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Abstract

The partial area under the receiver operating characteristic curve (PAUC) is a well-established
performance measure to evaluate biomarker combinations for disease classification. Because the
PAUC is defined as the area under the ROC curve within a restricted interval of false positive rates,
it enables practitioners to quantify sensitivity rates within pre-specified specificity ranges. This
issue is of considerable importance for the development of medical screening tests. Although many
authors have highlighted the importance of PAUC, there exist only few methods that use the PAUC
as an objective function for finding optimal combinations of biomarkers. In this paper, we introduce
a boosting method for deriving marker combinations that is explicitly based on the PAUC criterion.
The proposed method can be applied in high-dimensional settings where the number of biomarkers
exceeds the number of observations. Additionally, the proposed method incorporates a recently
proposed variable selection technique (stability selection) that results in sparse prediction rules
incorporating only those biomarkers that make relevant contributions to predicting the outcome
of interest. Using both simulated data and real data, we demonstrate that our method performs
well with respect to both variable selection and prediction accuracy. Specifically, if the focus is
on a limited range of specificity values, the new method results in better predictions than other
established techniques for disease classification.
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1 Introduction

The area under the receiver operating characteristic curve (AUC) is a frequently
used measure to assess the prediction accuracy of molecular markers for binary
outcomes (Pepe 2003, Pepe et al. 2006). Being a combination of sensitivity and
specificity values at all possible thresholds of a marker, the AUC is particularly
useful as a summary measure for comparing the performance of biomarkers with
respect to prognosis prediction. In many biomedical applications, however, using
the AUC as a performance measure is not appropriate because only a part of the
area under the ROC curve is relevant. This is especially true for screening tests
where specificity rates have to be high because monetary costs require the rate
of persons with a false positive result to be small. An example is given in Wild
et al. (2010), who developed a combination of serum markers for the prediction
of colorectal cancer. In their study, the authors first restricted the set of specificity
levels to {0.95,0.98} and then optimized the sensitivity rates of marker combi-
nations for the pre-set specificity values. Consequently, when deriving the optimal
marker combination, specificity and sensitivity were not treated symmetrically. The
AUC measure, on the other hand, does not account for this asymmetry because it is
based on an unweighted combination of sensitivity values over the whole specificity
range [0, 1]. Using the AUC alone would therefore have led to a misjudgement of
the performance of the marker combination by Wild et al. (2010).

A more suitable performance measure to evaluate marker combinations in
screening tests is the partial area under the ROC curve (“PAUC”, McClish 1989,
Pepe and Thompson 2000, Dodd and Pepe 2003, Walter 2005). Instead of consid-
ering the whole specificity range [0, 1], the PAUC is defined as the integral of the
ROC curve over a restricted interval of false positive rates ¢ € [fg,#;]. This strategy
is equivalent to considering specificities within the range [1 —#;,1 —#y]. More for-
mally, if f;, f; € R denote a pair of independent realizations of a marker f and if
Y;,Y; € {0, 1} are the respective values of the outcome variable, PAUC is defined as

1
PAUC(t9,11) = ROC(t)dt

Io

= P(f;> fi|Y;=1,Y,=0,c1(t1) < f; < colto)) , (1)

where ROC(¢) denotes the ROC curve of f and where ¢y, c; € R are the thresholds
of f corresponding to the specificity values #y and ¢, respectively (see Dodd and
Pepe 2003). If [tg,7;] = [0, 1], PAUC reduces to the the well-known AUC measure.
It is seen from (1) that PAUC restricts analysis of the ROC curve to the fraction
with false positive rates lying in the interval [fo,;]. Optimizing the PAUC criterion
therefore results in maximized sensitivity rates within a pre-set specificity range.
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Although many authors have highlighted the importance of PAUC, there
exist only few methods that use the PAUC as an objective function for finding opti-
mal combinations of biomarkers (Dodd and Pepe 2003, Komori and Eguchi 2010,
Wang and Chang 2010). To address this problem, we present a new technique for
deriving marker combinations that is explicitly based on the PAUC criterion. The
proposed method is embedded into the gradient boosting framework (Biihlmann
and Hothorn 2007) and can therefore be applied in high-dimensional data settings
where the number of biomarkers exceeds the number of observations. Addition-
ally, the proposed method incorporates a new variable selection technique proposed
by Meinshausen and Biihlmann (2010) (“stability selection) that results in sparse
prediction rules incorporating only those biomarkers that make relevant contribu-
tions to predicting the outcome of interest. Specifically, our method addresses the
following issues:

1. Interpretability of results. By embedding the proposed method into the gra-
dient boosting framework, it is possible to specify the structure of the marker
combination in advance. For example, our method can be adjusted such that
it results in an additive combination of the form

where X = (X,...,X),) is a set of markers and f(l), . ,f(p) is a set of dif-
ferentiable functions. With a combination of the form (2) it is possible to
quantify the associations between individual markers and the outcome and
to obtain estimates of partial effects. From a practical perspective, this is a
major advantage over black-box methods such as Support Vector Machines
(Vapnik 2000) or Random Forests (Breiman 2001).

2. Nonlinear effect estimates. As seen from (2), the marker combination result-
ing from the proposed method is not restricted to being linear. This feature
results in an increased flexibility if compared to linear methods such as the
Lasso (Tibshirani 1996).

3. Sparsity of results. For practical reasons, it is often necessary to keep the
number of markers contained in (2) small. For example, the combination
proposed by Wild et al. (2010) contained only six serum markers. Clas-
sical gradient boosting algorithms, however, may result in prediction func-
tions with large numbers of selected markers (Biithimann and Hothorn 2010,
Meinshausen and Biihlmann 2010). When using our new method, sparsity of
marker combinations is guaranteed by the stability selection technique.

For the rest of the paper, we will refer to the proposed method as PAUC-GBS
(“PAUC optimization via Gradient Boosting and Stability Selection”).
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PAUC-GBS extends existing methods for PAUC optimization in various
ways. For example, Dodd and Pepe (2003) and Cai and Dodd (2008) developed
regression techniques using the PAUC as outcome variable. It is, however, unclear
how to apply these techniques in high-dimensional settings and how to carry out
variable selection. As outlined above, this problem is addressed by PAUC-GBS.
Wang and Chang (2010) proposed a wrapper-type algorithm to optimize the PAUC
over a combination of biomarkers. While the algorithm by Wang and Chang (2010)
is applicable in both low- and high-dimensional settings, it is restricted to linear
combinations of markers. Also, for reasons of identifiability, the algorithm requires
specification of an “anchor marker” that is not subject to variable selection but
needs to be included in the marker combination a priori. PAUC-GBS avoids this
problem by standardizing the marker combination, thereby giving equal weights to
all markers at the beginning of the variable selection process. Komori and Eguchi
(2010) proposed a Newton-Raphson-type boosting algorithm for maximizing the
PAUC over nonlinear combinations of biomarkers. Similar to the method proposed
in this paper, Komori and Eguchi’s method does not require pre-specification of an
anchor marker. It is, however, computationally expensive because it involves multi-
ple tuning parameters that are needed to determine the optimal marker combination.
The computational effort is further increased by the fact that the thresholds cg, ¢y
have to be re-estimated in each iteration. In contrast, PAUC-GBS does not require
re-estimation of ¢y, and is relatively easy to tune.

Using both simulated data and the data collected by Wild et al. (2010), we
demonstrate that maximizing the PAUC with PAUC-GBS is a suitable strategy for
developing medical screening tests. Our results show that PAUC-GBS performs
well with respect to both variable selection and prediction accuracy. Specifically,
if the focus is on a limited range of specificity values, using PAUC-GBS results
in better predictions than other established techniques for the prognosis of binary
outcomes. In Section 2, we start with a formal definition of PAUC-GBS and provide
recommendations on how to choose the tuning parameters of the algorithm. The
results of the simulation study and the analysis of the data collected by Wild et al.
(2010) are presented in Section 3. The final section summarizes the main findings
of the paper and discusses their consequences for biomedical applications. PAUC-
GBS is implemented in the R add-on package mboost (Hothorn et al. 2011). An
example on how to run PAUC-GBS in R is provided in the appendix of the paper.
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2 Methods

2.1 Estimation of PAUC

Let f denote a real-valued marker and ¥ € {0, 1} a binary outcome variable. Sup-
pose that f(X) = f(Xj,...,X,) is a combination of markers and that we have a
random sample of observations (y;,xii,...,%Xip), i = 1,...,n. Using standard termi-
nology, we refer to the set of observations with y; = 1 as the “diseased group” and
to the set of observations with y; = 0 as the “healthy” group. Denote these sets by
2 and S, respectively.

For any given threshold ¢, the sensitivity (or “true positive rate”, abbrevi-
ated by TPR) is defined as P(f > ¢|Y = 1). Similarly, the specificity (or 1 - “false
positive rate”, abbreviated by 1 - FPR) is defined as 1 —P(f > c|Y =0) =P(f < ¢|
Y =0). The ROC curve of f is obtained by plotting the FPR values against their cor-
responding TPR values for all possible thresholds ¢. By equation (1), PAUC(#o, )
is defined as the area under the ROC curve within a pre-specified interval of FPR
rates (denoted by [fo,1]). For the rest of the paper, we restrict our analysis to FPR
ranges with a lower FPR bound #y = 0. This is because of practical considerations
(as FPR rates are typically required to be small in biomedical applications) but also
because PAUC values with non-zero FPR lower bounds can easily be obtained by
setting PAUC (9, #;) = PAUC(0,;) —PAUC(0, 1) (see Wang and Chang 2010).

Parametric and non-parametric estimators of PAUC have been extensively
studied in the literature (McClish 1989, Zhang et al. 2002, Pepe 2003, Dodd and
Pepe 2003, Walter 2005). In this paper, we will consider a non-parametric estimator
of PAUC(0, ;) defined as

PAUC(0, 1) ——Z[tl—mln{ Y 1(f> fi).e H 3)

i€9 ]EJY’

where f; = f(xi,...,xip) denotes the marker combination of the i-th observation
and where ng and n; are the cardinalities of the sets 7 and &, respectively (see
Wang and Chang 2010).

Wang and Chang (2010) showed that, provided that f is known, P/AU\C(O, 1)
is strongly consistent for PAUC(0,#;) as min{ng,n;} — oo. In practice, however,
f is usually not known and has to be estimated from & and 7. In addition, f
should depend on only those markers that make relevant contributions to maximiz-
ing PAUC(0,#;). This requires an estimation technique incorporating both PAUC
optimization and variable selection.
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2.2 Component-wise Gradient Boosting

To derive an estimate of f, we will use component-wise gradient boosting tech-
niques in combination with stability selection. Component-wise gradient boost-
ing (Biithlmann and Yu 2003, Biihlmann and Hothorn 2007) is a general statistical
method to estimate a prediction function f by minimizing the expectation of a loss
function p(Y, f) over f. The loss function p(Y, f) is assumed to be differentiable
with respect to f. More formally, the aim is to estimate the “optimal” prediction
function f* defined as

= arg;ninEnx [p (Y, f(X))] 4)

by using gradient descent techniques. Common examples of loss functions in-
clude the squared error loss in Gaussian regression (Biihlmann and Yu 2003) and
the negative binomial log likelihood in logistic regression (Friedman et al. 2000,
Dettling and Biihlmann 2003). Because the theoretical mean given in (4) is usu-
ally unknown in practice, gradient boosting algorithms minimize the empirical
risk Z =Y, p(yi, f(x;)) over f. Due to their wide applicability, boosting tech-
niques and related algorithms have been used to address various types of clinical
and biomedical statistical analysis problems (see, e.g., Boulesteix 2004, Teramoto
2009, Wang and Wang 2010).

To use component-wise gradient boosting techniques for PAUC optimiza-
tion, we first set the (unknown) prediction function f equal to the marker combi-
nation discussed in the previous subsection. Also, it would be convenient to use
the negative version of Im(o,tl) as empirical risk function. However, setting

KX = —IKU\C(O,U) is not feasible because Im(O,tl) is not differentiable with
respect to f; and f;. To solve this problem, we follow the approaches of Ma and
Huang (2005) and Wang and Chang (2010) and approximate the indicator and the
min functions in (3) by sigmoid functions K(u) = 1/(1 +exp(—u/c)). Here,
is a tuning parameter that controls the smoothness of the approximation. Replac-
ing the indicator and min functions in (3) by their smoothed versions results in the
following estimator of PAUC:

PAUC,(0,1,) :=

1 1 +exp(t;/0)

—Y |n—o0-log
— 1 S —
M icy 1 +exp [(fl 0 Yjew 1+exp((fi—fj)/0)> /G}

A detailed derivation of (5), which is not straightforward, can be found in Wang and
Chang (2010). By definition, the smoothed PAUC estimator is differentiable with
respect to f; and f;. Its derivatives are given by

)
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- S exp((fi—f)/0) ;
dPAUG,(0,11) nom SIS Gl exp((fi—f) /o)) ©)
afi B S ’
/i l—l—eXp{[no Z]€9fl—§—e:)cp((1‘, —fi)Jo) }/G}
- 1 ew(fimf)/o)
dPAUC,(0,1) _ y M g[14exp((fi—f)/0)] o
I R E——
ng =j€X Trexp((fi—f;)/o) ~ "1

Choosing appropriate values of the smoothness parameter o is essential to
guarantee the consistency of ms(O,tl). Clearly, small values of ¢ result in
a close approximation of lm(o,tl) but might also overfit the data. Wang and
Chang (2010) showed that

min{no,nl }—)00
B

PAUC,(0,1,) — PAUC(0,1,) 0 (8)

if ¢ = O(min{ng,n;}~"/*). Therefore, a convenient strategy (that is in line with
the approach taken by Wang and Chang 2010) is to set ¢ = min{no,nl}’l/ 4. This
strategy worked remarkably well in our simulation studies and will therefore be
used in the rest of the paper.

Setting #Z = —Ims(o,tl ), we are able to define the component-wise gra-
dient boosting algorithm for estimating the optimal marker combination f:

1. Initialize an n-dimensional vector f 0 with offset values (for example, set
0l = 0.

2. For each of the markers specify a base-learner. A base-learner is a regression

estimator with one input variable and one output variable. Set m = 0.

Increase m by 1.

4. Compute the negative gradient —

»

af , i =1,...,n, by using formulas (6)
and (7). Evaluate the negative gradient at f"~1(x;), i =1,...,n. This yields

the negative gradient vector

U[m] - <Ui[m}>i:1 il = <_%% < i’f[m_]](Xi)>) . ' ©)

i=1,...,n

5. Fit the negative gradient vector U ™l to each of the p markers separately by
using the base-learners specified in step 2. This yields p vectors of predicted
values, where each vector is an estimate of U ] Select the base-learner that
fits U™ best according to the R? goodness-of-fit criterion. Set U [m] equal to
the fitted values obtained from the best base-learner.



Schmid et al.: A PAUC-based Method for Disease Classification

6. Update fI" « fim=11 4y Jl" where 0 < v < 1 is a real-valued step length
factor.

7. Set flml f [m] _ fl[m}, where fl[m] is the first element of f [m].

8. Iterate Steps 3 to 7 until the stopping iteration my), is reached (the choice
of myop Will be discussed below).

By definition of the above algorithm, estimates of the marker combination f are
obtained via descending the gradient of the empirical risk Z. In each iteration, an
estimate of the true negative gradient of % is added to the current estimate of f,
and a structural (regression) relationship between Y and the selected markers is es-
tablished. Additionally, the boosting algorithm defined above carries out variable
selection, as only one base-learner (i.e., one marker) is selected for updating f ] in
step 6 (hence the term “component-wise” gradient boosting). Due to the additive
update, the final boosting estimate at iteration mg,, can be interpreted as an additive
prediction function (as defined in (2), cf. Biihlmann and Hothorn 2007). The choice
of the step length factor v has been shown to be of minor importance for the perfor-
mance of boosting algorithms (Schmid and Hothorn 2008). The only requirement
is that v is ”small”, such that the algorithm does not overshoot the minimum of %.
For the rest of the paper, we will set v =0.1.

As seen from (5), lms(O,tl) does not change its value if a real-valued
constant is added to the predicted values fl[m], ey f,ﬁ'”] Therefore, to guarantee
identifiability of f Ml we restrict the predicted value of the first observation to zero
(step 7 of the algorithm). In contrast to the algorithms proposed by Ma and Huang
(2005) and Wang and Chang (2010), this strategy avoids pre-specifying an anchor
marker that is not subject to variable selection.

Concerning the choice of the base-learners, it is clear from steps 5 and 6
that the estimates of the partial functions f( J) (X j) at iteration mygop have the same
structure as the base-learners used in each iteration. In this paper, we will either
use simple linear models or cubic P-spline functions (with four degrees of freedom
and a second-order difference penalty) as base-learners. This corresponds to spec-
ifying linear or smooth nonlinear functions f(; for the marker combination (see
Schmid and Hothorn 2008). In contrast to black-box methods, this strategy further
guarantees the interpretability of f [mstop]

A much debated question is the choice of the stopping iteration myp. In
high-dimensional settings with p > n, the stopping iteration determines the num-
ber of selected markers and also the amount of regularization for f msop] - A common
strategy is to use cross-validation techniques for determining myg, (see Bithlmann
and Hothorn 2007). As pointed out by Biihlmann and Hothorn (2010), however,
cross-validation may result in prediction functions with too many selected mark-
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ers. Therefore, as an alternative to cross-validation, we will focus on the stability
selection method proposed by Meinshausen and Biihlmann (2010).

2.3 Stability Selection

The main idea behind stability selection is to sample randomly from the data and to
use the obtained selection probabilities of the markers as a criterion for variable se-
lection. In other words, for any given iteration number m, stability selection keeps
those markers with a high probability of being selected up to m in the model but dis-
regards all other markers. As demonstrated by Meinshausen and Biihlmann (2010),
stability selection typically results in much sparser models than cross-validation
techniques. This result is of considerable importance in biomedical applications
where the maximum number of components in a marker set is limited for practical
reasons.

To carry out stability selection, one needs to specify an appropriate prob-
ability threshold my € (0.5,1) that determines which selection probabilities are
“high” and which are “low”. Meinshausen and Biihlmann (2010) observed that
“for sensible values in the range of, say, 7y € (0.6,0.9), results tend to be very
similar”. In addition to this empirical result, Meinshausen and Biihlmann (2010)
derived a strategy for the selection of 7y that controls the family-wise error rate
FWER (i.e., the probability that the set of falsely selected variables is non-empty)
at a pre-specified error level. The latter strategy, however, relies on various regular-
ity assumptions regarding the dependency structure of the data. Also, it has been
argued that the FWER criterion should be replaced by more liberal criteria for vari-
able selection (Ahmed et al. 2011). In view of these considerations, and because the
afore-mentioned regularity assumptions are difficult to verify in practice, we will
follow the advice of Meinshausen and Biihlmann (2010) and focus on a probability
range Ty € (0.6,0.9) for marker selection. Specifically, we will use a probability
threshold of m,; = 0.9 for the numerical studies presented in Section 3.

A remaining question is how to estimate the selection probabilities of the
individual markers Xj,...,X,. Meinshausen and Biihlmann (2010) suggested to
use 100 random subsamples of size |n/2 | without replacement to obtain probability
estimates. Our simulation studies, however, showed that reducing the sample size
to only one half of the original observation number results in too sparse models
with unsatisfying prediction accuracy. This result can be explained by the fact that
the variable selection behavior of boosting algorithms is highly dependent on the
sample size (Bithlmann 2006). In other words, reducing the sample size to |n/2]
will affect the variable selection behavior of gradient boosting to a large degree,
and estimates of selection probabilities will only partly reflect the probabilities of
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the whole sample. Regarding prediction accuracy, we obtained better results when
increasing the size of the subsamples to |0.8-n|. For the rest of the paper, we
will therefore use 20 subsamples of size |0.8 - n| for the estimation of the selection
probabilities in each boosting iteration.

2.4 PAUC-GBS

Summarizing Subsections 2.1 to 2.3, we obtain the following algorithm for PAUC
optimization via component-wise gradient boosting and stability selection (“PAUC-
GBS”):

1. Run component-wise gradient boosting using a sufficiently large number of
iterations.

2. Run stability selection using 20 random subsamples of size 0.8 - n without
replacement.

3. Re-run component-wise gradient boosting, this time using only the markers
that were selected by the stability selection procedure.

3 Numerical Results

3.1 Simulation Study

To investigate the variable selection behavior of PAUC-GBS, we carried out a
simulation study with 100 independent i.i.d. data sets. Each data set contained
ng = 50 non-diseased and n; = 50 diseased observations. For each of the 100
data sets we considered a set of 506 markers, where 500 of the 506 markers were
non-informative because their values were drawn independently from a standard
uniform distribution. Additionally, we considered six informative markers (de-
noted by Xj,...,Xe) whose data values were generated in the following way: In
the non-diseased group, we first generated 50 random samples drawn from a ran-
dom variable B that followed a beta distribution with shape parameters a = 0.5 and
b =100. Next, we generated the values of the markers Xi,...,X3 using X; = B+ ¢,
J = 1,2,3, where the noise variables &; were independent of X; and followed a
normal distribution with zero mean and standard deviation 0.3. The values of the
markers Xy, ...,Xe were generated in the same way, this time using a beta distri-
bution with a = 0.4 and b = 0.5. For the diseased group we followed the same
strategy: The values of Xj,...,X3 were generated by adding normally distributed
errors to a beta-distributed random variable with @ = 0.1 and b = 0.1 while the
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values of Xy, ..., X were generated analogously, this time using a beta distribution
witha = 1.5 and b =0.3.

As seen from Figure 1(a), the markers Xy, . . ., Xg resulted in symmetric ROC
curves when used for the prediction of Y. Conversely, the markers Xi,..., X3 were
highly specific, i.e., they resulted in relatively large TPR values given small FPR
values. The AUC was approximately the same for all six informative markers
(AUC =~ 0.75). Consequently, we expected an increase in the selection rates of
X1,...,X3 when using PAUC optimization with small upper FPR rates. After data
generation, we applied PAUC-GBS to the 100 samples using the two FPR ranges
[0,0.1] and [0, 1]. The latter range corresponds to classical AUC optimization. As
base-learners we used simple linear models, which resulted in linear marker combi-
nations. In addition to PAUC-GBS, we applied the Lasso method (Tibshirani 1996)
to the 100 data sets. This method is based on the binomial log-likelihood criterion
and also results in linear marker combinations. Five-fold cross-validation was used
to determine the optimal tuning parameter of the Lasso method.

The relative selection rates of X, ...,Xs computed from the 100 simulation
runs are shown in Figures 1(b) and 1(c). Obviously, in case of PAUC-GBS with
the small FPR range [0,0.1], selection rates of the specific markers X, ..., X3 were
larger than the corresponding rates resulting from PAUC-GBS with the whole FPR
range [0, 1] (Figure 1(b)). Conversely, the selection rates of the non-specific mark-
ers X4,...,Xe were similar for both FPR ranges. This result can be explained by
the fact that optimizing the PAUC over [0, 1] corresponds to maximizing the classi-
cal AUC criterion. Hence, because X|,...,Xg have similar univariate AUC values,
differences in the selection rates between specific and non-specific markers were
smaller in case of PAUC-GBS with FPR range [0, 1] than in case of PAUC-GBS
with FPR range [0,0.1]. As expected, the Lasso method resulted in very similar
selection rates for all six informative markers (Figure 1(c)). These results clearly
suggest that PAUC-GBS adapts its mechanism for marker selection to the range
of desired FPR values. The average selection rates of the non-informative mark-
ers were 1.00% for PAUC(0,0.1), 1.00% for PAUC(0,1) and 3.96% for the Lasso
method.

The stability selection procedure with FPR range [0,0.1] is illustrated in
Figure 1(d). It is seen that two markers (X, and X5) were selected by PAUC-GBS
in the first simulation run.

10
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Figure 1: Results of the simulation study. (a) Univariate ROC curves of the markers
X1,...,Xe (estimated from a sample with n = 20,000 observations). By definition,
the markers X;, X, and X3 result in the same ROC curves if used for prediction
of Y. The same holds true for the ROC curves of X4, X5 and Xg. (b) Selection
rates of the informative markers Xj,...,Xg obtained from PAUC-GBS with FPR
ranges [0, 1] (dark grey bars) and [0,0.1] (light grey bars). (c) Relative selection
rates of the informative markers Xj,...,Xg obtained from the Lasso method. (d)
Plot of the number of boosting iterations against estimated selection probabilities
of all markers (obtained from stability selection with FPR range [0,0.1], simulation
run #1).

3.2 Marker Combinations for the Detection of Colorectal Can-
cer

Aims and scope. The early detection of colorectal cancer (CRC) is widely acknowl-
edged as a key factor to reduce the mortality from CRC (Etzioni et al. 2003). Fecal
occult blood testing (FOBT) and fecal immunochemical testing (FIT), however,
which are currently recommended as first-line screening methods for CRC with
subsequent colonoscopy for patients tested positive, suffer from low patient com-
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pliance. Serum-based screening tests for CRC would therefore be attractive, as they
could easily be integrated in regular health checkups. In a prospective trial on the
early detection of CRC, Wild et al. (2010) proposed a combination of six serum
markers that were analyzed in the course of two European multicenter studies. The
combination was derived by applying Li-penalized regression (Lasso, Tibshirani
1996) to a set of 22 pre-selected biomarkers. Wild et al. (2010) showed that the
proposed marker combination constitutes a valuable alternative to fecal occult blood
testing. The sensitivity levels of the marker combinations were evaluated at preset
specificities. However, since the selection of variables and even the coefficients of
the linear marker combination were derived by optimizing the penalized binomial
likelihood function, the combination may not be optimal for the intended specificity
range.

Data collection and pre-processing. To analyze the performance of PAUC-GBS,
we used a CRC cohort of n; = 282 observations and a control cohort of ny = 248
observations contained in the original data by Wild et al. (2010), including only can-
cer cases that were relevant for screening (stages O - III). The values of 25 serum
markers (containing the afore-mentioned 22 markers) were provided by Roche Di-
agnostics, Germany. The 25 markers had been pre-selected by Roche from a larger
set of potential markers in the course of the trial and were all informative for the
diagnosis of CRC. Therefore, in order to test PAUC-GBS in high-dimensional set-
tings, we used the same strategy as Biihlmann and Hothorn (2010) and added a set
of 1000 non-informative random variables to the 25 serum markers. The data values
of the non-informative random variables were drawn from a standard multivariate
normal distribution with zero mean and (equi)correlation p = 0.5. The values of
the 25 serum markers were standardized before analysis.

Cross-validated PAUC analysis. To assess the prediction accuracy of PAUC-GBS,
we split the data randomly into 50 learning samples of size 353 ~ 2/3 - n each
and 50 test sampples of size 177 ~ 1/3 -n each. This procedure resulted in 50
cross-validation runs. Cubic P-spline base-learners were used for all markers. To
control the smoothness of of effect estimates, we used finite stopping iterations for
the component-wise gradient boosting procedure in step 3 of PAUC-GBS (Sub-
section 2.4). These stopping iterations were determined by applying a five-fold
cross-validation procedure to the learning samples (R package mboost, Hothorn
et al. 2011). Three FPR ranges ([0,0.2], [0,0.5] and [0, 1]) were considered for
PAUC optimization. The latter range corresponds to optimizing the classical AUC
criterion. Similar to Wild et al. (2010), results were evaluated by determining the
sensitivity values of cross-validated ROC curves at various pre-set specificity levels.
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Benchmark analysis. Using the same learning and test samples, we compared
PAUC-GBS to the following alternative classification techniques: (a) Boosting with
the negative binomial log likelihood loss and decision stumps as base-learners
(LogitBoost, Dettling and Biihlmann 2003). Five-fold cross-validation was used
to determine the optimal stopping iteration of the LogitBoost algorithm (R pack-
age LogitBoost, Dettling 2003). (b) Gradient boosting with the exponential loss
function and tree base-learners (gbm, Friedman 2001). This algorithm served as a
natural reference procedure because it is based on the original AdaBoost algorithm
by Freund and Schapire (1997). We used 500 trees in combination with five-fold
cross-validated stopping iterations for prediction of ¥ (R package gbm, Ridgeway
2010). (c) Component-wise gradient boosting with the hinge loss (HingeBoost,
Wang 2011). HingeBoost was used as reference method because it allows for spec-
ifying the same P-spline base-learners as those used for PAUC-GBS. In addition,
we applied the same stability selection procedure to HingeBoost as the one used
for PAUC-GBS (R package mboost, Hothorn et al. 2011). (d) L;-penalized regres-
sion (Lasso, Tibshirani 1996). This method, which is restricted to linear marker
combinations, was used as a reference procedure because Wild et al. (2010) de-
rived their original marker combination using Lasso regression. We used five-fold
cross-validation to determine the optimal tuning parameter of the Lasso procedure
(R package glmpath, Park and Hastie 2011).

Results. Cross-validated sensitivity rates at specificity levels 0.90 and 0.95 are pre-
sented in Table 1. The high sensitivity rates obtained from PAUC-GBS clearly
demonstrate the benefits of using the PAUC criterion for optimizing marker combi-
nations. Specifically, all PAUC-GBS variants performed better than the HingeBoost
method. This result indicates that improvements in sensitivity rates cannot only be
attributed to the use of nonlinear marker combinations but to the use of the PAUC
criterion instead of other loss functions. It is also seen that the Lasso method per-
formed remarkably well if compared to the nonlinear PAUC-GBS and HingeBoost
methods, thereby confirming the results obtained by Wild et al. (2010). The sensi-
tivity rates presented in Table 1 further suggest that the two tree-based methods gbm
and LogitBoost are not superior to the methods with an additive prediction function
of the form (2). When analyzing the results obtained from the different variants of
PAUC-GBS, it is seen that PAUC-GBS with FPR range [0,0.2] performed best at
both specificity levels 0.90 and 0.95. Table 1 also shows that PAUC-GBS with re-
stricted FPR ranges [0,0.2] and [0,0.5] performed better than the unrestricted AUC
variant with FPR range [0, 1].

The selection rates obtained from PAUC-GBS with FPR range [0,0.2] are
shown in Figure 2. Obviously, the markers CYFRA 21-1, CEA, Ferritin, Seprase,
Osteopontin (OPN) and Anti-p53 have the highest selection rates. Selection rates
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specificity level 0.95 0.90

PAUC-GBS(0,0.2) 71.05 (65.63,75.88) 79.26 (74.79, 81.79)
PAUC-GBS(0,0.5) 70.92 (65.54,74.45) 79.24 (74.26, 81.98)
PAUC-GBS(0,1.0) 70.00 (65.61,73.93) 77.97 (74.45, 81.98)

LogitBoost 62.89 (55.55,68.44) 73.34 (67.19,78.65)
gbm 54.90 (47.47,59.89) 64.94 (57.53,70.60)
HingeBoost 65.07 (59.84,70.41) 72.82 (69.12,77.21)
Lasso 70.58 (66.35,74.48) 77.84 (75.22,80.84)

Table 1: Prediction of colorectal cancer. The table presents median cross-validated
sensitivity rates obtained from the 50 test samples (multiplied by 100). Numbers in
brackets are the empirical 25- and 75-quantiles obtained from the test data.

of the other markers are smaller than 50%, indicating that the variable selection
behavior of PAUC-GBS is stable. The nonlinear effect estimates of the aforemen-
tioned six markers (obtained from applying PAUC-GBS with FPR range [0,0.2] to
the whole data set) are presented in Figure 3. While the partial functions of Ferritin
and Seprase show a downwards trend, the function corresponding to OPN is strictly
increasing. All six functions are distinctly nonlinear, suggesting that the marginal
effects of the markers on prediction accuracy depend heavily on the actual concen-
tration levels of the markers. These effects are not captured by linear methods such
as the Lasso (where marginal effects are assumed to be constant, regardless of the
concentration level). The function of Anti-p53 has a quadratic structure, suggesting
that there is a threshold below which increased concentration levels of Anti-p53
lead to an increased probability of CRC. Conversely, concentration levels above the
threshold are negatively correlated with the occurrence of CRC. Again, this effect
cannot be captured by linear methods such as the Lasso. In contrast to Anti-p53,
the functions corresponding to CYFRA 21-1 and CEA have a monotonic piecewise
structure with distinct breakpoints. These breakpoints could conveniently be used
to categorize the concentration levels of the two markers in later experiments.

When comparing the results presented in Figure 2 to the results by Wild
et al. (2010), it is seen that the six marker candidates selected most frequently
by PAUC-GBS are the same as those selected by the original algorithm. Also,
the functional forms of the monotonic predictor-response relationships (Figure 3)
are consistent with the results obtained from the original algorithm: Applying the
strategy by Wild et al. (2010) to the CRC data resulted in positive coefficients for
CYFRA 21-1, CEA and OPN while coefficients for Ferritin and Seprase were neg-
ative.
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Figure 2: Prediction of colorectal cancer. Bars represent the selection rates of
the 25 informative markers obtained from cross-validation (PAUC-GBS with FPR
range [0,0.2]).
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Figure 3: Prediction of colorectal cancer. The graphs represent the estimated partial
functions of CYFRA 21-1, CEA, Ferritin, Seprase, Osteopontin (OPN) and Anti-
p53 obtained from applying PAUC-GBS with FPR range [0,0.2] to the whole data
set. Note that all markers were standardized before analysis.
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4 Summary and Conclusion

Motivated by recent developments in molecular biology, extensive research has
been undertaken to improve statistical methods for binary classification and marker
selection. Although the performance of these methods has steadily improved, many
of them share a well-recognized problem: The performance criteria used for the
derivation of a prediction rule often differ from the criteria that are used for the
practical evaluation of the rule. Consequently, many statistical techniques can po-
tentially be improved if evaluation criteria are used directly for optimization and
variable selection (cf. Cortes and Mohri 2004). Wild et al. (2010), for example,
used the Lasso method (which is based on the binomial log-likelihood criterion) to
derive their marker combination for the detection of CRC but evaluated the newly-
found prediction rule by using sensitivity criteria at pre-specified specificity levels.
The PAUC-GBS approach, on the other hand, circumvents the use of the binomial
log-likelihood criterion by using the PAUC criterion for both optimization and eval-
uation of prediction rules. Sparsity of prediction rules is guaranteed by using the
stability selection method by Meinshausen and Biihimann (2010) instead of con-
ventional cross-validation methods. The numerical results presented in Section 3
demonstrate that our method works remarkably well with respect to both variable
selection and prediction accuracy. Although the differences between PAUC-GBS
and the Lasso method appear to be small in our analysis on the detection of CRC, it
is important to note that even small increases in performance may lead to enormous
benefits for both patients and pharmaceutical companies.

Apart from these considerations, the PAUC-GBS algorithm presented in
Section 2.4 can further be extended to address the following issues:

o Alternative strategies for smoothing the PAUC criterion. The approximation
of the PAUC criterion used by PAUC-GBS can be refined by using differ-
ent smoothing parameters for the indicator and min functions in equation (3).
Wang and Chang (2010) argued that this approach is particularly useful when
analyzing imbalanced data with a large amount of non-diseased people. In-
tegrating two smoothing parameters into PAUC-GBS is straightforward, and
the recommendations on how to choose the tuning parameters of PAUC-GBS
apply accordingly.

e Restriction to linear prediction rules. As demonstrated in Section 3.1, PAUC-
GBS is not only useful to detect nonlinear predictor-response relationships
but can easily be restricted to estimate linear marker combinations only. This
is achieved by using simple linear models as base-learners in step 1 of PAUC-
GBS.
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e Mandatory predictor variables that are not subject to variable selection. In
clinical applications, it is often useful to investigate the added predictive value
of a marker combination over traditional clinical variables such as sex and
age. Incorporating these variables (that are not subject to variable selection)
in PAUC-GBS is easily accomplished by first optimizing the PAUC criterion
with the clinical variables only and by using the predictions obtained from
this model as offset values in PAUC-GBS (cf. Boulesteix and Hothorn 2010).

The PAUC-GBS method proposed in this paper enforces sparsity in marker
combinations by combining component-wise gradient boosting with stability selec-
tion. An alternative approach to feature selection in AUC regression has been pro-
posed by Wang et al. (2011), who suggested to maximize an L;-penalized version
of the empirical AUC criterion (with specificity range [0, 1]) over linear combina-
tions of predictor variables. With this approach, sparsity of marker combinations is
accomplished by shrinking the coefficients of non-informative predictor variables
to zero. In contrast to the boosting method presented in this paper, Wang et al.
(2011) did not approximate the empirical AUC criterion by a smoothed estimate
but optimized the penalized empirical AUC directly with the help of support vec-
tor machine regression (“ROC-SVM?”). Similar to the algorithms by Ma and Huang
(2005) and Wang and Chang (2010), ROC-SVM requires the specification of an
anchor marker (termed “baseline variable” by Wang et al. 2011) that enters the
model a priori. A particularly appealing feature of ROC-SVM is the integration
of hierarchical structures into the variable selection procedure. For example, if a
medical screening test consists of several “stem” variables that are only measured
if the value of a corresponding “root” variable has been collected beforehand, it is
reasonable to select a stem variable only in combination with the stem variable. Es-
timation of such hierarchical structures is accomplished by using an appropriately
specified L; penalty for ROC-SVM.

When comparing ROC-SVM to the PAUC-GBS method proposed in this
paper, two conceptual issues arise:

1. From a practical perspective, it would be desirable to extend ROC-SVM to
PAUC regression with a restricted range of specificity values. This strategy
would amount to performing Li-penalized SVM regression using the empiri-
cal PAUC criterion (3) in order to derive linear combinations of biomarkers.

2. Although hierarchical structures among predictor variables are not consid-
ered in this paper, it is of interest to extend PAUC-GBS in this direction.
Integration of hierarchical structures could, for example, be achieved by an
appropriate specification of multivariable base-learners ensuring that a stem
variable is always selected together with its root variable.
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The proposed PAUC-GBS method is implemented in the R add-on pack-
age mboost, which provides a well-established infrastructure for component-wise
gradient boosting algorithms (Hothorn et al. 2011). Because mboost is based on
a modular structure using separate implementations for the risk functions and the
base-learners of a boosting algorithm, the smoothed negative PAUC criterion can
easily be incorporated as a risk function into the package. An example on how to
run PAUC-GBS in R is provided in the appendix of the paper.

Appendix - R code used for the simulation study

In this section we provide an example on how to run PAUC-GBS using the R add-
on package mboost (Hothorn et al. 2011). Specifically, we show how to obtain the
results of the simulation study presented in Section 3.1.

All risk functions implemented in mboost are specified via the family ar-
gument of the gamboost function. Typical examples of risk functions are given by
the squared error loss and the negative binomial log-likelihood loss. Because the
implementation of the risk functions is essentially independent of the other argu-
ments of the gamboost function, it suffices to write a new Family function that
implements the negative PAUC loss. This function is subsequently passed to the
gamboost function. Concerning the specification of the base-learners and the step
length factor of gradient boosting, we use the well-established infrastructure of the
mboost package.

To incorporate the smoothed negative PAUC risk function into mboost, we
first define a corresponding Family function named PAUC:

# load the mboost package
library(mboost)

# define the smoothed negative PAUC risk function;
# fprup corresponds to the upper limit of the FPR range

PAUC <- function (fprup = 1, sigma = 0.1) {

approxGrad <- function(x) {
exp(-x/sigma) / (sigma * (1 + exp(-x/sigma))"2)
¥
approxLoss <- function(x) {
1/ (1 + exp(-x / sigma))
}
Family(
# implement the gradient of PAUC (formulas (2.6) and (2.7))
ngradient = function(y, £, w = 1) {
if (tall(w %inj% c(0,1)))
stop(sQuote("weights"),
sQuote ("PAUC"))

" must be either 0 or 1 for family ",
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if (length(w) == 1) w <- rep(1, length(y))
indl <- which(y == 1)
ind0 <- which(y == -1)
nl <- length(ind1)
n0 <- length(ind0)
if (length(f) == 1) {
f <- rep(f, length(y))
}
f<-f - flw==1][1]
# build weight matrix
tmp <- matrix(w[indl], nrow = n0O, ncol = ni, byrow = TRUE)
weightmat <- matrix(w[ind0], nrow = nO, ncol = nl) * tmp
# differences between "diseased" and "non-diseased"
MO <- matrix(-f[indl], nrow = n0, ncol = nl, byrow = TRUE) + f[ind0O]
M1 <- approxGrad(MO) * weightmat
M2 <- approxLoss(M0O) * weightmat
denom <- 1 + exp( (colSums(M2) / sum(w[indO]) - fprup) / sigma )
ng <- vector(length(y), mode = "numeric")
nglind1l] <- colSums(M1) / denom / sigma / (sum(w[ind1]))
ng[ind0] <- rowSums(- sweep(M1, 2, denom, FUN = "/")) / sigma /
sum(w[ind1])
return(ng)
},
# implement the smoothed negative PAUC risk (formula (2.5))
risk = function(y, £, w = 1) {
if (length(w) == 1) w <- rep(l, length(y))
indl <- which(y == 1)
ind0 <- which(y == -1)
nl <- length(ind1)
n0 <- length(ind0)
if (length(f) == 1) {
f <- rep(f, length(y))
}
f<-f - flw==1][1]
tmp <- matrix(w[indl], nrow = n0O, ncol = nl, byrow = TRUE)
weightmat <- matrix(w[indO], nrow = n0O, ncol = nl) tmp
MO <- matrix(-f[indl], nrow = n0, ncol = nl, byrow = TRUE) + f[ind0O]
M1 <- approxGrad(MO) * weightmat
M2 <- approxLoss(M0O) * weightmat
num <- 1 + exp(fprup / sigma)
denom <- 1 + exp( (fprup - colSums(M2) / sum(w[ind0])) / sigma )
return( - (sum( fprup - sigma * log(num / denom) )) /
(sum(w[ind1])) )

*

},
weights = "case", offset = function(y, w) {
0
},

check_y = function(y) {
if (!is.factor(y))
stop("response is not a factor but ",
sQuote("family = PAUCSigma()"))
if (nlevels(y) != 2)
stop("response is not a factor at two levels but ",
sQuote("family = AUCO)"))
if (length(unique(y)) != 2)
stop("only one class is present in response.")
ind1l <- which(y == levels(y)[2])
ind0 <- which(y == levels(y)[1])
nl <- length(ind1)
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n0 <- length(ind0)

c(-1, 1) [as.integer(y)]

},

rclass = function(f) (£ > 0) + 1,

name = paste("(1 - Partial AUC)-Loss"))

Having defined the PAUC risk function, we can use the gamboost function to obtain

the results of the simulation study presented in Section 3.1:

# set n_0 = n_1 = 50 and start simulation study
n <- 50
coefList <- coefList2 <- list()

for (k in 1:100){

# set seed to make results reproducible
set.seed (k*2)

# generate values of the informative predictor variables
pred0 <- c(rbeta(n, 0.5, 100), rbeta(n, 0.1, 0.1))

predl <- pred0 + rnorm(2 * n, sd = 0.3)

predl <- as.numeric(scale(predl, center = TRUE, scale = TRUE))
pred2 <- pred0 + rnorm(2 * n, sd = 0.3)

pred2 <- as.numeric(scale(pred2, center = TRUE, scale = TRUE))
pred3 <- pred0 + rnorm(2 * n, sd = 0.3)

pred3 <- as.numeric(scale(pred3, center = TRUE, scale = TRUE))
pred0 <- c(rbeta(n, 0.4, 0.5), rbeta(n, 1.5, 0.3))

pred4 <- pred0 + rnorm(2 * n, sd = 0.3)

pred4 <- as.numeric(scale(pred4, center = TRUE, scale = TRUE))
pred5 <- pred0 + rnorm(2 * n, sd = 0.3)

pred5 <- as.numeric(scale(pred5, center = TRUE, scale = TRUE))
pred6 <- pred0 + rnorm(2 * n, sd = 0.3)

pred6 <- as.numeric(scale(pred6, center = TRUE, scale = TRUE))
D <- data.frame(predl, pred2, pred3, pred4, pred5, pred6)

# generate values of the outcome variable
y <= c(rep(0, n), rep(1l, n))
y <- as.factor(y)

# generate values of the non-informative predictor variables
noninform <- matrix(runif(500 * 2 * n), nrow = 2 * n)

Noninform <- data.frame(noninform)

Noninform <- data.frame(scale(Noninform, center = TRUE, scale = TRUE))
names (Noninform) <- paste("x", 1:500, sep = "")

namesvec <- c(paste("pred", 1:6, sep = ""), names(Noninform))

Data <- data.frame(D, Noninform)

INT <- rep(1, nrow(Data))

# specify the base-learners for component-wise gradient boosting
formulal <- as.formula(paste("y ~", paste("bols(", namesvec, ",
intercept = FALSE)", sep = "", collapse = " + ")))

# run component-wise gradient boosting with FPR range [0,0.1]

modell <- gamboost(formulal, data = Data, family = PAUC(fprup = 0.1,
sigma = 0.376), control=boost_control(trace = TRUE,
mstop = 50, nu = 0.1))
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# generate subsamples for stability selection
cvbfl <- cv(model.weights(modell), type = "kfold", B = 5)

cvbf2 <- cv(model.weights(modell), type = "kfold", B = 5)
cvbf3 <- cv(model.weights(modell), type = "kfold", B = 5)
cvbf4 <- cv(model.weights(modell), type = "kfold", B = 5)

cvbf <- cbind(cvbfl, cvbf2, cvbf3, cvbf4d)

# run stability selection
STAB <- stabsel(modell, FWER = 0.1, cutoff = 0.9, folds = cv5f)

# re-run component-wise gradient boosting,

# this time using the selected variables only

if (length(names (STAB$selected)) > 0){
blsnames2 <- paste(names(STAB$selected), sep = "", collapse = "+")
formula2 <- as.formula(paste("y ~ ", paste(blsnames2, sep = "+")))} else {
blsnames2 <- ""
formula2 <- as.formula(paste("y ~ bols(INT, intercept = FALSE)"))
}

modell <- gamboost(formula2, data=Data, family=PAUC(fprup = 0.1,
sigma = 0.376), control = boost_control(trace = TRUE,
mstop = 200, nu = 0.1))

# save results
coefList[[k]] <- coef (modell)
save(coefList, file = "coef0001.rda")

# run component-wise gradient boosting with FPR range [0,1]

model2 <- gamboost(formulal, data = Data, family = PAUC(fprup = 1,
sigma = 0.376), control = boost_control(trace = TRUE,
mstop = 50, nu = 0.1))

# run stability selection
STAB <- stabsel(model2, FWER = 0.1, cutoff = 0.9, folds = cvbf)

# re-run component-wise gradient boosting,

# this time using the selected variables only

if (length(names (STAB$selected)) > 0){
blsnames2 <- paste(names(STAB$selected), sep = "", collapse = "+")
formula2 <- as.formula(paste("y ~ ", paste(blsnames2, sep = "+")))} else {
blsnames2 <- ""
formula2 <- as.formula(paste("y ~ bols(INT, intercept = FALSE)"))
}

model2 <- gamboost(formula2, data = Data, family = PAUC(fprup = 1,
sigma = 0.376), control = boost_control(trace = TRUE,
mstop = 200, nu = 0.1))

# save results

coefList2[[k]] <- coef(model2)
save(coefList2, file = "coef0010.rda")
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