASA and sulfapyridine had no effect. Sulfasalazine significantly reduced GCDCA induced activation of caspases 9 and 3. In addition, sulfasalazine activated NFkB and decreased GCDCA induced generation of ROS. Bile acid uptake was competitively inhibited by sulfasalazine. In perfused rat livers, GCDCA (25 µmol/l) induced liver injury and extensive hepatocyte apoptosis were significantly reduced by simultaneous administration of 100 µmol/l sulfasalazine: lactate dehydrogenase and glutamate-pyruvate transaminase activities were reduced by 82% and 87%, respectively, and apoptotic hepatocytes were observed only occasionally. GCDCA uptake was reduced by 45 (5) % when sulfasalazine was coadministered. However, when 50% of GCDCA (12.5 µmol/l) was administered alone, marked hepatocyte apoptosis and liver injury were again observed, questioning the impact of reduced GCDCA uptake for the antiapoptotic effect of sulfasalazine.

Conclusion: Sulfasalazine is a potent inhibitor of GCDCA induced hepatocyte apoptosis in vitro and in the intact liver.

Cholestasis is a common feature of many human liver diseases. Elevated bile acid concentrations in hepatocytes, a hallmark of cholestasis, promote liver cell death resulting in liver injury and liver cirrhosis. Toxic bile acids induce hepatocellular apoptosis, thereby providing a cellular mechanism for bile acid mediated liver injury. The glycine and taurine conjugates of chenodeoxycholic acid (GCDCA, TCDA) are the predominant dihydroxy bile acids in cholestatic patients and have been held responsible for cholestasis associated liver injury. Glycochenodeoxycholic acid (GCDCA) is thought to induce hepatocyte apoptosis by a Fas death receptor dependent process that is independent of Fas ligand but induces oligomerisation of Fas by increasing cell surface trafficking of Fas. GCDCA induced generation of reactive oxygen species followed by epidermal growth factor receptor dependent tyrosine phosphorylation of Fas also appears to be required for GCDCA induced Fas signalling. The transcription factor nuclear factor xB (NFkB) has been shown to reduce hepatocyte apoptosis induced by toxic bile acids, tumour necrosis factor α (TNF-α), and during liver regeneration. Thus NFkB is an important factor of several antiapoptotic signalling cascades in the liver. Sulfasalazine was synthesised in 1942 to combine an antibiotic, sulfapyridine (SPD), and an anti-inflammatory agent, 5-aminosalicylic acid (5-ASA), for the treatment of rheumatoid arthritis. Later, sulfasalazine was also used successfully in the treatment of inflammatory bowel diseases. Although this drug has been used for decades, its mechanism of action remains a matter of debate. Numerous pharmacological and biochemical effects have been described, including modulatory effects on leucocyte function. Recently, it has been shown that sulfasalazine is a potent and specific inhibitor of NFkB in human colon epithelial cells. In these cells, sulfasalazine seems to be a direct inhibitor of I kB kinases α and β by antagonising adenosine triphosphate binding. However, it is not known if sulfasalazine or its metabolites can also modify NFkB signalling in hepatocytes.

The overall objectives of this study were therefore to examine the effects and potential mechanisms of sulfasalazine and its metabolites on GCDCA induced apoptosis in hepatocytes. To address these objectives we used a human hepatoma cell line stably transfected with the bile acid transporter sodium taurocholate cotransporting polypeptide (NTCP) and isolated perfused rat livers.

MATERIAL AND METHODS

Reagents

ZVAD-FMK was from Promega (Madison, Wisconsin), 5- and 6-carboxy-2'-7'-dichloro-dihydrofluorescein diacetate (carboxy-H2DCFDA) was from Molecular Probes (Eugene, Oregon, USA), [3H]-Taurocholate was from Perkin Elmer (Boston, Massachusetts, USA). Antibodies against cleaved caspase 9 and cleaved caspase 3 were purchased from Cell Signalling (Beverly, Massachusetts, USA). MG132 was from Calbiochem (La Jolla, California, USA). GCDCA, sulfasalazine, 5-ASA, 5-aminosalicylic acid; DMSO, dimethyl sulfoxide; EMSA, electrophoretic mobility shift assay; GCDCA, glycochenodeoxycholic acid; GPT, glutamate-pyruvate transaminase; LDH, lactate dehydrogenase; Ntcp, sodium taurocholate cotransporting polypeptide; NFkB, nuclear factor xB; ROS, reactive oxygen species; TCA, taurocholic acid; TNF-α, tumour necrosis factor α.
SPD, 5-ASA, dimethyl sulfoxide (DMSO), staurosporine, and all other reagents were obtained from Sigma Chemical (St Louis, Missouri, USA).

Cell culture
HepG2-Ntcp cells were grown at 37°C under 5% CO₂ in MEM (pH 7.4) containing 10% fetal bovine serum, 1% non-essential amino acids, 2 mmol/l L-glutamine, 1 mmol/l sodium pyruvate, 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B.

Confluent HepG2-Ntcp cells were washed with a buffer containing 100 mmol/l NaCl, 2 mmol/l KCl, 1 mmol/l CaCl₂, 1 mmol/l MgCl₂, 5.5 mmol/l d-glucose, and 10 mmol/l N-[2-hydroxyethyl]piperazine-N'-[2-ethane sulfonic acid] (pH 7.5, 37°C). After incubation in NaCl medium containing 1 μCi/ml[^3]H]taurocholic acid (TCA) and 10 μmol/l unlabelled TCA at 37°C for 20 minutes, cells were washed with an ice cold NaCl medium containing 1 mmol/l unlabelled TCA and lysed with 0.5 ml Triton X-100 (1%, v/v). Aliquots of 400 μl were dissolved in 10 ml of scintillation cocktail (Ultima Gold Canberra Packard, Frankfurt/Main, Germany). Radioactivity was quantified using a liquid scintillation analyser (Packard Instrument Co., Franklin, Germany).

Caspase assays
Caspase 3/7, and caspase 9 activation were determined in subconfluent HepG2-Ntcp cells treated with GCDCA in the absence or presence of sulfasalazine or the pancaspase inhibitor ZVAD-FMK at the indicated concentrations and time intervals. Commercially available caspase assay kits from Promega were performed according to the recommendations of the manufacturer.

Plasmids and transfection
Luciferase reporter plasmids p105 (cona-luc) and p106 (bcona-luc) for NFκB reporter gene assays have been previously described. The TK-Renilla-CMV plasmid was purchased from Promega and used to normalise for transfection efficiency in luciferase assays. HepG2-Ntcp cells at a confluence of 75% were transiently transfected using FuGENE (Roche, Mannheim, Germany) and used 48 hours after transfection.

Electrophoretic mobility shift assay (EMSA)
HepG2-Ntcp cells were stimulated with diluent or sulfasalazine at different concentrations. Nuclear proteins (6 μg) and non-specific competitor poly(dIdC) (3 μg) were incubated in binding buffer (100 mM HEPES, 300 mM KCl, 20% Ficoll, 0.05% NP-40, 0.5 mg/ml bovine serum albumin) with 3.5 pmol of double stranded DNA oligonucleotide containing a NFκB consensus binding sequence (‘5’-AGT TGA GGG GAC TTT CCC AGG C-3’) that was labelled with [γ-32P]-ATP using T4 polynucleotide kinase (Promega). Protein-DNA complexes were separated from the unbound DNA probe by electrophoresis through 5% native polyacrylamide gels.

Luciferase reporter gene assay
HepG2-Ntcp cells were cotransfected with 0.2 μg of TK-Renilla-CMV and 1.5 μg of either either p105 or p106. Forty eight hours later, cells were cultured in serum free MEM for 18–24 hours and then stimulated with bile acids and/or sulfasalazine for one hour. Both firefly and Renilla luciferase activities were quantitated using dual reporter gene assays from Promega, according to the manufacturer’s instructions using a TD 20/20-Luminometer (Software Turner Design Version 2.0.1, Turner Designs Inc., California, USA).

Background luciferase expression, as determined in cells transfected with p105, was subtracted from p106 values.

Measurement of reactive oxygen species (ROS)
Confluent HepG2-Ntcp cells were incubated with carboxy-H₂DCFDA (4 μmol/l) for four hours at 37°C, washed three times, incubated with GCDCA in the absence or presence of sulfasalazine at the indicated concentrations for two hours at 37°C, and quantitated in a CytoFluor 4000 reader (Perceptive Biosystems, Weiterstadt, Germany) using an excitation wavelength of 485 nm and an emission wavelength of 530 nm.

Immunoblot analysis
Subconfluent cells were treated with staurosporine (5 μmol/l) or GCDCA (75 μmol/l) in the absence or presence of sulfasalazine, washed with phosphate buffered saline, homogenised in ice cold lysis buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM EDTA, 1% Triton, 100 μM vanadate, 10 mM NaF), incubated for five minutes on ice, sonicated, and centrifuged for five minutes at 14000 g and 4°C. The supernatant was resolved by 12.5% sodium dodecyl sulphate-polyacrylamide gel electrophoresis, transferred to Immobilon-P membranes (Millipore, Eschborn, Germany), and probed against the appropriate primary antibody at a dilution of 1:1000 in 5% milk/TBS-T overnight. Peroxidase conjugated goat antirabbit IgG antibody (Santa Cruz Biotechnologies, Santa Cruz, California, USA) was incubated at a dilution of 1:4000. Membranes were stripped and reprobed with anti-β-actin antibody (1:3500, Sigma) to ensure equal loading.

Animals
Male Sprague-Dawley rats (229 (16) g) were obtained from Charles River (Sulzfeld, Germany). They were subjected to a 12 hour day-night rhythm with unlimited access to food and water.

Isolated rat liver perfusion
The technical procedure used has been described previously. In brief, livers were perfused in a non-recirculating fashion with Krebs-Ringer bicarbonate solution at 37°C at a constant flow rate of 4.0–4.5 ml/min/g liver for 90 minutes. After 20 minutes, sulfasalazine (or the carrier DMSO only, 0.001% v/v) was continuously infused for 70 minutes to reach a final concentration of 100 μmol/l in the portal vein. After 30 minutes, the bile acid GCDCA (or the carrier DMSO only, 0.1% v/v) was infused for 60 minutes at a continuous rate to reach a final concentration of 25 μmol/l or 12.5 μmol/l in the portal vein. Hepatovenous efflux of lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT) as indicators of liver cell damage were measured by use of standard enzymatic tests. Bile flow was measured gravimetrically in prepared tubes.

Immunofluorescence microscopy
Activated caspase 3 and cytokeratin intermediate filament alterations, typical of apoptotic cell death, were studied as described previously. For quantification, caspase 3 positive hepatocytes with concomitant cytokeratin intermediate filament breakdown were counted in 20 different high power fields per sample and expressed as x-fold increase over control.

Determination of bile acids
GCDCA concentrations in the hepatovenous effluvate were determined as described previously. Briefly, bile acids were extracted with Bond-Elut C18 cartridges (Analytichem International, San Diego, California, USA). Deconjugated
Sulfasalazine reduces hepatocyte apoptosis

Sulfasalazine reduces bile acid induced apoptosis in vitro?

The bile acid transporting human hepatoma cell line HepG2-Ntcp was used for the in vitro studies. GCDCAs effectively induced apoptosis in this cell line while parent non-bile acid transporting HepG2 cells were not sensitive to GCDCA induced apoptosis. HepG2-Ntcp cells were treated with diluent or glycochenodeoxycholic acid (GCDCA 75 \(\mu\)mol/l) in the presence or absence of 5-aminosalicylic acid (5-ASA) or sulfapyridine (SPD) at the indicated concentrations. Apoptosis was quantified by measuring caspase 3/7 activity and expressed as a percentage over controls (set at 100%). Results are mean (SD) of three independent experiments.

Figure 2 5-Aminosalicylic acid and sulfapyridine did not affect bile acid induced apoptosis. HepG2-Ntcp cells were treated with diluent or glycochenodeoxycholic acid (GCDCA 75 \(\mu\)mol/l) in the presence or absence of 5-aminosalicylic acid (5-ASA) (A) or sulfapyridine (SPD) (B) at the indicated concentrations for four hours. Apoptosis was quantified by measuring caspase 3/7 activity and expressed as a percentage over controls (set at 100%). Results are mean (SD) of three independent experiments.

Statistics

Results from at least three independent experiments are expressed as mean (SD). Differences between groups were compared using an analysis of variance for repeated measures and a post hoc Bonferroni test to compare for multiple comparisons.

RESULTS

Does sulfasalazine or its metabolites modulate bile acid induced apoptosis in vitro?

The bile acid transporting human hepatoma cell line HepG2-Ntcp was used for the in vitro studies. GCDCAs effectively induced apoptosis in this cell line while parent non-bile acid transporting HepG2 cells were not sensitive to GCDCAs induced apoptosis (fig 1A). Based on these results, 75 \(\mu\)mol/l of GCDCAs was used for the remainder of the in vitro studies.

A dose dependent reduction in GCDCAs induced apoptosis was observed when sulfasalazine was used in combination with 75 \(\mu\)mol/l of GCDCAs. After four hours, sulfasalazine 1000 \(\mu\)mol/l reduced GCDCAs induced caspase 3/7 activity to control levels; 100 \(\mu\)mol/l resulted in a 80 (12)% reduction and 10 \(\mu\)mol/l in a 25 (7)% reduction in caspase 3/7 activity (fig 1B). Sulfasalazine 1 \(\mu\)mol/l had no effect on GCDCAs.
induced apoptosis. Because HepG2-Ntcp is a hepatoma cell line, we also repeated this experiment using 18 hour cultured primary mouse hepatocytes and confirmed the dose dependent antiapoptotic effect of sulfasalazine on GCDCA induced apoptosis which was nearly identical to that shown in fig 1B (n = 3; data not shown).

Hepatocytes are considered to be type II cells in which the mitochondrial pathway is essential to induce apoptosis. Therefore, the effects of sulfasalazine on GCDCA induced caspase 9 activation were examined. In these experiments, sulfasalazine reduced GCDCA induced caspase 9 activation in a dose dependent manner similar to the reduction in the effector caspases 3/7 shown above (fig 1C).

We next evaluated the effects of the two metabolites of sulfasalazine, 5-ASA and sulfapyridine, in the same experimental system. In contrast with sulfasalazine, neither 5-ASA nor sulfapyridine had any effect on GCDCA induced apoptosis, as measured by caspase 3/7 activity (fig 2A, 2B). The combination of 5-ASA and sulfapyridine in the same ratio as present in sulfasalazine also did not alter GCDCA induced apoptosis (data not shown). These data indicate that sulfasalazine, but not its metabolites, is a potent inhibitor of GCDCA induced apoptosis in hepatocytes.

Is NFκB activity in HepG2-Ntcp cells induced by sulfasalazine?

The effect of sulfasalazine on NFκB activation in HepG2-Ntcp cells was examined by EMSA and luciferase reporter gene assays. Sulfasalazine induced NFκB activity in a dose dependent manner in HepG2-Ntcp cells after one hour of incubation (fig 3A). NFκB activity was increased by sulfasalazine at concentrations of 10, 100, and 1000 μmol/l. Because sulfasalazine was also shown by EMSA (fig 3A, inset). In contrast with sulfasalazine, neither 5-ASA nor sulfapyridine had any effect on GCDCA induced NFκB activity in HepG2-Ntcp cells (fig 3A, inset). In comparison, GCDCA 75 μmol/l did not significantly affect NFκB activity. Thus sulfasalazine appears to be an inducer of NFκB in hepatoma cells. To assess the potential role of sulfasalazine induced NFκB activity on its beneficial effect on GCDCA induced apoptosis, the NFκB inhibitor MG132 (carboxbenzoxyl-leucyl-leucyl-leucinal) was used for additional experiments. At a concentration of 50 μmol/l, MG132 reduced sulfasalazine induced NFκB activation to control levels, as demonstrated by EMSA (fig 3B) and reporter gene assays (not shown). However, the effect of sulfasalazine on GCDCA induced caspase 3/7 activity was not altered by MG132 (fig 3C), indicating that this mechanism is not relevant for the beneficial effects of sulfasalazine on GCDCA induced apoptosis.

Does sulfasalazine reduce GCDCA induced ROS generation?

To determine a possible effect of sulfasalazine on GCDCA induced ROS generation, HepG2-Ntcp cells were loaded with the fluorescent dye carboxy-H2-DCFDA and then incubated with GCDCA (75 μmol/l) in the absence or presence of sulfasalazine. GCDCA significantly increased generation of ROS. GCDCA significantly increased generation of ROS.
ROS by nearly 30% compared with controls after two hours. A combination of GCDCA with sulfasalazine (1–1000 μmol/l) led to a dose dependent reduction in ROS generation which reached control levels using sulfasalazine 1000 μmol/l (table 1). As the proapoptotic Bcl-2 proteins Bax and Bid have also been shown to be important for the mitochondrial damage during bile acid induced apoptosis, additional immunoblot experiments were performed. However, expression and activation of both Bax and Bid were not modulated by sulfasalazine (data not shown).

Is bile acid uptake inhibited by sulfasalazine?

We next evaluated if sulfasalazine influenced bile acid uptake as another possible mechanism for its antiapoptotic properties. Bile acid uptake under control conditions was set as 100%. Sulfasalazine at a concentration of 1 μmol/l had no effect and at 10 μmol/l tended to reduce bile acid uptake in HepG2-Ntcp cells, but the difference did not reach significance (fig 4A). However, using 100 μmol/l sulfasalazine, bile acid uptake was reduced to 71 (12)% compared with controls and to 23 (7)% at 1000 μmol/l, both significantly differences. In contrast, 5-ASA and sulfapyridine did not affect bile acid uptake (fig 4A).

To determine the mechanism of sulfasalazine induced reduction of bile acid uptake, the kinetics of bile acid uptake in the absence or presence of sulfasalazine were evaluated. The Km under control conditions was 42 μmol/l and increased to 99 μmol/l (at 10 μmol/l sulfasalazine) and to
263 μmol/l (at 100 μmol/l sulfasalazine). Vmax values were nearly unchanged (0.24 (0.03) nmol/min/mg protein) under all experimental conditions. Inhibition was thus competitive, as also shown in the Lineweaver-Burk plot (fig 4B).

Does sulfasalazine also inhibit apoptosis that is not induced by bile acids?

Staurosporine, a non-specific kinase inhibitor, induces apoptosis through disruption of mitochondrial function. At a concentration of 5 μmol/l, staurosporine readily induced cleavage of caspase 9 and caspase 3 in HepG2-Ntcp cells, which was inhibited by the pancaspase inhibitor ZVAD-FMK (fig 5A). Treatment with staurosporine and sulfasalazine (1–1000 μmol/l) resulted in a dose dependent reduction in both caspase 9 and caspase 3 cleavage. Densitometric analysis of the cleaved caspase 3 immunoblots (normalised to β-actin) revealed that staurosporine induced caspase 3 cleavage was significantly reduced when 100 or 1000 μmol/l sulfasalazine were administered (fig 5B). Similar results were obtained for cleaved caspase 9 (data not shown). Sulfasalazine also dose dependently reduced caspase 3/7 activity when TNF-α and actinomycin D were used as an apoptotic stimulus that requires Fas signalling (fig 5C). These results indicate that inhibition of intracellular apoptosis signalling might be more important for the antiapoptotic effects of sulfasalazine than the observed reduction in bile acid uptake.

Does sulfasalazine ameliorate GCDCA induced liver damage in the intact organ?

Livers of Sprague-Dawley rats were perfused with sulfasalazine (100 μmol/l) or the carrier DMSO only (0.1% v/v) for 70 minutes beginning at 20 minutes. GCDCA (25 μmol/l) was infused for 60 minutes beginning at 30 minutes. We have recently demonstrated that GCDCA (25 μmol/l) induces widespread hepatocyte apoptosis and liver injury in perfused rat livers. In contrast, immuno-reactivity for activated caspase 3 was similar to controls in livers perfused with GCDCA and SSZ (magnification ×400). Representative images from six independent experiments are shown.
Results are expressed as mean (SD) of six experiments. Treated livers (decreased bile flow, SSZ significantly increased bile flow in GCDCA, GCDCA treated livers to 79% of controls (p < 0.01 v control). While SSZ alone decreased bile flow, SSZ significantly increased bile flow in GCDCA treated livers (p < 0.05, **p < 0.01 v control; **p < 0.05 v GCDCA). Results are expressed as mean (SD) of six experiments.

Figure 7 Sulfasalazine partially reversed glycochenodeoxycholic acid (GCDCA) induced cholestasis. Dimethyl sulfoxide (0.1% v/v), GCDCA, sulfasalazine (SSZ), and GCDCA in combination with SSZ were administered for 60 minutes (GCDCA) and 70 minutes (SSZ). GCDCA significantly reduced bile flow (p < 0.01 v control). While SSZ alone decreased bile flow, SSZ significantly increased bile flow in GCDCA treated livers (p < 0.05, **p < 0.01 v control; **p < 0.05 v GCDCA).

Is GCDCA induced cholestasis reversed by sulfasalazine?

Bile flow was 1.31 (0.31) µl/min/g of liver (n = 6) after 20 minutes before bile acids or their carrier DMSO (0.1% v/v) were infused, indicating an adequate secretory capacity of the livers. GCDCA (25 µmol/l) reduced bile flow to 17% of controls (p < 0.01 v control). Sulfasalazine alone (100 µmol/l) also reduced bile flow to 62% of controls (p < 0.05 v control). In contrast, sulfasalazine markedly increased bile flow in GCDCA treated livers to 79% of controls (p < 0.05 v GCDCA) (fig 7). Thus sulfasalazine partially reversed GCDCA induced cholestasis in the intact liver.

Does sulfasalazine reduce bile acid uptake in the intact organ?

We investigated the possible role of sulfasalazine induced reduction of bile acid uptake as a major mechanism for its protective effect on GCDCA induced liver damage in the perfused liver. Bile acid uptake was calculated by subtracting GCDCA concentration in the hepatovenous effluent from the concentration in the portal vein because this difference likely reflects uptake of bile acids into the liver. Similar to the results observed in HepG2-Ntcp cells, GCDCA uptake was reduced by 45 (5)% after 45 minutes of perfusion with sulfasalazine (n = 6), suggesting inhibition of bile acid uptake as a possible mechanism for the protective effect of sulfasalazine (fig 8A). Based on this experiment, we next evaluated half the dose of GCDCA (12.5 µmol/l)—which is presumably taken up by the liver during concomitant administration of sulfasalazine and 25 µmol/l GCDCA—still causes liver damage and hepatocyte apoptosis. If inhibition of uptake is a major mechanism of protection, liver damage should not occur using 12.5 µmol/l GCDCA. However, when 12.5 µmol/l GCDCA was used, marked hepatocyte apoptosis (fig 8B) and liver injury (GPT 40.7 (9.5) mU/min/g) still occurred (fig 8C). A combination of 12.5 µmol/l GCDCA and 100 µmol/l sulfasalazine again significantly reduced liver damage and hepatocyte apoptosis (data not shown). Thus inhibition of bile acid uptake appears to play only a minor role in the protective effects of sulfasalazine in the intact liver.

Figure 8 Reduced bile acid uptake is not sufficient to explain the effects of sulfasalazine in the intact liver. Rat livers were perfused with glycochenodeoxycholic acid (GCDCA 12.5 or 25 µmol/l) or the carrier dimethyl sulfoxide only, in the absence or presence of 100 µmol/l sulfasalazine (SSZ) for 60 minutes. (A) After 15 minutes of bile acid administration, chenodeoxycholic acid concentrations were determined in the hepatovenous effluent. The difference between portal vein concentration (concentration in the perfusate) and hepatic vein concentration (concentration in the effluent) as an indirect measure of bile acid uptake into the liver is mapped on the y axis. GCDCA at both concentrations was almost completely taken up into the liver because it could only be detected in trace amounts in the hepatovenous effluent. In contrast, 11 (1) µmol/l of chenodeoxycholic acid were detected in the hepatovenous effluent when GCDCA (25 µmol/l) and SSZ (100 µmol/l) were administered, indicating that nearly 90% of GCDCA was not taken up. Bile acid uptake into the liver was almost identical when GCDCA was administered at 12.5 µmol/l or was coadministered with SSZ (100 µmol/l) or at 25 µmol/l. (B) Hepatocyte apoptosis was determined by immunohistochemistry of activated caspase 3 and cytokeratin (CK) 18 after 60 minutes of bile acid administration (magnification ×400). Hepatocyte apoptosis was markedly more pronounced with GCDCA 12.5 µmol/l compared with GCDCA 25 µmol/l in combination with 100 µmol/l SSZ (**p < 0.01). Results in (A) and (C) are mean (SD) of six independent experiments.
DISCUSSION

The principle findings of this study indicate that sulfasalazine is a potent inhibitor of bile acid mediated hepatocyte apoptosis in vitro and in the intact liver. In addition, sulfasalazine ameliorates GCDCA induced cholestasis in perfused rat livers. These results suggest that sulfasalazine may be of potential benefit in the treatment of cholestatic liver diseases by reducing liver injury and cholestasis.

At present, there are no data concerning the effects of sulfasalazine on apoptosis in hepatocytes. In T lymphocytes, sulfasalazine has been shown to induce apoptosis by caspase independent mechanisms. In a recent study, sulfasalazine promoted hepatic stellate cell apoptosis in vitro and in vivo. In human glioma cells and colon carcinoma cell lines, sulfasalazine inhibited Fas mediated apoptosis but simultaneously sensitised the cells to TRAIL mediated apoptosis. However, apoptosis could not be induced by sulfasalazine in SW620 colon carcinoma cells or primary human synovocytes. Thus there appears to be a cell type specific sensitivity to sulfasalazine. In the present study, sulfasalazine inhibited Fas dependent apoptosis because GCDCA as well as TNF-α/actinomycin D induced apoptosis are considered Fas dependent. Sulfasalazine also inhibited staurosporine induced apoptosis, suggesting that its protective effect is not limited to reduced formation of the death inducing signalling complex.

In contrast with studies in colon epithelial cells, hepatic stellate cells, and T lymphocytes, sulfasalazine induced NFκB activity in our model. However, this NFκB activation does not appear to be responsible for the observed beneficial effects of sulfasalazine because GCDCA induced apoptosis was unchanged when sulfasalazine was administered together with the NFκB inhibitor MG132. Interestingly, sulfasalazine modulated apoptosis in a NFκB independent manner in human glioma cells although sulfasalazine also significantly altered NFκB activity in this model. However, sulfasalazine appears to have a protective effect on mitochondria, as suggested by its capacity to reduce GCDCA induced mitochondria ROS generation and caspase 9 activation, and by its reduction of staurosporine induced cytotoxicity, a model of cell death known to be mediated by mitochondrial dysfunction. Thus inhibition of the mitochondrial pathway might be partly responsible for the protective effect of sulfasalazine in our model. Interestingly, sulfasalazine has been described as a ROS scavenger in the past. Reduced sulfasalazine reduced bile acid uptake in hepatocytes at higher concentrations. This reduction is due to competitive inhibition of the transfected bile acid transporter Ntcp. As uptake of GCDCA is necessary to induce apoptosis, it could be speculated that this is the major mechanism of action in our model. However, at a concentration of 100 μmol/l sulfasalazine, 70% of bile acids were still taken up by HepG2-Ntcp cells and 50 μmol/l GCDCA (equivalent to 75 μmol/l GCDCA in combination with 100 μmol/l sulfasalazine) readily induces hepatocyte apoptosis. In addition, sulfasalazine also inhibited staurosporine induced apoptosis in HepG2-Ntcp cells. Thus a direct effect on apoptosis signalling appears more important than the reduction in bile acid uptake because staurosporine does not require active transport into cells. This conclusion is further supported by perfusion studies. Sulfasalazine inhibited GCDCA induced apoptosis almost to control levels although bile acid uptake was only reduced by approximately 50%. In addition, when GCDCA was used at half the concentration (12.5 vs 25 μmol/l), which is presumably still taken up by hepatocytes during sulfasalazine administration, significantly more liver damage and hepatocyte apoptosis occurred compared with the combination of sulfasalazine and GCDCA 25 μmol/l. This strongly suggests that the major mechanism of action of sulfasalazine on reduction of GCDCA induced liver damage is inhibition of apoptosis signalling. Reduction of bile acid uptake appears to be only a minor contributing mechanism.

Sulfasalazine partly reversed GCDCA induced impairment of bile flow in our model. How can this observation be explained? GCDCA is a toxic bile acid that significantly decreases bile flow, in part due to hepatocyte injury. Sulfasalazine protects the liver against GCDCA induced injury thereby restoring the capacity of the liver to generate bile. In addition, GCDBA might contribute to bile acid dependent bile flow when its cytotoxic effects are inhibited by sulfasalazine.

The two metabolites of sulfasalazine, 5-ASA and sulfapyridine, had no effect on GCDCA induced apoptosis. Similar observations have also been made in other models. In colon epithelial cells, sulfasalazine but not its metabolites suppressed NFκB activity and likewise, in T lymphocytes, only sulfasalazine induced apoptosis. Thus only the intact molecule seems to modulate intracellular signalling. This observation appears to be of clinical significance because only sulfasalazine, and not 5-ASA, has beneficial effects in rheumatoid arthritis as a disease modifying agent.

The protective effects of sulfasalazine observed in the present study were most pronounced at concentrations of 100 and 1000 μmol/l. Early studies have shown that peak serum levels of approximately 100 μmol/l sulfasalazine are reached in the serum of patients after oral administration. The concentration of sulfasalazine in the portal vein, which is crucial for the concentration reached in hepatocytes, is presumably even higher, because sulfasalazine undergoes enterohepatic circulation. Thus our results may have therapeutic implications for patients with chronic cholestasis.

In summary, the data presented in the current study suggest that bile acid mediated apoptosis can be effectively inhibited by sulfasalazine at concentrations that are reached during therapeutic application of this drug in patients. Together with recent findings that sulfasalazine reduces hepatic fibrosis by promoting hepatic stellate cell apoptosis, our results have potential implications for reducing liver injury during cholestasis. This novel therapeutic strategy deserves further study, for example in patients with primary sclerosing cholangitis and ulcerative colitis which are concurrently treated with sulfasalazine.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft grant Ru 743/3-1 (to CR) and grant Be 1242/5-5 (to UB). The authors thank H. R. Naber for expert technical assistance. Parts of the data were presented at the Annual Meeting of the American Association for the Study of Liver Disease, Boston, MA, USA, 2002 (Hepatology 2002;36:324A).

Authors’ affiliations

C Rust, K Bauchmuller, C Bernt, T Vennegouer, U Beuers, Department of Medicine II–Grosshadern, University of Munich, Munich, Germany

P Fickert, Laboratory of Experimental and Molecular Hepatology, Department of Medicine, Medical University, Graz, Austria

A Fuchsbieler, Department of Pathology, Medical University, Graz, Austria

Conflict of interest: None declared.

REFERENCES

1 Hofmann A. Cholestatic liver disease: pathophysiology and therapeutic options. Liver 2002;22(suppl 2):14–19

2 Yoon JH, Gores GJ. Death receptor-mediated apoptosis and the liver. J Hepatol 2002;37:400–10

Sulfasalazine reduces hepatocyte apoptosis

Sulfasalazine reduces bile acid induced apoptosis in human hepatoma cells and perfused rat livers

C Rust, K Bauchmuller, C Bernt, et al.

Gut 2006 55: 719-727 originally published online December 1, 2005
doi: 10.1136/gut.2005.077461

Updated information and services can be found at:
http://gut.bmj.com/content/55/5/719.full.html

References

These include:
This article cites 34 articles, 7 of which can be accessed free at:
http://gut.bmj.com/content/55/5/719.full.html#ref-list-1

Article cited in:
http://gut.bmj.com/content/55/5/719.full.html#related-urls

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/