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A ubiquitous observation in crowded cell membranes is that molecular transport does not follow

Fickian diffusion but exhibits subdiffusion. The microscopic origin of such a behaviour is not

understood and highly debated. Here we discuss the spatio-temporal dynamics for two models of

subdiffusion: fractional Brownian motion and hindered motion due to immobile obstacles. We show

that the different microscopic mechanisms can be distinguished using fluorescence correlation

spectroscopy (FCS) by systematic variation of the confocal detection area. We provide a theoretical

framework for space-resolved FCS by generalising FCS theory beyond the common assumption of

spatially Gaussian transport. We derive a master formula for the FCS autocorrelation function, from

which it is evident that the beam waist of an FCS experiment is a similarly important parameter as the

wavenumber of scattering experiments. These results lead to scaling properties of the FCS correlation

for both models, which are tested by in silico experiments. Further, our scaling prediction is compatible

with the FCS half-value times reported by Wawrezinieck et al. [Biophys. J., 2005, 89, 4029] for in vivo

experiments on a transmembrane protein.
Introduction

Measurement of molecular transport at the subcellular level can

provide important information on both physiological mecha-

nisms and physical interactions that drive and constrain

biochemical processes. The obstructed motion of biomolecules in

living cells displays anomalous transport including subdiffusion,

which was established in the past decade by numerous experi-

ments applying techniques with labeled particles. Nevertheless,

the interpretation of the collected data remains often contro-

versial and the origin of the subdiffusive behaviour is highly

debated.1–6 Crowded environments like cellular membranes

contain structures on many length scales, and further progress

depends on experimental techniques that resolve transport on

these different scales. Such spatio-temporal information is

needed to test and refine models of anomalous transport.

One widespread technique for the investigation of molecular

transport is fluorescence correlation spectroscopy (FCS), which

follows the motion of fluorescently labeled molecules with high

temporal resolution.7,8 This mesoscopic, local method consists of

collecting the fluorescent light from a steadily illuminated

volume or area and autocorrelating its intensity fluctuations. An

important parameter of FCS measurements is the beam waist of

the illumination laser. While experimental setups in the past were
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constrained to a fixed value, recent technological advancements

allow large variations of the confocal detection area to gather

spatial information.9–14 By z-scan FCS9,10 or beam expanders,11

focal radii can be varied between 200 nm and 500 nm, but

measurements at the nanoscale became possible by introducing

nano-apertures (75 nm to 250 nm).12 Only lately, a far-field

optical nanoscopic method named ‘‘stimulated emission deple-

tion (STED) fluorescence correlation microscopy’’ was devel-

oped to beat the diffraction limit,13 allowing focal radii to span

almost a decade down to 15 nm (ref. 14).

The subdiffusive motion of macromolecules in crowded cells

and membranes was studied extensively by FCS experiments15–18

and was complemented in real-space by single-particle

tracking.19–22 For Fickian diffusion, the mean-square displace-

ment grows linearly in time, dr2(t) ¼ 4Dt in two dimensions with

diffusion constant D. Then, the decay of the FCS autocorrelation

function obeys

GðtÞ ¼ 1

N

1

1þ t=sD

; (1)

where sD ¼ w2/4D denotes the dwell time and N the average

number of labeled molecules in the illuminated area.‡ These

equations are no longer valid for anomalous transport. Intro-

ducing the walk dimension dw, subdiffusion is characterised by

dr2(t) � t2/dw, and FCS experiments are often rationalised by

GðtÞ ¼ 1

N

1

1þ ðGtÞa (2)
‡ We restrict the discussion to two dimensional systems relevant for
membranes, where focus distortions are negligible; in three dimensions,
the asphericity of the illumination volume renders the formulae more
cumbersome. We also ignore effects due to the photophysics of the dye
molecules, which are relevant at very short time scales only. This does
not effect the generality of our discussion nor any of our conclusions.

This journal is ª The Royal Society of Chemistry 2011
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upon fitting N, G, and a. It is usually and tacitly anticipated that

both exponents coincide, a ¼ 2/dw.

Here, we provide a theoretical framework for space-resolved

FCS. Relating the FCS function G(t) to the intermediate scat-

tering function, we generalise the conventionally used fit models

and connect FCS to time-resolved scattering techniques. If the

beam waist is considered an adjustable experimental parameter

similar to the scattering angle, FCS is turned into a valuable tool

for the investigation of complex and in particular anomalous

transport. The new approach greatly facilitates in silico experi-

ments: for two models of subdiffusion, we show how spatio-

temporal information on the tracer dynamics can be obtained

and used to distinguish different mechanisms as the origin of

anomalous transport.
x For sufficiently large time lag, the probability to find the fluorophore at
a particular point within the confocal volume becomes independent of the
position. Then, the FCS function can be approximated by the probability
of being at or returning to the centre of the confocal volume after the
given time multiplied by the size of the confocal volume.
Theory

Generalised FCS theory

Let us briefly revisit the theory underlying the FCS technique;23,8

we specialise to two dimensions for simplicity. The detection area

is illuminated by a laser beam with intensity profile W(r). The

fluorescent light depends on the fluctuating, local concentration

c(r,t) of labeled molecules in the laser focus. Thus, the intensity

collected at the detector is a spatially weighted average, I(t) fÐ
d2r W(r) c(r,t). The output of the FCS experiment is the time-

autocorrelation function of the intensity fluctuation dI(t)¼ I(t)�
hIi around the mean intensity. It is conventionally normalised as

G(t) ¼ hdI(t)dI(0)i/hIi2; proper normalisation would be achieved

by multiplication with N¼ hIi2/hdI2i. Introducing spatial Fourier

transforms, one arrives at the representation

Gðt; wÞ ¼ 1

N

Ð
d2q
��WðqÞ��2Sðq; tÞÐ

d2q
��W ðqÞ��2Sðq; t ¼ 0Þ

; (3)

where S(q,t) ¼
Ð

d2r exp(iq$r)hdc(r,t)dc(0,0)i is known as the

intermediate scattering function and W(q) denotes the Fourier

transform of the intensity profile W(r).

A conventional laser emits a Gaussian beam profile, W(r) f

exp(�2r2/w2), with beam waist w, which implies a Gaussian filter

function |W(q)|2 f exp(�q2w2/4). Usually only a small fraction of

the molecules is labeled, and then S(q,t) reduces to the incoherent

intermediate scattering function

S(q,t) z F(q,t) ¼ hexp(iq$DR(t))i. (4)

Considering the displacements DR(t) :¼ R(t) � R(0) after a fixed

time lag a random variable, the incoherent scattering function

can be interpreted as their characteristic function. For Gaussian

and isotropic displacements, hDR(t)i ¼ 0, only the second

cumulant dr2(t) :¼ h|DR(t)|2i is non-zero. Thus F(q,t) ¼
exp(�q2dr2(t)/4) for two-dimensional motion. The corresponding

FCS function is calculated to

GGaussðt; wÞ ¼ 1

N

1

1þ dr2ðtÞ=w2
: (5)

For normal diffusion, it holds F(q,t) ¼ exp(�Dq2t), and G(t)

attains the simple form of eqn (1). For the case of subdiffusion,

dr2(t) � ta, and Gaussian spatial displacements as in fractional
This journal is ª The Royal Society of Chemistry 2011
Brownian motion (FBM), one recovers the conventional

expression, eqn (2).

In many complex systems, however, the (strong) assumption of

Gaussian displacements is not valid and may only serve as an

approximation. This assumption can be tested experimentally by

resolving the spatial properties of the particle trajectories. An exact

expression for the FCS function is obtained by combining eqn (3)

and (4). Evaluating the integrals over the wavenumber yields

G(t;w) ¼ N�1hexp(�DR(t)2/w2)i, (6)

which is a central result of our work. Let us emphasise that it

does not require any assumptions on the dynamics; corrections

may arise from non-dilute labeling of the molecules and from

deviations of the Gaussian beam profile. In three-dimensional

systems, one should further correct for anisotropies in the

confocal volume. This expression enables new insight in the

potential of the FCS technique with consequences for the design

of future FCS experiments. The similarity of the representation

of G(t;w) in eqn (6) with that of F(q,t) in eqn (4) suggests that

FCS encodes important spatial information analogous to scat-

tering methods like photon correlation spectroscopy or neutron

spin echo. In the case of anomalous transport discussed below,

we will use it as starting point for the derivation of the scaling

properties of G(t;w). Eqn (6) shows that the FCS function NG(t)

can be neatly interpreted as the return probability for a fluores-

cent molecule to be again (or still) in the illuminated area.x As

a by-product, it provides a simple description for the efficient

evaluation of autocorrelated FCS data in computer simulations,

circumventing the evaluation of the rapidly fluctuating fluores-

cent light intensity.
Van Hove correlation function

The dynamics of a single labeled particle is encoded in the

probability distribution of the time-dependent displacements,

P(r,t) ¼ hd(r � R(t)i; due to rotational symmetry, it actually

depends merely on the magnitude r ¼ |r|. This function is also

known as van Hove (self-)correlation function G(r,t) in the field

of liquid dynamics;24 to avoid confusion with the FCS function,

we follow the notation of ref. 25. Explicit expressions for P(r,t)

exist for many models, but for the dynamics on percolation

clusters only conjectures of the asymptotic scaling behaviour are

available. Let us consider a random walker on the incipient

infinite percolation cluster, i.e., precisely at the percolation

threshold. Then, the dynamics is characterised by two universal

exponents: the fractal dimension df and the walk dimension dw.

Let further t0 and s denote the typical microscopic time and

length scales, respectively. The van Hove function is expected to

obey the following scaling law for r [ s and t [ t0 (ref. 25),

PNðr; tÞ ¼ r�d bPN

�
rt�1=dw

�
: (7)

The subscript N indicates that the average is taken only for

tracers on the infinite cluster. During a time t, the walker explores
Soft Matter, 2011, 7, 1358–1363 | 1359
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regions of linear extension of the order of R � t1/dw. The proba-

bility for larger excursions decreases rapidly (presumably like

a stretched exponential), hence we assume bPNðx[1Þ/0

rapidly. This property specifies the time evolution of the mean-

square displacement and of higher moments. For the FCS

measurements, however, we additionally need the limiting

behaviour of the scaling function for small arguments.
Fig. 1 Simulated FCS correlation function GN(t) on a logarithmic time

axis for tracers on the infinite cluster at the critical obstacle density; the

beam waist w of the laser increases from left to right. Dotted lines

correspond to FBM with identical mean-square displacement, eqn (5);

the broken line displays the FCS function for unobstructed, normal

diffusion (w ¼ 450 nm). Inset: subdiffusive behaviour of the mean-square

displacement for the simulated obstructed motion (solid line), again

compared to the case of normal diffusion (broken line).
Return probability

Integrating the van Hove function over distances r # w with w

much larger than any microscopic length yields the probability

P(t;w) to return to the starting point of the random walk within

a radius w after a time t. Provided that w� t1/dw, this probability

is proportional to the accessible part of the illuminated area,

which scales as wdf. In particular, we expect that space- and time-

dependence factorise,

P(t;w) ¼
Ð

r#wddrPN(r,t) � wdfP0(t), (8)

where P0(t) denotes the return probability to an infinitesimal

vicinity of the origin. By the scaling law eqn (7), we require thatbPNðx� 1Þ � xdf , which is confirmed by our simulations for the

two-dimensional Lorentz model. As a by-product, one obtains

P0(t) � t�df/dw ¼ t�ds/2, where ds ¼ 2df/dw is the spectral dimension.

Combining both results, P(t;w) � (wt�1/dw)df for sufficiently long

times.
Models of anomalous transport

The Lorentz model

Anomalous transport emerges non-trivially in the Lorentz

model.26–29 Here, a two-dimensional variant is used which

consists of Brownian tracer particles exploring a disordered

environment of randomly placed, overlapping circular obstacles

of radius s, which we choose as s ¼ 3 nm. The void space

between the discs undergoes a continuum percolation transition

at the critical obstacle density ncs
2 z 0.35907 (ref. 30). The

infinite cluster displays self-similar behaviour characterised by

the fractal dimension df ¼ 91/48, known from lattice percola-

tion.25 The tracer dynamics on this incipient infinite cluster is

found to exhibit subdiffusion, dr2
N(t) � t2/dw, with walk dimension

dw z 2.878 (ref. 31), see inset of Fig. 1.

We have generated 1,600 trajectories of Brownian tracers with

short-time diffusion coefficient D0 ¼ 2.5 mm2/s, moving on the

infinite cluster at criticality. (In practice, we computed trajecto-

ries for particles on all clusters and evaluated the time-averaged

mean-square displacement for each particle. Then, we selected

those particles which did not show localisation based on a crite-

rion for the local exponent of the mean-square discplacement at

very long times; only these particles contributed to the final

average over independent trajectories.) Taking the divergent

length scale into account, we have considered large systems of

box length L ¼ 104s ¼ 30 mm and have run the trajectories up to

times of t x 108t0, where t0 ¼ s2/D0 ¼ 3.6 ms is the natural time

scale above which the diffusive motion is hindered by obstacles.

The resulting correlation functions are invariant under time shift

and do not display aging, in agreement with recent FCS experi-

ments on crowded fluids.1 For the in-silico experiment, we have
1360 | Soft Matter, 2011, 7, 1358–1363
evaluated the average in eqn (6) for beam waists between 24 nm

and 384 nm.

Fractional Brownian motion

Fractional Brownian motion (FBM) is a mathematical general-

isation of the usual Brownian motion yielding a subdiffusive

mean-square displacement, dr2(t) ¼ 2dData, with the generalised

diffusion constant Da; the distribution of the displacements

DR(t) remains Gaussian. The description of a microscopic

process generating such a dynamics is challenging, one formu-

lation involving fractional derivatives was given in terms of

a generalised Langevin equation.32 Nevertheless, its ‘‘propa-

gator’’ (van Hove function) can be calculated exactly to

PFBMðr; tÞ ¼ r�d bPGauss

�
rt�a=2=

ffiffiffiffiffiffi
Da

p �
(9)

where bPGaussðxÞ ¼ ð2pÞ�d=2
xdexpð�x2=2Þ and d denotes the

dimension of space. In particular, it satisfies the scaling form in

eqn (7) exactly. Brownian motion with normal diffusion is

obtained in the limit a/1, where Da becomes the diffusion

constant. The FCS function corresponding to FBM is given

exactly by eqn (5). For comparison with the Lorentz model, we

have fixed a and Da such that the mean-square displacements of

both models coincide.

Results and discussion

In the following, we will describe how FCS experiments with

variable beam waist can provide insight into the microscopic

dynamics and reveal spatially non-Gaussian, subdiffusive

behaviour. We apply the generalised FCS theory from above to

the exactly solvable FBM model and to the two-dimensional

Lorentz model with Brownian tracers. We have generated FCS

correlation functions as described in the previous section. The

obtained curves are shown in Fig. 1 and exhibit a significantly
This journal is ª The Royal Society of Chemistry 2011
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stretched decay compared to normal diffusion. For the corre-

sponding FBM model with identical mean-square displacement,

the same trend, but a different shape of G(t) is found. For both

models, an increase of the beam waist w shifts the relaxation to

later times, while the shape appears to be preserved.

Generalising the diffusion time in eqn (1), we introduce the

half-value time s1/2(w) as a function of the beam waist via the

implicit definition NG(s1/2) ¼ 1/2. The FCS data suggest

a phenomenological scaling property, NG(t;w) ¼ ~G(t/s1/2(w)),

i.e., all curves can be collapsed by appropriate rescaling of time.

In the following, we will rigorously derive the scaling form of the

FCS function G(t;w) for the models under consideration. In

particular, a thorough scaling analysis can discriminate whether

or not a proposed theoretical model describes the spatio-

temporal tracer dynamics contained in the FCS data.
Fig. 2 Simulated FCS data on double logarithmic scales; the data

correspond to Fig. 1. (a) The subdiffusive motion is mainly hidden in the

tails of GN(t;w) at long times, t/t0 [ (w/s)dw, which decay as a power law

with exponent a ¼ df / dw, indicated by the broken line. (b) Simulated

FCS data as a function of the beam waist w for different, but fixed time

lags t; the data correspond to Fig. 1. The regime 1 � w/s � (t/t0)1/dw is

characterised by a power law increase with exponent df (solid lines),

revealing the fractal spatial structure.
Scaling of the FCS function

The scaling properties of the FCS function are inherited from the

van Hove function by means of the master formula, eqn (6),

NGN(t;w) ¼
Ð

ddr exp(�r2/w2)PN(r,t). (10)

In case of the Lorentz model, one finds from eqn (7) that

NGNðt; wÞ ¼ bGN

�
wt�1=dw

�
(11)

for w [ s and t [ t0, and similarly for the FBM model. For

both models, these scaling forms imply a power-law divergence

of the FCS half-value time in particular,

s1/2(w) � wdw for w [ s, (12)

which is corroborated by the rescaling of G(t;w) below. For

normal diffusion on a mesh grid model, a corresponding relation

has been derived.33 In the regime w � t1/dw, the FCS experiment

essentially probes the return probability P(t;w). ThusbGNðx� 1Þ � xdf , and a non-trivial power-law decay of the FCS

function is predicted at long times,

GN(t;w) � t�df / dw. (13)

A double-logarithmic representation of our simulated FCS data

indeed renders the final decay of GN(t;w) straight lines, see

Fig. 2a. Different beam waists yield parallel lines, and the slopes

are compatible with the expected value of df / dw ¼ 0.66.

The form of bGNð�Þ for small arguments further yields the

fractal space dimension, NGN(t;w) � wdf for sufficiently large,

fixed time lag t. Thus, the structural properties can be obtained

from the FCS data by fixation of the correlation time and

sufficient variation of the beam waist; the fractal dimension is

directly accessible if the data are plotted on double-logarithmic

scales, see Fig. 2b. The asymptotic regime is limited from below

by the microscopic details of the system and from above by the

crossover to the trivial behaviour, NGN(t;w / N) ¼ 1. Within

the remaining window, 1� w/s� (t/t0)1/dw, our FCS data reveal

non-trivial power-law behaviour over 1.5 decades in space for the

longest time lags, and the slope of the data corresponds to the

fractal dimension df ¼ 1.9 of the underlying space.
This journal is ª The Royal Society of Chemistry 2011
A simultaneous test of both the temporal decay of G(t;w) and

its dependence on the beam waist is provided by appropriate

rescaling of the data. Fig. 3a shows the FCS function divided by

the predicted long-time decay as a function of the rescaled time

t̂ ¼ (t/t0)(w/s)�dw. The excellent data collapse strongly corrobo-

rates the scaling laws of the FCS function, eqn (11), and of the

half-value time, eqn (12). Simultaneously, the rectified data

converge for t̂ / N, validating the algebraic decay, eqn (13).

This analysis is in stark contrast with the form of G(t) obtained

for subdiffusive motion and the assumption of spatially

Gaussian transport, e.g., for the FBM model. It is instructive to

discuss the implications for general dimension d. Then, eqn (5)

generalises to

NGGauss
N (t;w) ¼ [1 + dr2

N(t)/w2]�d / 2 � wdt�d / dw (14)

as t / N, using dr2
N(t) � t2/dw. The inset of Fig. 3a reveals that

rectification with t̂2/dw does not lead to saturation at long times,
Soft Matter, 2011, 7, 1358–1363 | 1361
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Fig. 3 (a) FCS functions GN(t) for various beam waists rescaled

according to the scaling hypothesis, eqn (11) and (13). Solid lines corre-

spond to the simulation data of Fig. 1, dotted lines to the solution for

FBM. Inset: The assumption of Gaussian transport, eqn (5), yields data

collapse as well, but no saturation for large rescaled times. (b) The

assumption of spatially Gaussian transport, eqn (5), does not lead to

scaling of the FCS data for obstructed motion. The anomalous exponent

a ¼ 0.659 is obtained from the long-time decay of GN(t) following eqn

(2). Dotted line: solution for the FBM model rescaled by the same

procedure.
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reflecting the fact that the decay of the FCS autocorrelation

function for the obstructed motion decays with a different

exponent than the inverse mean-square displacement. Never-

theless, the data still collapse on a single master curve, yet this

shows merely that both the Gaussian ansatz and the critical

scaling use the same reduced time t̂. Conversely for the FBM

result, Gaussian scaling yields convergence at long times, while

the assumption of obstructed motion does not.

Let us perform the standard analysis for anomalous transport

on our simulated FCS data, as suggested by eqn (2). Fitting the

long-time decay fixes the exponent to a ¼ df / dw, which indeed

yields a saturation in the rectification plot, see Fig. 3b. Inter-

preting this a as characteristic exponent of subdiffusion for the

mean-square displacement, dr2
N(t) � ta, and assuming Gaussian

transport, eqn (5), suggests the use of t̂ � tw�2/a as scaling vari-

able. However, then the data for our model system fan out for
1362 | Soft Matter, 2011, 7, 1358–1363
large times. Furthermore, it implies s1/2(w) � w2/a ¼ w2dw/df, con-

tradicting eqn (12). We conclude that the standard approach

using only a single scaling exponent is not consistent for anom-

alous transport due to obstacles.

We close with the question when the widely used eqn (2) is

a valid description of the FCS correlation function. The equation

is a specialisation of eqn (5), which holds if and only if the

distribution of displacements is Gaussian, i.e., solely determined

by its second cumulant, dr2(t); this is a consequence of the master

formula, eqn (6). For spatially Gaussian transport, validity of

eqn (2) is then equivalent to a power-law increase of the mean-

square displacement, dr2(t) � ta. If the functional form of dr2(t) is

different, e.g, if the dynamics exhibits a crossover from anoma-

lous to normal diffusion at some crossover time scale tx, eqn (2)

applies only to shorter time lags, t� tx. Since such a crossover is

generically expected away from a critical point (see, e.g., the

discussion in ref. 18 and the simulation results in ref. 26–29 and

31), the analysis of FCS data based on eqn (5) appears more

robust. Finally as a test of the Gaussian assumption, it would be

essential to quantify the corrections to eqn (5) by FCS experi-

ments with variable beam waist.
Conclusions

We have shown that by systematic variation of the beam waist in

FCS experiments, spatio-temporal information on the single-

particle dynamics of complex systems can be collected. We have

generalised the FCS theory beyond the assumption of spatially

Gaussian transport and have derived a fundamental expression

for the FCS correlation function, eqn (6), which is a general

starting point for the interpretation of experiments and which

significantly facilitates theoretical and numerical work on FCS.

In particular, it is straightforward to transfer our findings to the

study of complex transport in other fields where FCS is widely

employed, e.g., in physical chemistry and in polymer physics.

The obtained master formula for FCS reveals an analogy

between FCS and time-resolved scattering techniques. It can be

extended to the case where the concentration of the labeled

particles is not dilute any more. Then a distinct part arises in

addition to the self-part similar to the corresponding decompo-

sition of the coherent intermediate scattering function. Likewise,

one can easily account for the asphericity of the illuminated

volume; yet this does not affect the scaling arguments presented

in this work.

For subdiffusive motion due to obstacles, both the fractal

nature of the underlying space and the anomalous transport can

be revealed by FCS. We have developed a scaling theory for

GN(t;w), which excellently describes our simulated data for the

full range of investigated beam waists. These findings have been

contrasted to fractional Brownian motion (FBM), an exactly

solvable model for subdiffusion with different predictions for the

scaling behaviour. The derived scaling properties should be

experimentally accessible with modern nanoscopic optical

methods.13,14 In particular, the spatial information provided by

FCS can be used to experimentally distinguish different routes to

anomalous transport.

We have demonstrated that a fit of the time-dependence of the

FCS function for a single beam waist does not necessarily deter-

mine the walk dimension, which characterises the subdiffusive
This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 Experimental FCS half-value times s1/2(w) from FCS measure-

ments on the transmembrane protein GfR-GFP of COS–7 cells in

a double-logarithmic representation; the data were taken from Fig. 4D of

ref. 10. The straight line indicates a power-law increase of the half-value

times as function of beam waist, s1/2 � w2.6.
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increase of the mean-square displacement, dr2(t) � t2/dw. A more

robust procedure would be based on measurements of the half-

value time s1/2(w) of the normalised FCS correlations for a wide

range of beam waists. Then, the exponent of subdiffusion may be

obtained from the w-dependence s1/2(w) � wdw, which is expected

to hold for various models of anomalous transport, see eqn (12).

The knowledge of dw would be the starting point for a scaling test

of the full curves G(t;w) similarly to Fig. 3a, which then would be

completed by a characterisation of the decay at long times. The

analysis by Wawrezinieck et al.10 is somewhat different from the

one suggested here. Their ‘‘apparent diffusion time’’ sapp
d corre-

sponds to s1/2 in our notation. Based on experimental data on the

plasma membrane of COS–7 cells and on simulations, they find

the phenomenological relation s1/2 � w2 + const and discuss

implications of the offset as the data are extrapolated towards

small beam waists, w / 0. In Fig. 4, we have replotted their s1/2-

data for the transmembrane protein GfR-GFP as function of the

beam waist on double-logarithmic scales. The data points nicely

follow a straight line in agreement with our power-law prediction,

eqn (12). Considering the error bars and the limited w-range, we

obtain an estimate of the walk dimension dw between 2.4 and 3.4;

the most likely value is dw z 2.6, implying an exponent of sub-

diffusion of 2/dw z 0.77. We find this observation rather

encouraging with respect to the applicability of our approach and

to the usefulness of FCS with variable beam waist for addressing

the leading questions on anomalous transport.
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