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SUMMARY

We present a unified semiparametric Bayesian approach based on Markov random
field priors for analyzing the dependence of multicategorical response variables on
time, space and further covariates. The general model extends dynamic, or state
space, models for categorical time series and longitudinal data by including spatial
effects as well as nonlinear effects of metrical covariates in flexible semiparametric
form. Trend and seasonal components, different types of covariates and spatial
effects are all treated within the same general framework by assigning appropriate
priors with different forms and degrees of smoothness. Inference is fully Bayesian
and uses MCMC techniques for posterior analysis. We provide two approaches:
The first one is based on direct evaluation of observation likelihoods. The second
one is based on latent semiparametric utility models and is particularly useful for
probit models. The methods are illustrated by applications to unemployment data
and a forest damage survey.

KEYWORDS: Categorical time-space data, forest damage, Markov random fields,
MCMC, semiparametric Bayesian inference, unemployment.

1 Introduction

Multicategorical longitudinal data consists of observations (Y, xi), i = 1,...,n,
t=1,...,T, for a population of n units observed across time, where the response
variable Y is observed in ordered or unordered categories r € {1,...,k}. Covari-

ates may be time-constant or time-varying. For 7" small compared to n, generalized
estimating equation approaches are a popular choice for data analysis. For mod-
erate or larger T, dynamic or state space models are a useful alternative, see, e.g.,
Fahrmeir and Tutz (1994, 2000, ch.8). For the special case (n=1) of categorical time
series, dynamic generalized linear models are a meanwhile well established tool for
approximate or full Bayesian inference.

In this paper, we consider multicategorical time-space data, where the spatial loca-
tion or site s on a spatial array {1,...,s,..., S} is given for each unit as an additional



information. We also distinguish between metrical covariates x; = (2p,...,Zy),
whose effects will be modelled and estimated nonparametrically, and a further vec-
tor w; of covariates, whose effects will be modelled parametrically in usual linear
form. Multicategorical time-space data on n individuals or units then consists of
observations

(Yit,xit,wit,si), izl,...,n, tzl,...,T, (11)

where s; € {1,...,S} is the location of individual i.

A typical example are monthly register data from the German Employment Office
for the years 1980-1995, where Y}; is the employment status (e.g. unemployed, part
time job, full time job) of individual ¢ during month ¢ and s; is the district in
Germany where 7 has its domicile. Data from surveys on forest health are a further
example: Damage state Yj; of tree 7 in year t, indicated by the defoliation degree,
is measured in ordered categories (severe to none) and s; is the site of the tree on
a lattice map. In both examples, covariates can be categorical or continuous, and
possibly time-varying.

In general, time-space data of this kind cannot be analyzed adequately with existing
nonparametric or conventional parametric methods. We present a unified semipara-
metric Bayesian framework for jointly modelling and analyzing effects of time, space
and different types of covariates on categorical responses. Trend or seasonal compo-
nents, spatial effects, metrical covariates with nonlinear effects and usual covariates
with fixed effects are all treated within the same general framework by assigning
appropriate priors with different forms and degrees of smoothness. This broad class
of models contains state space models for categorical time series considered in pre-
vious work as a special case. Inference is fully Bayesian and uses recent MCMC
techniques. We suggest two approaches for MCMC inference. The first one is use-
ful if the likelihood of the data, given covariates and unknown parameters, can be
easily computed as for cumulative or multinomial logistic models. Markov chain
samples are then generated by an extension of Metropolis-Hastings algorithms de-
veloped in Fahrmeir and Lang (1999) for univariate responses. The second approach
is based on latent variables, where the observable categorical responses are generated
through threshold or utility mechanisms. For latent Gaussian variables this leads
to multicategorical probit models, see Albert and Chib (1993) for the simpler case
of linear predictors, and Yau, Kohn and Wong (2000) for nonparametric regression
using basis functions. For MCMC inference, Gaussian latent variables are consid-
ered as unknown additional ”parameters” and are generated jointly with the other
parameters in a Gibbs sampling scheme. Efficient methods for sampling from high

dimensional Gaussian Markov random fields are incorporated as a major building
block.

Section 2 describes our Bayesian semiparametric regression models for categorical
responses, observed across time and space, and depending on unknown functions
and parameters. MCMC algorithms are presented in Section 3. In Section 4, the
methods are applied to reemployment chances based on categorical time-space data
on (un-) employment status and to data from a forest health inventory.



2 Semiparametric Bayesian models for multicat-
egorical time-space data

Categorical response models may be motivated from the consideration of latent
variables. This is not only useful for construction of models, but also for Bayesian
inference, treating latent variables as additional unknown ”parameters”.

For the case of a nominal response Y with unordered categories 1,... )k, let U, be a
latent variable or utility associated with the r th category. Assume that U, is given
by

U.=n~+¢,, (2.1)
where 7, is a linear or semiparametric predictor depending on covariates and para-
meters, and 1, ..., e, are random errors. Following the principle of random utility

the observable response Y is determined by

Y=r & U = max Uj, (2.2)
j=1,...k

i.e., in choice situations the alternative is chosen which has maximal utility. De-
pending on the distributional assumptions for the error variables €,, equation (2.2)
yields different models. If the €’s are i.i.d. normal, one gets the independent pro-
bit model. The more general multivariate probit model allows correlated noise
variables. Assuming i.i.d. error variables following the extreme value distribution
F(2) = exp(—exp(—2)) yields the multinomial logit model

P(Y =r) = exp(n,)/(exp(m) + ... + exp(ni)).

Since only differences of utilities are identifiable we may set np = 0 for the reference
category k. With a linear predictor 7, = w’(3,, one obtains the common form

P(Y =r)=exp(n)/(1 +exp(m) +...+exp(mp-1)), r=1,....k—1,

of a parametric multinomial logit model.
For the case of an ordered response Y, cumulative models based on a threshold
approach are most widely used. It is postulated that Y is a categorized version of a
latent variable

U=n+e, (2.3)

obtained through the threshold mechanism
Y=reb_<U<0b, r=1,...k, (2.4)

with thresholds —oo = 6y < 61 < ... < 6, = oco. If the error variable ¢ has
distribution function F', it follows that Y obeys a cumulative model

P <r)=F(0, —n). (2.5)

With a linear predictor n = w'[3 one gets parametric cumulative models. For iden-
tifiability reasons, the linear combination does not contain an intercept term fy.
Otherwise one of the thresholds, for example #;, had to be set to zero.

The most popular choices for F' in (2.5) are the logistic and the standard normal
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distribution function leading to cumulative logit or probit models.

For multicategorical time-space data (1.1), we generally assume more flexible semi-
parametric predictors. For nominal responses Yj;, the general form of a semipara-
metric additive predictor associated with category r is

p
nitr = fgzme(t) + :pat(si) + Z f;(‘rltj) + wgtﬁr- (26)
j=1
Here f};,. and fg,,, represent possibly nonlinear effects of time and space, f7,..., f;
are unknown smooth functions of the metrical covariates x4, ..., z,, and wj,f3, cor-

responds to the usual parametric part of the predictor. Note that the latter may
also contain a (category specific) intercept. Depending on the analysed dataset, the
effect of time f;;, . may contain only a nonlinear time trend or may be split up into
a trend and a seasonal component, i.e.

ftrz'me (t) = ft:"end(t) + ;neason (t) :

In analogy we usually split up the spatial effect f¢,,

(structured) and an uncorrelated (unstructured) effect

;pat(s) = ;tr(s) + fvjnstr(s)
A rational therefore is that a spatial effect is usually a surrogate of many unobserved
influential factors, some of them may obey a strong spatial structure and others may
be present only locally. By estimating a structured and an unstructured effect we
aim at separating between the two kinds of influential factors. As a side effect we
are able to assess to some extent the amount of spatial dependency in the data by
observing which one of the two effects exceeds. If the unstructured effect exceeds,
the spatial dependency is smaller and vice versa. With the same arguments we
could also divide up the time trend f7,.,,(t) into a correlated and an uncorrelated

component. Such models are common in spatial epidemiology, see Besag, York,
Mollie (1991) and Knorr-Held, Besag (1998).

A further extension of (2.6) are varying coefficient models, where nonlinear terms
fi (wi;) are generalized to f7(z;)2i;, where z; may be a component of z or w or a
further covariate. Covariate x; is called the effect modifier of z; because the effect
of z; varies smoothly over the range of z;. Of course, time ¢ and even the spatial

covariate s are also possible effect modifiers.

, into a spatially correlated

Finally, we note that the effect of a particular covariate in (2.6) may be present
only for some of the k categories of the response. In addition, we may observe
covariates that are associated only with one specific category of the response, so
called category specific covariates. This leads to the distinction between category
specific and global covariates. Although a modification of (2.6) and estimation of
such models is straightforward (and already implemented) we do not go into details
here, because the inclusion of category specific covariates is not necessary for the
applications of this paper. More details can be found in Fahrmeir, Tutz (1994, 2000,
Ch. 3) and the references therein.

For ordered responses Yj; following a cumulative model (2.5), we assume semipara-
metric predictors

p
it = frime(t) + Fopar(se) + Y fi(way) + wi,b. (2.7)

J=1



where the terms have the same interpretation as in (2.6), omitting the category-
specific index r. Note that the term w’(S for fixed effects must not contain an
intercept to make thresholds identifiable.

For Bayesian inference, unknown functions fume,fspat,fi,- -, fp, thresholds 6 =
(01,...,0, 1) and all other parameters are considered as random variables. Categor-
ical response models are to be understood conditional upon these random variables
and have to be supplemented by appropriate prior distributions. For the ”fixed
effect” parameters 6 and 3 we assume diffuse priors

p(0) o< const,  p(f) o const.

Priors for a time trend fienq of time ¢ and functions fi,..., f, of metrical covari-
ates are specified by local smoothness priors common in state space modelling of
structural time series. We illustrate the approach for the effect of a specific metrical
covariate z. Let

T <...<zp) <...<ZT(m),
denote the m different, ordered observed values of the metrical covariate x. Define
f(l) :== f(zq) and let

f= (f(l)a'"7f(l)7"'af(m))l
denote the corresponding vector of function evaluations. For equally-spaced values
Z(1),- .-, T(m) We usually assign first or second order random walk models

fO =F=1)+&0) or f)=2f(—-1)—=f(-2)+&0) (2.8)

with Gaussian errors £(I) ~ N(0;7?) and diffuse priors f(1) oc const, or f(1) and
f(2) o const, for initial values, respectively. Both specifications act as smoothness
priors that penalize too rough functions f. The variance 72 controls the degree of
smoothness of f = (f(1),...,f(l),..., f(m)). Of course, local linear trend models
or higher order autoregressive priors are also possible. An example is a time varying
seasonal component fseqson Of time £. A flexible seasonal component with period
per can be defined by

per—1

fseaso’n(t) = Z: fseaso’n(t - ]) + f(t) (29)

and once again diffuse priors for initial values.
For non-equally spaced values (1), . .., Z(n), priors have to be modified to account for

nonequal distances &; = z() — r(4-1). Random walks of first order are now specified
by

f) = fU=1)+&(0), &) ~N(0,677),
and random walks of second order by

fO) = (14 $ =1 = 22 f(1-2) + €0, €0 ~ N0 )

with appropriate weights ;. Based on Fahrmeir, Lang (2000) we choose v, = §;(1 +

)
)

All these priors can be equivalently rewritten in form of a global smoothness prior
1
flr? o< exp (——f’Kf) , (2.10)
272

5



with appropriate penalty matrix K. For example,
1 -1
-1 2 -1
-1 2 -1
-1 1

in the simple case of a first order random walk and equidistant observations.

Let us now turn our attention to a spatial covariate s, where the values of s repre-
sent the location or site in geographical regions. For the spatially correlated effect
fstr(s), s = 1,...,S, we choose Markov random field priors common in spatial
statistics (Besag, York and Mollie, 1991). These priors reflect spatial neighbour-
hood relationships. For geographical data one usually assumes that two sites or
regions s; and s; are neighbours if they share a common boundary. Then a spatial
extension of random walk models leads to the conditional, spatially autoregressive
specification

fstr(5)|fstr(u)au7ésNN (Z Nifstr(u)aji;r) J (211)

Ueas s

where Ny is the number of adjacent regions, and u € 0, denotes that region u is
a neighbour of region s. Thus the (conditional) mean of fy,(s) is an average of
function evaluations fy, (u) of neighboring regions. Again the variance 72, controls
the degree of smoothness. This prior will be used in our first application on durations
of unemployment. In some applications, as in our second example on forest damage
data, a more general prior specification seems to be more appropriate. In this
application we assume that two sites s; and s; are neighbors if they are within a
certain distance, d say. In addition, we assume that the conditional mean of fg, (s)
is now a weighted average of function evaluations fg, (u) of neighboring sites rather
than an unweighted average as in (2.11). The weights are chosen to be proportional
to the distance of neighboring sites to site s. In terms of weights w, a general
spatial prior can be defined as

fstr(3)|fstr(u)au 7£ s~N (Z Do fstr(u)a TSl) J (212)

ucd, Ws+ Wi+

where 4+ denotes summation over the missing subscript. In the forest damage ap-
pliaction the weights w,, are equal to the distance of site s and u. Note that the
spatial prior (2.11) is a special case of (2.12) with weights wg, = 1.

As for autoregressive priors, (2.12) can be written in the form (2.10), where the
elements of the penalty matrix K are given by

kss = Ws4

and

—Wg, U E O
Fou = { 0 else.

As mentioned before, we usually split up the effect of a spatial covariate into a
structured (spatially correlated) and an unstructured (uncorrelated) effect. For the
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unstructured effect f,,, a common assumption is that the parameters funstr(s) are
i.i.d. Gaussian

leStT(S)|T5nstr ~ N(07 Tgnstr)' (213)

Note that we are not restricted to an unstructured effect only for the spatial covariate
s. An unstructured effect for time ¢, or with respect to any other grouping variable,

is also possible (and already supported in our implementation).

For a fully Bayesian analysis, variance or smoothness parameters Tj2, ] =

trend, season, str,unstr,1,...,p are also considered as unknown and estimated si-
multaneously together with unknown functions. Therefore, hyperpriors are assigned
to them in a second stage of the hierarchy by highly dispersed inverse gamma dis-
tributions
2
p(7;) ~ 1G(aj,by)

with known hyperparameters a; and b;. It turns out that the simultaneous esti-
mation of smooth functions and smoothing parameters is a great advantage of our
Bayesian modelling approach. In a frequentist approach smoothing parameters are
usually chosen by minimizing some goodness of fit criteria (e.g. AIC) with respect
to the smoothing parameters, or via cross validation. However, if the model contains
many nonparametric effects as in the applications of this paper, a multidimensional
grid search is required which becomes totally inpractical for higher dimensions. This
problem gets even worse in multicategorical response models.

The Bayesian model is completed by the following conditional independence assump-
tions:

i) For given covariates and parameters observations Y;; are conditionally inde-
g y
pendent.

(ii) Priors for function evaluations, fixed effects parameters and for variances are
all mutually independent.

3 Posterior analysis via MCMC

In the following f denotes the vector of all function evaluations including trend and
seasonal components of time ¢ and structured and unstructured spatial effects, 7 is
the vector of all variances, v =  for nominal and v = (3,0) for ordinal models.
For a nominal logit model or a cumulative logit model, the contribution of Y;; to
the likelihood p(Y'|f, ) of the data given the parameters can be easily calculated.
Bayesian inference can then be based on the posterior

p(f, 7, YY) o p(Y[f, v)p(fI7)p(T)p(7).

MCMC simulation is based on drawings from full conditionals of single parameters
or blocks of parameters, given the rest and the data. Single moves update each
parameter separately. Convergence and mixing is considerably improved by block

moves for the vectors f; = (..., fj({),...)" of function evaluations, where blocks
filu,v] = (fj(u),..., fj(v))" of parameters are updated instead of single parameters
fi(0).



Markov chain samples for f;[u, v] from the unnormalized full conditionals p(f;[u, v]|-)
are generated by Metropolis-Hastings (MH) steps with conditional prior proposals
as suggested by Knorr-Held (1999). Drawings from p(|-) and the unstructured
spatial effect f,,s¢ (or other unstructured effects) can be obtained by the weighted
least squares proposal of Gamerman (1997) or a slight modification. Updating of
variance parameters is done by Gibbs steps, drawing directly from inverse gamma
densities. Details of the updating schemes are described in Fahrmeir and Lang
(1999) for univariate responses.

The resulting hybrid MCMC scheme for generating posterior samples is then
defined by drawing from the following full conditionals:

Sampling scheme 1:

(i) Draw samples for ”fixed effects” parameters v by MH steps with weighted
least squares proposals. For cumulative models (2.5), thresholds have to obey
order restrictions.

ii) For each function f, partition the vector of function evaluations into blocks
i) F h functi tition th t f functi luati into block
f®bp=1,2, .., and draw from

p(f91), b=1,2,...,
with MH steps using conditional prior proposals.

(iii) Draw samples for unstructured spatial effects funsr(s), s = 1,...,S by MH
steps with weighted least squares proposals.

(iv) Draw samples for variances 77 from inverse Gamma posteriors

p(7]) ~ 1G(a}, 1))

32 Vj
xiviiih updated parameters a}, b given by a; = a; + m”gﬂ and b = b; +
§ijjfj'

For categorical responses, useful alternative sampling schemes can be developed
on the basis of the latent variable mechanisms (2.2) and (2.4), augmenting the
observables Y;; by corresponding latent variables

Uitr = Nitr + €itr - 01 Uy = 13y + €44,

respectively, with semiparametric predictors as in (2.6) or (2.7). Assuming Gaus-
sian errors, we obtain multicategorical probit models with latent semiparametric
Gaussian models. Posterior analysis is now based on

p(f, 77, UNY) ocp(Y[U)p(ULf, v)p(fIT)p(T)p(7),
with p(Y|U) = [1p(Yi|Ui), where Uy, = (Ui, - . ., Uigg)' for nominal responses. The
it
conditional likelihood p(Y;;|U;) is determined by the mechanisms (2.2) or (2.4). For
a nominal response, we have

k
p(l/;t|Uzt) = Z I(max(Um, ceey Uztk) = Uitr)I(Y;t = ’I"). (31)

r=1



For a cumulative model, we get

k
p(YaelUn) = 1(0—1 < Uy < 0,)1 (Y =), (3.2)

r=1

due to the fact that p(Y;;|U;) is one if Uy obeys the constraint imposed by the
observed value of V;;. Compared to the direct sampling scheme above, additional
drawings from full conditionals for the latent variables U; are necessary. As an
advantage, full conditionals for functions and fixed effects parameters become Gaus-
sian, allowing computationally efficient Gibbs sampling. The full conditionals for
U, are:

pWalf, 7, Yir) o< p(Yae| Uit ) p(Ua| £, 7). (3-3)

Since latent variables U;; have (conditional) Gaussian distributions with means 7;;
and unit variances, their full conditionals are truncated standard normals, with
truncation points determined by the restrictions (3.2) and (3.1).

To derive full conditionals for functions f; and fixed effects parameters (3 it is con-
venient to rewrite the predictors (2.6) and (2.7) in matrix notation. For example
for (2.7) we obtain

p
n = Xtimeftime + Xspatfspat + Z X]f] + Wﬁ (34)

J=1

Here the X; are 0/1 matrices where the number of columns is equal to the number
of parameters of the respective effect. If for observation 7, the value of covariate z;
(or time ¢ or site s) is [, then the element in the i,¢ th row and the [ th column is
one, zero otherwise. Now standard calculations show that the full conditional for a
function f; is Gaussian with covariance matrix

1
Y= Pt = (XX + = K) ™ (3.5)
j
and mean .
= (X;X; + ﬁKj)_lX}(U — 1), (3.6)

j
where 77 is the part of the predictor associated with all remaining effects in the
model. Since X;Xj is diagonal and the penalty matrix Kj is a bandmatrix (e.g.
with bandwidth two for a second order random walk) it follows that the posterior
precision P; is also a bandmatrix with the same bandwith. Following Rue (2000),
drawing random numbers from the full conditionals for f; is as follows:

(i) Compute the Cholesky decomposition P; = L'L.

(ii) Solve Lf; = z, where z is a vector of independent standard Gaussians. It
follows that f; ~ N(0,%;)

(iii) Compute the mean p; by solving Pju; = X(U — 7). This is achieved by
first solving by forward substitution L'v = X}(U — 7)) followed by backward
substitution Lj; = v.



(iv) Set fj = f; + pj, then f; ~ N(p;,%;).

All algorithms involved take advantage of the bandmatrix structure of the posterior
precision P;.

Finally, the full conditionals for fixed effects parameters § with diffuse priors are
Gaussian with mean and covariance matrix given by

Mbeta = (WIW)ilwl(U - ﬁ): EI)etﬁa — (WIW)il' (37)

We can now summarize the resulting sampling schemes. For a cumulative probit
model, a Gibbs sampling scheme is defined by the following steps.

Sampling scheme 2:

(i) The latent variables Uy, i = 1,...,n,t = 1,...,T are sampled as follows. If
Yis = r, then Uj; is generated from N (n;;, 1), with mean 7;; as in (2.7), evaluated
at current values of f; and /3, subject to the constraint 6,_; < Uy < 0,.

(ii) Following Albert and Chib (1993), the full conditional for threshold ~,,r =
1,...,k — 1 is uniform on the interval

[max{U; : Yie =}, min{U; : Yiy =1+ 1}].

Posterior samples from these uniform distribution may exhibit bad mixing.
A reason is that intervals can become quite small and, as a consequence, the
chain moves slowly. In such a case, other parametrizations as suggested for
example in Chen and Dey (2000) are a possible alternative. For k = 3 such
a reparametrization becomes particularly convenient, see our application to
forest damage in Section 4.

(iii) Function evaluations f; are generated from Gaussian full conditionals p(f;|U, )
with covariance matrix (3.5) and mean (3.6), using the algorithms for band-
matrices described above.

(iv) Samples for variances are generated from inverse Gamma priors with updated
parameters given in sampling scheme 1.

(v) Samples for fixed effects 3 are drawn from Gaussian full conditionals with
mean and covariance matrix in (3.7).

For nominal response, we choose k as the reference category. Since only differences

of utilities can be identified (see Section 3.2), we may either set the predictor 7y
to zero or the latent variable Uyy,.

Sampling scheme 3:
(i) Setting Uy = 0, latent variables Uy,.,r = 1,...,k—1, are generated as follows

for each observation Y, i =1,...,n, t=1,...,T.
IfY;, =r, r # k, then Uy, is generated first from a normal distribution with
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mean 7, and variance 1, subject to the constraints U, > Uy, | # k, and
Uitr > 0 (= Uyy,). Next we generate Uy for [ # r from a normal distribution
with mean 7;;; and variance 1, subject to the constraint that U is less than
the Uy, generated just before.

If Y;; = k (the reference category), then we generate Uyy,l =1,...,k—1, from
a normal with mean 7;; and variance 1, subject to the constraint Uy < 0.

(ii) Posterior samples for functions f7, r = 1,...,k — 1 and all other parameters
are generated as in the steps (iii)-(v) of sampling scheme 2.

4 Applications

We consider two applications. In a first application on unemployment durations we
analyse unemployment data from the German Federal Employment Office (" Bunde-
sanstalt fiir Arbeit”). This is a huge dataset with approximately 280000 observations
showing the practicability of our methods even for very large datasets. In a second
application, we analyse longitudinal data on forest health collected in the forest dis-
trict of Rothenbuch in northern Bavaria for the years 1983-1997. All computations
have been carried out with BayesX, a software package for Bayesian inference that
has been developed at our department. The program is available for public use
under http://www.stat.uni-muenchen.de/"lang/. See also Lang, Brezger (2000)
for a detailed description of the capabilities of BayesX.

4.1 Reemployment chances

In our first application we analyse monthly unemployment data from the German
Federal Employment Office for the years 1980-1995. Our analysis is restricted to data
from former West Germany (excluding Berlin) and to women. For each individual
the data provides information about the employment status in month ¢, the district
where the individual lives and a number of personal characteristics. Since we are
interested in analyzing reemployment chances, distinguishing between full and part
time jobs, we define three-categorical response variables Y;; as event indicators

1, gets a new full time job in month ¢ (calendar time)
Yy = ¢ 2, gets a new part time job in month ¢
3, i is unemployed in month ¢ (reference category).

Our analysis is based on the following covariates:

D duration time measured in months

A age (in years) at the beginning of unemployment

N nationality, dichotomous with categories “german” and
“foreigner” (= reference category)

U; unemployment compensation (in month d of duration time),
dichotomous with categories “unemployment benefit”
(=reference category) and “unemployment assistance”

P, number of previous unemployment periods (in month
t of calendar time): 1,2,3 and more, 0 (reference category)

11



E  education, trichotomous with categories "no vocational training”
"vocational training” (reference category) and university
S district in which the unemployed have their domicil

All categorical covariates are coded in effect coding.

Then we model the probabilities P(Y;; = r|ni.), r = 1,2, by an independent probit
model, with predictors

Nitr = ftC"end(t) + ;eason(t) + ;tr(sl) + f’l:nStT(SZ)+
f{(Dit)_Ff;(Ait)—i_w;tﬁﬁ r=1,2,
where f] . .and fI  _  are trend and seasonal component of calendar time ¢, f], and
fr o are structured and unstructured spatial effects of the district, f{ is the effect of
duration D in current unemployment status and f; is the effect of age A. The priors
for f ... T and fI are second order random walk models (2.8). For fI, and f! ..
we assign the Markov random field prior (2.11) and the exchangeable prior (2.13),
respectively. For the seasonal component we choose the flexible seasonal prior (2.9).
Priors for fixed effects parameters (3, are diffuse. An analysis with similar predictors
using a multinomial logit model and sampling scheme 1 for drawing samples from

full conditionals can be found in Fahrmeir, Lang (2000).

Figure 2 displays estimated effects of duration time and calendar time trend and
seasonal component for getting full time jobs (left column) and part time jobs (right
column). Duration time effects have the typical pattern also observed in other
investigations, with a peak after 2-3 months and sloping downward then. Calendar
time trends for full and part time jobs show a similar general pattern: declining
until the year 1982, then slowly increasing until 1990 (one year after the German
reunion), declining distinctly again thereafter, with an intermediate recovery. This
corresponds to the observed economic trend of the labor market in Germany during
this period. Estimated seasonal effects are more or less stable over this period
although varying in size. To gain more insight Figures f) and g) displays a section of
the estimated effects for the year 1992 with the typical peaks in spring and autumn,
and a global minimum in Dezember. The effect of age can be found in Figure 1. For
the age effect there are local minima for women about 30, which may be a ”family”
effect. The dramatic decline of unemployment probabilities of people older than 50
years is particularly striking. The increase after 60 may be caused by boundary
effects and we do not interpret it. Note that the age effect is much stronger for
women seeking full time jobs (Figure a)) compared to women seeking part time jobs
(Figure b)). Structured regional effects are shown in Figures 3 and 4. Figure 3
shows the estimated posterior mean and Figure 4 shows ”probability” maps where
the levels correspond to ”significantly negative” (black colored), ”"nonsignificant”
(grey colored), i.e. zero is within the confidence interval around the estimate, and
”significantly positive” (white colored). In order to interpret the structured effects,
unstructured effects must be taken into consideration as well. Therefore Table 4 gives
a summary of the estimated posterior means of the unstructured spatial effect for
the different regions. We observe that the structured effect for getting full time jobs
is stronger than for getting part time jobs. Even more important, the unstructured
effect for part time jobs cleary exceeds the structured effect which is in constrast
to the estimated effects for full time jobs. Although the estimated posterior mean
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of the structured effect for getting part time jobs in Figure 3 b) shows some spatial
variation, Figure 4 cleary indicates that there is no ”significant” variation in terms
of posterior probabilities. In the contrary, the structured effect for getting full time
jobs displays ”significant” variation with improved chances in the south compared
to the middle and the north. The two dark spots in Figures 3 a) and 4 b) mark
areas that are known for their structural economical problems during the eighties
and nineties.

Estimates of fixed effects for getting full time jobs are shown in Table 2 and for
getting part time jobs in Table 3. Tables 2 and 3 confirm some facts already known
from previous analyses with more conventional methods. Chances for re-employment
are better for Germans and for women with a university degree compared to women
with vocational training and no vocational training. Both effects are stronger for
women getting part time jobs. The number of previous unemployment periods
serves as a surrogate for experience at the labor market: an increase in the number
of previous spells increases the probability for shorter unemployment duration. The
estimated effect of unemployment assistance is significantly negative and positive
for umenployment benefits, which seems to contradict the widely-held conjecture
about negative side-effects of unemployment benefits. However, it may be that the
variable “unemployment benefit” also acts as a surrogate variable for those who have
worked, and therefore contributed regularly to the insurance system in the past.

4.2 Forest health

In this longitudinal study on the state of trees, we analyse the influence of calendar
time, age of trees, canopy density and location of the stand on the defoliation degree
of beeches. Data have been collected in yearly forest damage inventories carried out
in the forest district of Rothenbuch in northern Bavaria from 1983 to 1997. There
are 80 observation points with occurence of beeches spread over an area extending
about 15 km from east to west and 10 km from north to south, see Figure 5. The
degree of defoliation is used as an indicator for the state of a tree. It is measured
in three ordered categories, with Y;; = 1 for "bad” state of tree 7 in year t, Y;; = 2
for "medium” and Y;; = 3 for "good”. A detailed data description can be found in
Gottlein and Pruscha (1996). Covariates used here are defined as follows:

A age of tree at the beginning of the study in 1983, measured in three effect
coded categories a; = "below 50 years”, as = between 50 and 120 years, and
az = above 120 years (reference category);

C Canopy density at the stand measured in percentages 0%,10%,. . .,90%,100%.

The covariate age is time constant by definition, while canopy density is time varying.
Based on previous analysis, we use a three-categorical ordered probit model (2.5)
based on a latent semiparametric model U;; = n;; + €;; with predictor

Nit = frrend(t) + fsr(5i) + f(cit) + Pran + Batiz. (4.1)

Here a;; and a;, are the indicators for age categories 1 and 2. The calendar time
trend fiena(t) and the effect f(c) of canopy density are modelled by random walks
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| Variable | mean | Std.Dev. | 10% quant. | median | 90% quant. |
const 1.102 0.073 1.008 1.099 1.195
ay 0.358 0.107 0.222 0.356 0.490
as 0.010 0.080 -0.092 0.009 0.113
as -0.3677 0.085 -0.473 -0.369 -0.257

Table 1: Estimates of constant parameters

of second order. For the structured spatial effect we assign the Markov random field
prior (2.12), with the neighborhood 0 of trees including all trees u with euclidian
distance d(s,u) < 1.2 km and with weights defined by wy, = d(s,u). An unstruc-
tured spatial effect is excluded from the predictor for the following two reasons.
First, a look at the map of observation points (Figure 5) reveals some sites with
only one neighbor, making the identification of a structured and an unstructured
effect difficult if not impossible. The second reason is that for each of the 80 sites
only 15 observations on the same tree are available with only minor changes of the
response category. In fact, there are only a couple of sites were all three response
categories have been observed. Thus, the inclusion of an unstructured effect in our
model leads to severe inditification problems between the structured and unstruc-
tured effect, which can be observed by inspecting sampling paths of parameters.

We first applied the ordered probit model in standard parametrization. However,
in step (ii) of sampling scheme 2 mixing of posterior samples for thresholds #; and
6, was not satisfactory, see Figure 6. Following Chen and Dey (2000), we therefore
reparametrized the model. First, inclusion of a constant (y in (4.1) allows to set
f, = 0. Secondly, because parameters in the predictor of the latent Gaussian model
are only identifiable up to a multiplicative factor, we assume that errors ¢; are
N(0,0%) distributed with unknown variance o?. This allows us to set 6, = 1.
The parameter 3, is sampled simultaneously with fixed effects 3; and 3,. For o?
we specify an inverse Gamma prior, leading to posterior samples from an inverse

Gamma full conditional.

For interpretation of estimation results note the following: In accordance with our
definitions (2.3) to (2.5), higher (lower) values of the predictor (4.1) (or of effects
in this predictor) correspond to healthier (worse) state of the trees. Estimates for
Bo and the effect of age are given in Table 1. As we might have expected younger
trees are in healthier state than the older ones. Figure 7 shows posterior mean
estimates for the calendar time trend and for the effect of canopy density. We see
that trees recover after the bad years around 1986, but after 1994 health status
declines to a lower level again. The distinct monotonic increase of the effect of
canopy densities > 30% gives evidence that beeches get more shelter from bad
environmental influences in stands with high canopy density. Figure 8 shows the
estimated (structured) spatial effect in form of posterior probabilities, were black
spots indicate areas with strictly negative credible regions, i.e. areas with more
trees in bad state. The black colored sites correspond mostly to areas in the forest
district which are located higher above sea level than the other sites. Here the
environmental conditions in terms of nutrient quantity and soil quality are worse
compared to other areas.
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5 Conclusion

The applications demonstrate that the Bayesian methods developed are useful and
flexible tools for inference in realistically complex categorical regression models.

A variety of extensions are possible by modifying or generalizing the observation
models, predictors and smoothness priors. For example, probit models based on la-
tent utilities can be extended to correlated categorical or mixed continous-categorical
responses by considering latent multivariate semiparametric Gaussian models. Pre-
dictors can be made more flexible by introducing nonparametric interactions between
covariates following suggestions in Clayton (1996) and Knorr-Held (2000). Replac-
ing Gaussian priors by heavy-tail distributions would allow to consider unsmooth
regression functions.

References

Albert, J., Chib, S. (1993) Bayesian analysis of binary and polychotomous response data.
J. Am. Statist. Ass., 88, 669-679.

Besag, J., York, J., Mollie, A. (1991) Bayesian image restoration with two applications
in spatial statistics (with discussion). Ann. Inst. Statist. Math., 43, 1-59.

Chen, M.H., Dey, D.K. (2000): Bayesian Analysis for Correlated Ordinal Data Models.
In: Dey, D.K., Ghosh, S.K. and Mallick, B.K. (eds.), Generalized linear models: A
Bayesian perspective. New York: Marcel Dekker.

Clayton, D. (1996) Generalized linear mixed models. In: Gilks, W., Richardson S. and
Spiegelhalter D. (eds.), Markov Chain Monte Carlo in Practice. London: Chapman
and Hall, 275-301.

Fahrmeir, L., Tutz, G. (1994, 2nd ed.2000) Multivariate Statistical Modelling based on
Generalized Linear Models. New York: Springer—Verlag.

Fahrmeir, L., Lang, S. (1999): Bayesian Inference for Generalized Additive Mixed
Models Based on Markov Random Field Priors. Discussion Paper 169, Sonder-
forschungsbereich 386, Ludwigs-Maximilians-Universitat Miinchen. Available under
http://www.stat.uni-muenchen.de/sfb386/publikation.html.

Fahrmeir, L., Lang, S. (2000): Bayesian Semiparametric Regression Analysis
of Multicategorical Time-Space Data. Proceedings of the International Sy-
posium on Frontiers of Time Series Modeling in Tokio.  Available under
http://www.stat.uni-muenchen.de/"lang/.

Gamerman, D. (1997): Efficient Sampling from the posterior distribution in generalized
linear models. Statistics and Computing, 7, 57-68.

Gottlein , A., Pruscha, H. (1996): Der Einfluss von Bestandskenngrossen, Topographie,
Standord und Witterung auf die Entwicklung des Kronenzustandes im Bereich des
Forstamtes Rothenbuch. Forstwissenschaftliches Centralblatt, 114, 146-162.

15



Yau, P. Kohn, R., Wood, S. (2000): Bayesian Variable Selection and Model Averaging
in High Dimensional Multinomial Nonparametric Regression. Preprint, University
of New South Wales.

Knorr-Held, L. (1999): Conditional Prior Proposals in Dynamic Models. Scand. J.
Statist., 26, 129-144.

Knorr-Held, L. (2000): Bayesian Modelling of Inseparable Space-Time Variation in Dis-
ease Risk. Statistics in Medicine, to appear.

Knorr-Held, L., Besag, J. (1998) Modelling Risk from a Desease in Time and Space.
Statistics and Medicine, 17, 2045-2060.

Lang, S., Brezger, A. (2000) BayesX - Software for Bayesian Inference based on
Markov Chain Monte Carlo simulation techniques. Discussion Paper 187, Sonder-
forschungsbereich 386, Ludwigs-Maximilians-Universitat Miinchen. Available under
http://www.stat.uni-muenchen.de/sfb386/publikation.html.

Rue, H.  (2000): Fast ~ Sampling of Gaussian Markov ~ Random
Fields with  Applications. Technical report. Available under
http://www.math.ntnu.no/preprint/statistics/2000/s1-2000.ps.

a) full time: age effect b) part time: age effect

1.0

0.5

0.0

-0.5

20 30 40 50 60 20 30 40 50 60

age in years age in years

Figure 1: Estimated nonparametric effects of age. Shown is the posterior mean
within 80 % credible regions
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| Variable | mean | Std.Dev. | 10% quant. | median | 90% quant. |
german 0.0527878 | 0.00843951 0.0418975 0.0528639 0.0637414
foreign -0.0527878 | 0.0084437 | -0.0637414 | -0.0528639 | -0.0418975
unemployment assistance | -0.0733189 | 0.00687011 | -0.0822028 | -0.0735721 | -0.0639811
unemployment benefit 0.0733189 | 0.0068735 0.063981 0.0735721 .0822028
no vocational training -0.0342402 | 0.0104877 | -0.0476529 | -0.0346253 | -0.0210024
vocational training -.0195901 .0100236 -0.032336 | -0.0193288 -.0069022
university 0.0538303 | 0.0183895 0.0295187 0.053873 0.077214
P=0 -0.106041 0.0072038 | -0.1157761 | -0.1058226 | -0.0968463
P=1 -0.0361269 | 0.00862728 -0.047251 | -0.0361909 -0.025397
P=2 0.00232123 | 0.0111795 | -0.0120529 | 0.00256533 0.0171483
P>3 0.139847 | 0.0105637 0.125909 0.140088 0.153256
Table 2: estimates of constant parameters (full time)
| Variable | mean | Std.Dev. | 10% quant. | median | 90% quant. |
german 0.108616 | 0.0156238 0.0878499 0.10981 0.128572
foreign -0.1086155 | 0.0156316 | -0.1285725 | -0.1098105 | -0.0878499
unemployment assistance | -0.0839916 | 0.0112389 | -0.0987005 | -0.0836322 | -0.0693947
unemployment benefit 0.0839916 | 0.0112445 0.0693947 | 0.0836322 0.0987005
no vocational training -0.0989168 | 0.0150469 -0.118855 | -0.0987753 | -0.0798118
vocational training -.0537657 .0143901 -.0723342 -.0532555 -.0347323
university 0.152682 | 0.0247098 0.120791 0.1523 0.185821
P=0 -.1592084 .0116431 -.1745401 -.1594094 -.1445379
P=1 -0.0506152 | 0.0135742 | -0.0679307 | -0.0507075 | -0.0328039
P=2 0.00633397 | 0.0182364 | -0.0172304 | 0.00684475 0.0298414
P=3 0.20349 | 0.0157018 0.183727 0.203319 0.223392

Table 3: estimates of constant parameters (part time)

| full time | part time |

std. dev.
minimum
10% quantile
90% quantile
maximum

0.0246
-0.073
-0.0287
0.0291
0.128

0.103
-0.274
-0.120

0.134

0.501

Table 4: summary of the posterior means of the unstructured spatial effect
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Figure 3: posterior mean of the structured spatial effects of the district specific effect

19



Figure 4: posterior probabilities of the district specific effect
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Figure 6: Sampling paths of thresholds for the first 4000 iterations.
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Figure 7: Estimated time trend and nonlinear effect of canopy density. Shown is
the posterior mean within 80 % credible regions
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Figure 8: Estimated posterior probabilities of the spatial effect

22



