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A ubiquitous observation in crowded cell membranes is that molecular transport does not follow
Fickian diffusion but exhibits subdiffusion. The microscopic origin of such a behaviour is not
understood and highly debated. Here we discuss the spatio-temporal dynamics for two models of
subdiffusion: fractional Brownian motion and hindered motion due to immobile obstacles. We show
that the different microscopic mechanisms can be distinguished using fluorescence correlation
spectroscopy (FCS) by systematic variation of the confocal detection area. We provide a theoretical
framework for space-resolved FCS by generalising FCS theory beyond the common assumption of
spatially Gaussian transport. We derive a master formula for the FCS autocorrelation function, from
which it is evident that the beam waist of an FCS experiment is a similarly important parameter as the
wavenumber of scattering experiments. These results lead to scaling properties of the FCS correlation
for both models, which are tested by in silico experiments. Further, our scaling prediction is compatible
with the FCS half-value times reported by Wawrezinieck et al. [Biophys. J., 2005, 89, 4029] for in vivo

experiments on a transmembrane protein.

Introduction

Measurement of molecular transport at the subcellular level can
provide important information on both physiological mecha-
nisms and physical interactions that drive and constrain
biochemical processes. The obstructed motion of biomolecules in
living cells displays anomalous transport including subdiffusion,
which was established in the past decade by numerous experi-
ments applying techniques with labeled particles. Nevertheless,
the interpretation of the collected data remains often contro-
versial and the origin of the subdiffusive behaviour is highly
debated."® Crowded environments like cellular membranes
contain structures on many length scales, and further progress
depends on experimental techniques that resolve transport on
these different scales. Such spatio-temporal information is
needed to test and refine models of anomalous transport.

One widespread technique for the investigation of molecular
transport is fluorescence correlation spectroscopy (FCS), which
follows the motion of fluorescently labeled molecules with high
temporal resolution.”® This mesoscopic, local method consists of
collecting the fluorescent light from a steadily illuminated
volume or area and autocorrelating its intensity fluctuations. An
important parameter of FCS measurements is the beam waist of
the illumination laser. While experimental setups in the past were
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constrained to a fixed value, recent technological advancements
allow large variations of the confocal detection area to gather
spatial information.®** By z-scan FCS*!® or beam expanders,!
focal radii can be varied between 200 nm and 500 nm, but
measurements at the nanoscale became possible by introducing
nano-apertures (75 nm to 250 nm).’? Only lately, a far-field
optical nanoscopic method named “stimulated emission deple-
tion (STED) fluorescence correlation microscopy” was devel-
oped to beat the diffraction limit,'* allowing focal radii to span
almost a decade down to 15 nm (ref. 14).

The subdiffusive motion of macromolecules in crowded cells
and membranes was studied extensively by FCS experiments!s*8
and was complemented in real-space by single-particle
tracking.'2? For Fickian diffusion, the mean-square displace-
ment grows linearly in time, 6r*(¢) = 4Dt in two dimensions with
diffusion constant D. Then, the decay of the FCS autocorrelation
function obeys

1 1

=N T

(D
where tp = w?/4D denotes the dwell time and N the average
number of labeled molecules in the illuminated area.} These
equations are no longer valid for anomalous transport. Intro-
ducing the walk dimension d,,, subdiffusion is characterised by
or’(t) ~ **, and FCS experiments are often rationalised by

1 1
G0 =N T T @

i We restrict the discussion to two dimensional systems relevant for
membranes, where focus distortions are negligible; in three dimensions,
the asphericity of the illumination volume renders the formulae more
cumbersome. We also ignore effects due to the photophysics of the dye
molecules, which are relevant at very short time scales only. This does
not effect the generality of our discussion nor any of our conclusions.
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upon fitting N, T, and a. It is usually and tacitly anticipated that
both exponents coincide, « = 2/d,,.

Here, we provide a theoretical framework for space-resolved
FCS. Relating the FCS function G(¢) to the intermediate scat-
tering function, we generalise the conventionally used fit models
and connect FCS to time-resolved scattering techniques. If the
beam waist is considered an adjustable experimental parameter
similar to the scattering angle, FCS is turned into a valuable tool
for the investigation of complex and in particular anomalous
transport. The new approach greatly facilitates in silico experi-
ments: for two models of subdiffusion, we show how spatio-
temporal information on the tracer dynamics can be obtained
and used to distinguish different mechanisms as the origin of
anomalous transport.

Theory
Generalised FCS theory

Let us briefly revisit the theory underlying the FCS technique;**#
we specialise to two dimensions for simplicity. The detection area
is illuminated by a laser beam with intensity profile W(r). The
fluorescent light depends on the fluctuating, local concentration
¢(r,?) of labeled molecules in the laser focus. Thus, the intensity
collected at the detector is a spatially weighted average, () o
szr W1(r) c(r,t). The output of the FCS experiment is the time-
autocorrelation function of the intensity fluctuation 6/(¢r) = I(t) —
(I) around the mean intensity. It is conventionally normalised as
G(1) = (6I(t)61(0))/(I)*; proper normalisation would be achieved
by multiplication with N = (1)*/(6J?). Introducing spatial Fourier
transforms, one arrives at the representation

1 J&qw@s(a.0)
N Jaqw(@)'s@,c=0)

where S(q.7) = J‘dzr exp(iq-r){(oc(r,)6¢(0,0)) is known as the
intermediate scattering function and W{(q) denotes the Fourier
transform of the intensity profile W1r).

A conventional laser emits a Gaussian beam profile, W(r) «
exp(—2r’/w?), with beam waist w, which implies a Gaussian filter
function |W(q)]* « exp(—¢*w*4). Usually only a small fraction of
the molecules is labeled, and then S(q,#) reduces to the incoherent
intermediate scattering function

G(t;w) (©)

S(q.1) = Fg.1) = (exp(iq-AR(?))). “4)

Considering the displacements AR(?) := R(7) — R(0) after a fixed
time lag a random variable, the incoherent scattering function
can be interpreted as their characteristic function. For Gaussian
and isotropic displacements, (AR(¢)) = 0, only the second
cumulant 6r%(¢) := (JAR(?)]*) is non-zero. Thus F(q,)) =
exp(—¢*0r’(1)/4) for two-dimensional motion. The corresponding
FCS function is calculated to

1 1
GGauss S =T s N 5
Gauss (15 1) N 1+ 6r2(z)/w? )
For normal diffusion, it holds F(q,7) = exp(—Dg*t), and G(z)
attains the simple form of eqn (1). For the case of subdiffusion,
or’(f) ~ t*, and Gaussian spatial displacements as in fractional

Brownian motion (FBM), one recovers the conventional
expression, eqn (2).

In many complex systems, however, the (strong) assumption of
Gaussian displacements is not valid and may only serve as an
approximation. This assumption can be tested experimentally by
resolving the spatial properties of the particle trajectories. An exact
expression for the FCS function is obtained by combining eqn (3)
and (4). Evaluating the integrals over the wavenumber yields

G(ezw) = N (exp(— AR ), (6)

which is a central result of our work. Let us emphasise that it
does not require any assumptions on the dynamics; corrections
may arise from non-dilute labeling of the molecules and from
deviations of the Gaussian beam profile. In three-dimensional
systems, one should further correct for anisotropies in the
confocal volume. This expression enables new insight in the
potential of the FCS technique with consequences for the design
of future FCS experiments. The similarity of the representation
of G(t;w) in eqn (6) with that of F(q,?) in eqn (4) suggests that
FCS encodes important spatial information analogous to scat-
tering methods like photon correlation spectroscopy or neutron
spin echo. In the case of anomalous transport discussed below,
we will use it as starting point for the derivation of the scaling
properties of G(¢;w). Eqn (6) shows that the FCS function NG(7)
can be neatly interpreted as the return probability for a fluores-
cent molecule to be again (or still) in the illuminated area.§ As
a by-product, it provides a simple description for the efficient
evaluation of autocorrelated FCS data in computer simulations,
circumventing the evaluation of the rapidly fluctuating fluores-
cent light intensity.

Van Hove correlation function

The dynamics of a single labeled particle is encoded in the
probability distribution of the time-dependent displacements,
P(r,t) = (6(r — R(?)); due to rotational symmetry, it actually
depends merely on the magnitude r = |r|. This function is also
known as van Hove (self-)correlation function G(r,7) in the field
of liquid dynamics;** to avoid confusion with the FCS function,
we follow the notation of ref. 25. Explicit expressions for P(r,?)
exist for many models, but for the dynamics on percolation
clusters only conjectures of the asymptotic scaling behaviour are
available. Let us consider a random walker on the incipient
infinite percolation cluster, ie., precisely at the percolation
threshold. Then, the dynamics is characterised by two universal
exponents: the fractal dimension dr and the walk dimension d,,.
Let further 7y and o denote the typical microscopic time and
length scales, respectively. The van Hove function is expected to
obey the following scaling law for r >> ¢ and ¢t > ¢, (ref. 25),

Po(r,0) = r ' Py (re" V). (7)

The subscript « indicates that the average is taken only for
tracers on the infinite cluster. During a time ¢, the walker explores

§ For sufficiently large time lag, the probability to find the fluorophore at
a particular point within the confocal volume becomes independent of the
position. Then, the FCS function can be approximated by the probability
of being at or returning to the centre of the confocal volume after the
given time multiplied by the size of the confocal volume.
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regions of linear extension of the order of R ~ %, The proba-
bility for larger excursions decreases rapidly (presumably like
a stretched exponential), hence we assume P. (x>1)—0
rapidly. This property specifies the time evolution of the mean-
square displacement and of higher moments. For the FCS
measurements, however, we additionally need the limiting
behaviour of the scaling function for small arguments.

Return probability

Integrating the van Hove function over distances r =< w with w
much larger than any microscopic length yields the probability
TI(#;w) to return to the starting point of the random walk within
a radius w after a time ¢. Provided that w < ¢, this probability
is proportional to the accessible part of the illuminated area,
which scales as w*. In particular, we expect that space- and time-
dependence factorise,

TH(w) = [rmd®rPa(r.t) ~ w/TIo(0), ®)

where TIy(7) denotes the return probability to an infinitesimal
vicinity of the origin. By the scaling law eqn (7), we require that
P..(x < 1) ~ x%_ which is confirmed by our simulations for the
two-dimensional Lorentz model. As a by-product, one obtains
Iy(f) ~ % = (=42 where ds = 2dy/d,, is the spectral dimension.
Combining both results, TI(;w) ~ (wt~ ") for sufficiently long
times.

Models of anomalous transport
The Lorentz model

Anomalous transport emerges non-trivially in the Lorentz
model.>*?® Here, a two-dimensional variant is used which
consists of Brownian tracer particles exploring a disordered
environment of randomly placed, overlapping circular obstacles
of radius o, which we choose as ¢ = 3 nm. The void space
between the discs undergoes a continuum percolation transition
at the critical obstacle density n.0® = 0.35907 (ref. 30). The
infinite cluster displays self-similar behaviour characterised by
the fractal dimension dr = 91/48, known from lattice percola-
tion.?® The tracer dynamics on this incipient infinite cluster is
found to exhibit subdiffusion, 6r%(f) ~ %, with walk dimension
d,, = 2.878 (ref. 31), see inset of Fig. 1.

We have generated 1,600 trajectories of Brownian tracers with
short-time diffusion coefficient Dy = 2.5 pm?*s, moving on the
infinite cluster at criticality. (In practice, we computed trajecto-
ries for particles on all clusters and evaluated the time-averaged
mean-square displacement for each particle. Then, we selected
those particles which did not show localisation based on a crite-
rion for the local exponent of the mean-square discplacement at
very long times; only these particles contributed to the final
average over independent trajectories.) Taking the divergent
length scale into account, we have considered large systems of
box length L = 10*% = 30 um and have run the trajectories up to
times of ¢ = 108y, where 1y = 0*/Dy = 3.6 us is the natural time
scale above which the diffusive motion is hindered by obstacles.
The resulting correlation functions are invariant under time shift
and do not display aging, in agreement with recent FCS experi-
ments on crowded fluids.' For the in-silico experiment, we have
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Fig. 1 Simulated FCS correlation function G () on a logarithmic time
axis for tracers on the infinite cluster at the critical obstacle density; the
beam waist w of the laser increases from left to right. Dotted lines
correspond to FBM with identical mean-square displacement, eqn (5);
the broken line displays the FCS function for unobstructed, normal
diffusion (w = 450 nm). Inset: subdiffusive behaviour of the mean-square
displacement for the simulated obstructed motion (solid line), again
compared to the case of normal diffusion (broken line).

evaluated the average in eqn (6) for beam waists between 24 nm
and 384 nm.

Fractional Brownian motion

Fractional Brownian motion (FBM) is a mathematical general-
isation of the usual Brownian motion yielding a subdiffusive
mean-square displacement, 6r%(¢) = 2dD %, with the generalised
diffusion constant D,; the distribution of the displacements
AR(?) remains Gaussian. The description of a microscopic
process generating such a dynamics is challenging, one formu-
lation involving fractional derivatives was given in terms of
a generalised Langevin equation.’® Nevertheless, its “propa-
gator” (van Hove function) can be calculated exactly to

Peswi(r,) = 1 Pows 1t/ /D) ©)

where  Pgauss(x) = (2m) “*x4exp(—x2/2) and d denotes the
dimension of space. In particular, it satisfies the scaling form in
eqn (7) exactly. Brownian motion with normal diffusion is
obtained in the limit «— 1, where D, becomes the diffusion
constant. The FCS function corresponding to FBM is given
exactly by eqn (5). For comparison with the Lorentz model, we
have fixed o and D, such that the mean-square displacements of
both models coincide.

Results and discussion

In the following, we will describe how FCS experiments with
variable beam waist can provide insight into the microscopic
dynamics and reveal spatially non-Gaussian, subdiffusive
behaviour. We apply the generalised FCS theory from above to
the exactly solvable FBM model and to the two-dimensional
Lorentz model with Brownian tracers. We have generated FCS
correlation functions as described in the previous section. The
obtained curves are shown in Fig. 1 and exhibit a significantly
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stretched decay compared to normal diffusion. For the corre-
sponding FBM model with identical mean-square displacement,
the same trend, but a different shape of G(¢) is found. For both
models, an increase of the beam waist w shifts the relaxation to
later times, while the shape appears to be preserved.

Generalising the diffusion time in eqn (1), we introduce the
half-value time 7,,(w) as a function of the beam waist via the
implicit definition NG(ty,) = 1/2. The FCS data suggest
a phenomenological scaling property, NG(£;w) = G(t/t15(w)),
i.e., all curves can be collapsed by appropriate rescaling of time.
In the following, we will rigorously derive the scaling form of the
FCS function G(t;w) for the models under consideration. In
particular, a thorough scaling analysis can discriminate whether
or not a proposed theoretical model describes the spatio-
temporal tracer dynamics contained in the FCS data.

Scaling of the FCS function

The scaling properties of the FCS function are inherited from the
van Hove function by means of the master formula, eqn (6),

NG (t;w) = jd"r exp(—r’w?)P o (r,1). (10)

In case of the Lorentz model, one finds from eqn (7) that
NG (t;w) = G. (w1 (11)

for w > o and t > ¢, and similarly for the FBM model. For
both models, these scaling forms imply a power-law divergence
of the FCS half-value time in particular,

T (W) ~ w for w > o, (12)

which is corroborated by the rescaling of G(t;w) below. For
normal diffusion on a mesh grid model, a corresponding relation
has been derived.?* In the regime w < %, the FCS experiment
essentially probes the return probability TII(#;w). Thus
Go (x < 1) ~ x%, and a non-trivial power-law decay of the FCS
function is predicted at long times,

Goo(t;m/) ~ l‘*df/dw' (13)

A double-logarithmic representation of our simulated FCS data
indeed renders the final decay of G.(t;w) straight lines, see
Fig. 2a. Different beam waists yield parallel lines, and the slopes
are compatible with the expected value of d;/ d,, = 0.66.

The form of 600(-) for small arguments further yields the
fractal space dimension, NG (t;w) ~ w* for sufficiently large,
fixed time lag ¢. Thus, the structural properties can be obtained
from the FCS data by fixation of the correlation time and
sufficient variation of the beam waist; the fractal dimension is
directly accessible if the data are plotted on double-logarithmic
scales, see Fig. 2b. The asymptotic regime is limited from below
by the microscopic details of the system and from above by the
crossover to the trivial behaviour, NG (t;w — o) = 1. Within
the remaining window, 1 < w/a < (t/t5)"", our FCS data reveal
non-trivial power-law behaviour over 1.5 decades in space for the
longest time lags, and the slope of the data corresponds to the
fractal dimension dy = 1.9 of the underlying space.
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Fig. 2 Simulated FCS data on double logarithmic scales; the data
correspond to Fig. 1. (a) The subdiffusive motion is mainly hidden in the
tails of G, (¢;w) at long times, #/ty > (w/o)™, which decay as a power law
with exponent « = d;/ d,,, indicated by the broken line. (b) Simulated
FCS data as a function of the beam waist w for different, but fixed time
lags 1; the data correspond to Fig. 1. The regime 1 < w/o < (t/t5)"* is
characterised by a power law increase with exponent d; (solid lines),
revealing the fractal spatial structure.

A simultaneous test of both the temporal decay of G(z;w) and
its dependence on the beam waist is provided by appropriate
rescaling of the data. Fig. 3a shows the FCS function divided by
the predicted long-time decay as a function of the rescaled time
t = (t/to)(wlo)~%. The excellent data collapse strongly corrobo-
rates the scaling laws of the FCS function, eqn (11), and of the
half-value time, eqn (12). Simultaneously, the rectified data
converge for / — o, validating the algebraic decay, eqn (13).

This analysis is in stark contrast with the form of G(¢) obtained
for subdiffusive motion and the assumption of spatially
Gaussian transport, e.g., for the FBM model. It is instructive to
discuss the implications for general dimension d. Then, eqn (5)
generalises to

NGS(t;w) = [1 + ork (w2 ~ wir ! (14)

as t — o, using 6rk(f) ~ #*. The inset of Fig. 3a reveals that
rectification with 7% does not lead to saturation at long times,

This journal is © The Royal Society of Chemistry 2011
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Fig. 3 (a) FCS functions G.(f) for various beam waists rescaled
according to the scaling hypothesis, eqn (11) and (13). Solid lines corre-
spond to the simulation data of Fig. 1, dotted lines to the solution for
FBM. Inset: The assumption of Gaussian transport, eqn (5), yields data
collapse as well, but no saturation for large rescaled times. (b) The
assumption of spatially Gaussian transport, eqn (5), does not lead to
scaling of the FCS data for obstructed motion. The anomalous exponent
a = 0.659 is obtained from the long-time decay of G (?) following eqn
(2). Dotted line: solution for the FBM model rescaled by the same
procedure.

reflecting the fact that the decay of the FCS autocorrelation
function for the obstructed motion decays with a different
exponent than the inverse mean-square displacement. Never-
theless, the data still collapse on a single master curve, yet this
shows merely that both the Gaussian ansatz and the critical
scaling use the same reduced time 7. Conversely for the FBM
result, Gaussian scaling yields convergence at long times, while
the assumption of obstructed motion does not.

Let us perform the standard analysis for anomalous transport
on our simulated FCS data, as suggested by eqn (2). Fitting the
long-time decay fixes the exponent to o = d;/ d,,, which indeed
yields a saturation in the rectification plot, see Fig. 3b. Inter-
preting this « as characteristic exponent of subdiffusion for the
mean-square displacement, 6r%(7) ~ %, and assuming Gaussian
transport, eqn (5), suggests the use of 7 ~ tw2* as scaling vari-
able. However, then the data for our model system fan out for

large times. Furthermore, it implies t1/,(w) ~ w?® = w*»*_ con-
tradicting eqn (12). We conclude that the standard approach
using only a single scaling exponent is not consistent for anom-
alous transport due to obstacles.

We close with the question when the widely used eqn (2) is
a valid description of the FCS correlation function. The equation
is a specialisation of eqn (5), which holds if and only if the
distribution of displacements is Gaussian, ie., solely determined
by its second cumulant, 67*(¢); this is a consequence of the master
formula, eqn (6). For spatially Gaussian transport, validity of
eqn (2) is then equivalent to a power-law increase of the mean-
square displacement, 6r(¢) ~ ¢*. If the functional form of 6r%(¢) is
different, e.g, if the dynamics exhibits a crossover from anoma-
lous to normal diffusion at some crossover time scale 7, eqn (2)
applies only to shorter time lags, ¢ < ¢,. Since such a crossover is
generically expected away from a critical point (see, e.g., the
discussion in ref. 18 and the simulation results in ref. 26-29 and
31), the analysis of FCS data based on eqn (5) appears more
robust. Finally as a test of the Gaussian assumption, it would be
essential to quantify the corrections to eqn (5) by FCS experi-
ments with variable beam waist.

Conclusions

We have shown that by systematic variation of the beam waist in
FCS experiments, spatio-temporal information on the single-
particle dynamics of complex systems can be collected. We have
generalised the FCS theory beyond the assumption of spatially
Gaussian transport and have derived a fundamental expression
for the FCS correlation function, eqn (6), which is a general
starting point for the interpretation of experiments and which
significantly facilitates theoretical and numerical work on FCS.
In particular, it is straightforward to transfer our findings to the
study of complex transport in other fields where FCS is widely
employed, e.g., in physical chemistry and in polymer physics.

The obtained master formula for FCS reveals an analogy
between FCS and time-resolved scattering techniques. It can be
extended to the case where the concentration of the labeled
particles is not dilute any more. Then a distinct part arises in
addition to the self-part similar to the corresponding decompo-
sition of the coherent intermediate scattering function. Likewise,
one can easily account for the asphericity of the illuminated
volume; yet this does not affect the scaling arguments presented
in this work.

For subdiffusive motion due to obstacles, both the fractal
nature of the underlying space and the anomalous transport can
be revealed by FCS. We have developed a scaling theory for
G (t;w), which excellently describes our simulated data for the
full range of investigated beam waists. These findings have been
contrasted to fractional Brownian motion (FBM), an exactly
solvable model for subdiffusion with different predictions for the
scaling behaviour. The derived scaling properties should be
experimentally accessible with modern nanoscopic optical
methods."** In particular, the spatial information provided by
FCS can be used to experimentally distinguish different routes to
anomalous transport.

We have demonstrated that a fit of the time-dependence of the
FCS function for a single beam waist does not necessarily deter-
mine the walk dimension, which characterises the subdiffusive
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Fig. 4 Experimental FCS half-value times t,,5(w) from FCS measure-
ments on the transmembrane protein GfR-GFP of COS-7 cells in
a double-logarithmic representation; the data were taken from Fig. 4D of
ref. 10. The straight line indicates a power-law increase of the half-value
times as function of beam waist, 7,5 ~ w?®.

increase of the mean-square displacement, 6r*(f) ~ . A more

robust procedure would be based on measurements of the half-
value time 7;,5(w) of the normalised FCS correlations for a wide
range of beam waists. Then, the exponent of subdiffusion may be
obtained from the w-dependence t,,,(w) ~ w®, which is expected
to hold for various models of anomalous transport, see eqn (12).
The knowledge of d,, would be the starting point for a scaling test
of the full curves G(#;w) similarly to Fig. 3a, which then would be
completed by a characterisation of the decay at long times. The
analysis by Wawrezinieck er al.'® is somewhat different from the
one suggested here. Their “apparent diffusion time” 5™ corre-
sponds to 7y, in our notation. Based on experimental data on the
plasma membrane of COS-7 cells and on simulations, they find
the phenomenological relation 7, ~ w* + const and discuss
implications of the offset as the data are extrapolated towards
small beam waists, w — 0. In Fig. 4, we have replotted their 7/,
data for the transmembrane protein GfR-GFP as function of the
beam waist on double-logarithmic scales. The data points nicely
follow a straight line in agreement with our power-law prediction,
eqn (12). Considering the error bars and the limited w-range, we
obtain an estimate of the walk dimension d,, between 2.4 and 3.4;
the most likely value is d,, = 2.6, implying an exponent of sub-
diffusion of 2/d, = 0.77. We find this observation rather
encouraging with respect to the applicability of our approach and
to the usefulness of FCS with variable beam waist for addressing
the leading questions on anomalous transport.
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