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Heaping and its Consequences
for Duration Analysis

Joachim Wolff* Thomas Augustin'

Abstract

This paper analyses the consequences of heaping in duration mod-
els. Heaping is a specific form of response error typical to retrospec-
tively collected labor force status data. Respondents round-off the
spell length, when duration data is collected by episode-based ques-
tionnaires. Calendar-based questionnaires instead may lead to abnor-
mal concentrations of the start and/or end of spells at specific calendar
months. The investigation concentrates on this latter type of heap-
ing, which Kraus and Steiner [1995] identified for the unemployment
spell data from the German Socio-Economic Panel (GSOEP). In the
special case of an exponential model heaping with a symmetric zero-
mean measurement error does not bias the parameter estimate. In
the Weibull model with duration dependence, however, it is proven
that even such a symmetric heaping would lead to inconsistent esti-
mation. We discuss the bias for general heaping patterns and derive
from this a proposal for bias correction. In a number of simulation
studies we check the theoretical results. The Monte Carlo simulations
also show that an amount of heaping, that characterizes the GSOEP-
West does not lead to considerably biased parameter estimates of a
Weibull model. However, it clearly leads to spurious seasonal effects.
Finally, some directions of future work are indicated.
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1 Introduction

Retrospectively collected information of household surveys is likely to be
characterized by errors of recall. In particular, when respondents are asked
to provide event histories of labor force states or duration of some labor force
state, substantial response errors may emerge. ‘Heaping’ or rounding-off is a
particular form of such errors. There are two types of heaping depending on
the design of the questionnaire. One may emerge from calendar-based ques-
tionnaires as for example in the German Socio-Economic Panel (GSOEP).
Its calendarium requires respondents to tick (at least) one out of usually 12
possible labor force states for each month of the calendar year prior to the
interview. Heaping implies that respondents round-off or use rules of thumb
when reporting the calendar date of a transition from one labor force state
to another. Consequently, we would find abnormal concentrations of entry
and exit months. E.g., one rule of thumb could be that some respondents
who become unemployed in February or March just report the start of their
spell as January in the same year. Kraus and Steiner [1995] revealed this
heaping pattern for unemployment duration data of the GSOEP-West.! An-
other rule of thumb emerges in duration data that stem from responses to
episode-based questionnaires. When respondents recall the entire duration of
unemployment, abnormal concentrations of spell lengths at multiples of six
or twelve months arise. Torelli and Trivellato [1993] found that unemploy-
ment spells from Italian Labor Force Survey data are subject to this heaping
pattern.

Both the study of Torelli and Trivellato as well as that of Kraus and Steiner
proposed how to adjust econometric duration models, in order to achieve
consistent estimates of the parameters in the presence of heaping. Kraus and
Steiner who dealt with heaping in calendar-based questionnaires provided no
information about the general consequences for duration analysis of the type
of heaping that they identified. Torelli and Trivellato analyzed by Monte
Carlo simulations possible effects of heaping on the parameter estimates of
an exponential model, a Weibull and a log-logistic model. For the last two
distributions the specific heaping pattern lead to parameter estimates that

!There is some evidence that the east-German unemployment spell data of the GSOEP
are also characterized by heaping (Wolff [1998]). However, compared with the findings of
Kraus and Steiner for the west-German unemployment spell data, this amount of heaping
is low.
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differed substantially from the parameters of the data generating process
(DGP).

It is a well-known result, that a zero-mean measurement error of the depen-
dent variable that is independent of the covariates does not lead to biased
parameter estimates in linear regression models. However, response errors
like heaping, even if they leave the average duration of spells unaltered,
may adversely influence the estimation results of standard duration models.
Applying such highly non-linear models to heaped duration data without
an appropriate correction may yield inconsistent and less precise parameter
estimates. The aim of this paper is to show by simulation studies and theo-
retical considerations whether and when specific forms of heaping have such
consequences. This is particularly important to know if there is no sufficient
outside information to determine the exact heaping pattern. We concen-
trate on heaping in calendar-based questionnaires. The simulation studies

are based on an amount of heaping which was characterized as typical for
the GSOEP-West.

The paper is structured as follows: Section two discusses previous work on
heaping in labor force surveys. Section three shows whether heaping, even as
a symmetric zero-mean measurement error of the spell length, should alter
parameter estimates if the true spell lengths are drawn from the exponential
or the Weibull distribution. Section four presents results from Monte Carlo
simulations to highlight the consequences of heaping for parameter estimates.
Section five summarizes our very preliminary results and indicates extensions
of this work.

2 Previous work

Torelli and Trivellato [1993] studied recall errors in unemployment duration
data. They showed that there is a strong presence of rounding-off effects in
job-search duration data from a small matched sample of the Italian Labor
Force Survey for Lombardy.? They matched the information of two consec-

2The Italian Labor Force Survey is a quarterly survey of rotating panel design. Each
family is interviewed for two consecutive surveys and then dropped for two surveys and
interviewed again for two final surveys. People who consider themselves as unemployed
job-seekers are asked for how many months they have already been looking for a job.
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utive surveys and combined responses to the retrospective question on the
length of an unemployment spell in progress at the date of the second survey.

The authors derived their results from a sample that combined this LFS
over the first and second quarter of 1986. It consists of 678 individuals aged
between 14 and 29 years who are unemployed in the first survey. This sample
provided evidence for abnormal concentrations of unemployment duration at
certain values (heaping). The percentage distribution of the reported spell
length showed spikes at multiples of six months and very strong spikes at
multiples of 12 months for men and women, respectively. It is thus clear that
respondents used a rule of thumb to report the length of their unemployment
spells: If their duration of unemployment was close to multiples of six or 12
months, they rounded-off the duration to these values.

A heaping pattern as above may be a considerable problem for studies of
unemployment duration. The authors pointed out that there are true behav-
ioral reasons that could lead to such spikes at similar spell lengths. They may
result from the time until the exhaustion of unemployment benefits or from
seasonal effects. This kind of recall error implies an identification problem
for studies of unemployment duration.

The authors developed a model that yields consistent estimates of a continuous-
time parametric duration model in the presence of heaping. Let T be a con-
tinuous random variable of duration of unemployment, with probability den-
sity f(t,0), where the parameter vector € is unknown. The authors assume
that completed spell durations, y1;, are observed for ¢ = 1, ..., n individuals.
The observed duration is subject to heaping and is related to the true spell
length by:

ol =T + K; - Y; (1)

where K; = H(my — 1;, Hyyy € H and such that |Hy,y — 75| is minimum,
H is the set of heaped values h¢,) (m = 1,..., M) which are known and
arranged in increasing order. Y; is a Bernoulli random variable, which equals
one for heaped values and zero otherwise. Let further p(¢;) = G(¢;,y) be the
probability that ¥; = 1, where G(-,7) is a parametric function, known up to
the finite parameter vector v, mapping ¢; € IR* onto [0,1]. Thus, G(t;,7),
the heaping function, describes the probability of heaping as a function of
the true spell length. The inferential problem is to estimate 6 and 7 from the
observed data, that are subject to heaping and given a known set of heaped
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values. The likelihood of a random sample is then

[T - - G - 1 [ [ re0-cema) @

il jed

I is the set of nonheaped observations, where yt; = t;, since gt; # h(m). J
instead is the set of heaped observations taking on values that are element
of H. ;t; and ,¢; are the lower and upper limits of the interval of the jth
heaped spell length. With G(¢;,y) being constant over the intervals [;t;,,1;],
the likelihood becomes

[0 0) - (1= Gt - [ [F Gty 0) = FGty, 0] - Glutyn)  (3)

iel jed

F(-,0) is the distribution function of T'. By factorising the latter likelihood,
one component involving only the parameter vector of the duration model
and one involving the parameter vector of the heaping function emerge. So,
the parameters could be consistently estimated disregarding the heaping pro-
cess.

In order to reveal the effects of heaping, the authors generated duration data
that stem from the exponential, the Weibull and the log-logistic distribution.
They did not introduce covariates. The resulting spell lengths were altered by
a heaping pattern that is close to the one that they revealed from the Italian
Labor Force Survey. The exponential distribution function was chosen as
the heaping function. With this data, they estimated the parameters using
the likelihood functions (2), (3) and the likelihood of the standard duration
models. Their Monte Carlo simulations revealed the following: Ignoring
heaping leaves parameter estimates of the exponential model still close to
their true values. However, this does not apply to the Weibull and even
less to the log-logistic duration models. In these cases parameter estimates
were considerably apart from their true values, where the bias appears to be
positively related to the amount of heaping. Next they concluded that a crude
way of handling heaping according to the likelihood function (3), did not
improve parameter estimates considerably. In the case of a large sample size
(n = 500), it was even dominated by duration models that ignore heaping.
Applying the likelihood function (2) to the data instead yielded parameter
estimates close to their true values.
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Kraus and Steiner [1995] analyzed unemployment spells drawn from the
GSOEP-West with respect to heaping. The retrospective labor force sta-
tus questionnaire of the GSOEP relies on a calendar-based design. The
respondent has to code his/her labor force status separately for each month
of the previous calendar year. Heaping may hence occur as abnormal con-
centrations for entry and exit at certain calendar months; i.e., people date
their entry into or exit out of unemployment too frequently and incorrectly
at certain calendar months and not frequently enough at the months that are
close to them. The study of Kraus and Steiner identified such abnormal con-
centrations. They analyzed an inflow sample to registered unemployment of
the GSOEP-West from January 1983 to December 1991. People who worked
in the construction sector prior to unemployment were discarded from this
sample of uncensored and right-censored unemployment spells. These people
have been excluded since their exit behaviour from unemployment follows a
strong seasonal pattern which may interfere with heaping effects. The def-
inition of registered unemployment in the GSOEP and the register data of
the German Federal Labor Office is the same. Thus, for west-Germany, the
authors compared the aggregate monthly inflow rate into and outflow rate
from registered unemployment calculated for both data sources® over the
observation period. The striking findings were two abnormal concentrations:

e The gross inflow rates into unemployment in January as estimated by
the GSOEP-West are roughly twice as high as their population val-
ues over most of the observation period. In contrast, the inflow rates
in February and March are often considerably smaller than the corre-
sponding population values.

e Compared with their population values, the outflow rates of the GSOEP
West in December are usually four times higher, while those in the
neighboring months October and November tend to be somewhat lower.

These two heaping patterns imply that spell lengths are reported as too long
for spells that start in the first quarter of the year and/or terminate during its
last quarter. With standard econometric duration models negative duration
dependence may be overstated and biased coefficients for seasonal effects may
be the outcome.

3The authors accounted for sample attrition of the GSOEP-West relative to the register
data by appropriate weighting factors calculated on a yearly bases.
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Kraus and Steiner did not carry out simulations to reveal the consequences
of the identified heaping pattern for standard duration models. Nor did they
deal with this topic from a theoretical perspective. They adjusted the model
of Torelli and Trivellato, in order to incorporate the specific heaping pattern,
that they identified for the unemployment spells of the GSOEP-West into a
discrete-time proportional hazards framework.

This model was then applied to the unemployment spells of the GSOEP-
West, in order to estimate simultaneously the parameters of the duration
model and those of a parametrically specified heaping function. However,
they ran into numerical problems, due to a small number of observations
for some groups of spell length. To resolve this problem, they estimated
the heaping probabilities using outside information?. Kraus and Steiner pro-
ceeded then by comparing the estimates of several duration models that take
heaping into account or completely ignore it. All models included a standard
set of covariates® as well as a baseline hazard.

Let us summarize their results. The authors found hardly any difference be-
tween the estimated parameters of a proportional hazard rate model with a
flexible baseline hazard with and without their correction for heaping. Next,
regardless of whether heaping is incorporated into the likelihood, the coef-
ficients of the hazard model with a parametric baseline hazard® are by and
large the same as for those of the hazard model with a flexible baseline haz-
ard. Naturally, the baseline hazard was smoother. Yet, the estimates of a
number of covariates of a proportional hazard rate model that accounts for
heaping by including dummies for January and December yielded quite dif-
ferent coefficients of some covariates and of the baseline hazard. However,
this may reveal a simple omitted variable bias of the models that excluded
these dummies and may not be due to heaping.

4The authors again used information about the monthly population inflow and outflow
as published by the German Federal Labor Office.

SThese included age, foreigner, disability, marital status, education, household income
and the regional unemployment rate.

6They chose a logit transformation of time, namely exp(t + > + 1/t) - (1 +exp(t + > +
1/t)) !, as their baseline hazard function.
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3 A simplified theoretical look at the Weibull
model

3.1 Preliminaries

In this section we take a simplified look at non-corrected maximum likelihood
estimation under heaping in the Weibull model. A variable T; is Weibull
distributed with parameters A and « if its density has the form

fTi (tz) = Q- )\ . (/\ . ti)a_l - exp (— ()\ . ti)a) .
The hazard rate
7 (ti N, @) = a - A -0 a>0, (4)

depends on time by a power of ¢;, its monotonicity remains unchanged over
time. The direction of time dependency is governed by the duration depen-
dence parameter a, providing easy ways to test the hypothesis of increasing
or decreasing risk. a < 1 leads to monotonely decreasing hazard, while
a > 1 corresponds to monotonely increasing hazard containing the Rayleigh
distribution with linear hazard (o = 2). The special case of constant hazard
(v = 1) is the exponential model.

If one introduces covariates x; one usually parameterizes
A = exp(—z;9). (5)

Then the Weibull model is a special accelerated failure time model (Kalbfleisch
& Prentice [1980, p.34]), i.e. a model of the form

InT,=zf+0-¢

with ¢; independently and identically distributed. Here, to obtain the Weibull

model, ¢; is taken as extreme-value distributed and o is set equal to .

With the exception of Section 4.3 and Appendix B we only consider the
special case of a homogeneous sample without individual covariates, i.e x; =
1,2=1,...,n. Then the vector 3 reduces to a scalar 3. For our study we
nevertheless use the reparameterized form (5) instead of A itself, because it is
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the usual way of looking at the Weibull model in economics, it allows to use
standard software for Weibull regression and it also should provide a basis
for a generalization of our results to covariates.

Estimation of the unknown parameters o and f3, is typically done relying on
the maximum likelihood principle. The corresponding score equations are

n

S (-Texp(-a-f) = 0 (O

Y (I+a- (WD) —fo) - (1-T7 exp(—a-f))) = 0. (7)

i=1

In general (6) and (7) cannot be solved analytically and some numerical
procedure is needed. However, if one treats « as fixed, the first line yields an
explicit solution. One obtains

By = 1. In (M) (8)

o n

as the maximum likelihood estimate of 3y for known . Since the regular-
ity conditions for applying the usual maximum likelihood asymptotics are
satisfied here, ﬁo is consistent and asymptotically normal. Evidently, such
statements tacitly assume that the realizations of the 7;’s can be precisely
observed. If only inexact measurements, like heaped data, are available,
additional considerations are needed.

3.2 Heaping and the heaped maximum likelihood es-
timates

To formally introduce a heaping mechanism typical for calendar-based ques-
tionnaires we assume that every spell may be heaped with a certain probabil-
ity which is assumed to be independent of the covariates and the spell-length
itself. Denote for some sufficiently large ¢ by v} the probability that a spell
is prolonged by [ units, I =1, ..., ¢, and by 6% the probability that the spell
is shortened by [ units. Further assume ¢ := Y7 (v 4 6)) < 1. There-
fore, instead of the ‘true’ duration times T3,...,T;,...,T,, one observes the
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heaped duration times T7, ..., T, ..., T with

)

( E _|_ q Z/(Q)
T +1 y)
Tr = T; with probability 1—¢ 9)
T, —1 5
| T — ¢ 5@

For some applications it makes sense to allow the heaping probabilities to
depend on the month of entry. As shown in Appendix A3, assuming indepen-
dence of the duration and the entry month, the behaviour of the estimates
studied below does only depend on the marginal distribution of the heaping
probabilities. Therefore, after calculating the marginal heaping probabilities,
we can proceed without loss of generality with the model described in (9).

By plugging in the heaped duration times 77, ..., 77, ..., T in (8) we have

7 n
the heaped (or naive) mazimum likelihood estimate’

fr=211m (LLI(T;)&) . (10)

(0% n

Following Kraus and Steiner [1995], for the GSOEP one has good reasons
to assume 00 = 0,1 = 1,...,¢. However, in general, §) may be non-zero
for some [. Then by the heaping mechanism considered some of the data
T formally may become negative. Depending on the concrete design of the
questionnaire this may often be unrealistic, one simply then would not have
recorded these spells. In this case the heaped (or naive) maximum likelihood
estimate would have the form

(T
kR -1 1=1\"1 11
e (ZES) 1)
with

17" = max (0,17)

)

"We tacitly assume that B; is well defined. This is always the case for a = 2,4,6, ...
or if §!) equals zero for every [ =1,...,q.
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and K as the number of spells with 7;* > 0.

In general 35‘ and Bg;* are not the maximum likelihood estimates of (3, with
respect to the distribution of the observable variables 77" and 7;™*. So con-
sistency can no longer be taken for granted, the estimates may be biased.
To check this a first exploration of the behaviour of 3 and of 3;* under the
sample size growing to infinity will be performed.

3.3 Bias analysis

To obtain a first impression of the asymptotic properties of 33‘ and of BS* we
restrict our attention to two important special cases, namely the exponential
distribution (v = 1) and the Rayleigh distribution (o = 2).® The asymptotic
bias can be given in a closed form:

Proposition 3.1 Consider a heaping mechanism as described in (9) and
assume 81 ... 6@ and vV ... D to be such that the heaped mazimum
likelihood estimate 35‘ in (10) is well-defined®. Then the following holds for
the probability limit plim ﬁg :

n—o0

NCOEION

. . 10 2i=
a) (Ezponential case). If a =1 and? = (5] > —1 then
g
S (W — 50 -1
plim 3 — By =1n | 1 + =& : 12
n—00 0 ° eXp(ﬁO) ( )

8By using the General Binomial theorem, the considerations given below can be easily
transferred to arbitrary even values of @ € IN and can be, assuming well-definiteness,
extended to odd values of a. For other values of a the procedure used leads to some
trouble, if §¢) > 0 for some .
9This is the case for any realistic constellation.
0By their dependence on the unknown S, these additional conditions may be sometimes
tricky. But note that it is always satisfied in the case of symmetric heaping as well as for
the positively biased one-sided heaping pattern observed in the GSOEP.
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b) (Rayleigh distribution) If « = 2 and

q
SO +a0) 2 E S (0 = 60) -
=1

exp(20p) exp(f)

> —1
then

q
ST +a0) 2 E S (0 = 60) -
=1

exp(20p) _exp(ﬂo)

(13)

Proof: See Appendix Al.

The bias grows flatter by the logarithmic function. Note further that the bias
is inversely proportional to [, i.e. the longer the average spell-length, the
smaller, ceteris paribus, is the bias. This seems quite plausible, as the error
becomes smaller relative to the average spell length. The next subsection
will show that (12) and (13) also provide a proposal for bias correction and
consistent estimation of [.

Before discussing this, we briefly want to look at the estimate AS‘* as defined
in (11) and the behaviour of both estimates in some special cases.

Since, by construction, 7 > T7*, and therefore
0 = B,

Proposition 3.1 provides immediately a lower bound for the bias of the esti-
mate [

Corollary 3.2 In the situation of Proposition 3.1 formulae (12) and (13)
remain valid, if one replaces 35 by 35" and equalities by the relations ‘greater
or equal’. o
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Returning to BS, two extreme cases may be of special interest. The first one
is the constellation where the heaping is one-sided in the sense that there is
no heaping downwards but only a heaping upwards (or vice versa). This is
the type of heaping Kraus and Steiner [1995] found for the GSOEP. Then
we have 3} = 8;* and §¢) = 0 for all [ in the formulae above.

The second one is the symmetric situation, where, for every [, the proportion
of the spells prolonged by [ and the proportion of the spells shortened by [ is
the same. Note that, if the hazard rate is not constant, this ‘averaging out’
may nevertheless result in a bias, which, however, typically will not be very
strong.

Corollary 3.3 If in the situation of Proposition 3.1 the heaping is symmet-

ric, i.e. v =6W, foralll =1,...,q, then B is consistent in the case of the
exponential distribution (o = 1), but inconsistent in the case of a Rayleigh
distribution (o =2). o

In the situation of Corollary 3.3 one regularly has 33‘* > 33‘. Therefore, even
in the exponential case a small bias can be expected using the estimate [3;*
based on putting negative values of 717" to zero.

The Torelli and Trivellato [1993] case is actually nearly symmetric. So Corol-
lary 3.3 confirms for our heaping pattern Torelli’s and Trivellato’s observa-
tions discussed in Section two: In an exponential model the bias from ignor-
ing symmetric heaping is negligible, while some care has to be taken in the
Weibull model with duration dependence.

3.4 Bias Correction

(12) and (13) can be explicitly solved for fy. If one knows the heaping
probabilities 6@ and v®, [ = 1,..., ¢, for instance by external data, then
these quantities may be used to obtain an improved estimate which has
smaller bias than Bg;*. Moreover, if the realizations of 7} are available, and
therefore Bg; can be calculated, even a consistent estimate for (3, can be
deduced. Therefore, in particular, in the heaping constellation noticed for
the SOEP consistent estimation proves possible.
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Proposition 3.4 Consider the situation of Proposition 3.1.

o Z?Zl (V(l)f(i(l)).l

(% :=1In (exp (ﬁg) —

> —1 then

. (V0 — 50 1)

=1

estimates 3y consistently.

2. If a =2 and
g
VY (W —6Y) 14 exp(f) > 0
=1
then
@6, = In (l [iﬁ((;(z) _ )4
' 2 =1

+ 4|7 (zq: (v — 50 . g>2 —4- (Z (VO 460 12 —exp (233>)

=1

estimates 3y consistently. o

Proof: See Appendix A2.

Evidently, the results gained by these considerations are of course quite pre-
liminary. For instance, sharpening the bound for the bias of 33‘* given in
Corollary 3 would be desirable. Moreover, all the results are of asymptotic
nature, naturally providing no concrete statement on finite sample bias. Ad-
ditionally, one should always keep in mind that the duration dependence
parameter o was assumed to be known. To get an impression whether the
picture painted here changes under finite sample size or by a strong interre-
lation between the estimates of o and 3y will be the task of the first part of
the following simulation study.
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4 How does heaping influence parameter es-
timates of standard duration models? Re-
sults from simulation studies

In the previous section we showed that heaping, even if the measurement
error is of the zero-mean symmetric type, could asymptotically lead to biased
estimates of the parameters of the Weibull model. In this section we present
results from simulations in order to study the finite sample behaviour and the
case of unknown «. In particular we want to answer three questions: First
of all we explore whether a type of heaping typical for the GSOEP leads to
considerably biased parameter estimates of duration models. We examine
a situation with an amount of heaping similar to the findings of Kraus and
Steiner that the January inflow of the GSOEP-West unemployment spell
sample is about twice as high as one would expect from population values.
Second, we attempt to show whether the parameter estimates are less precise
due to heaping. Next, we investigate whether heaping introduces spurious
seasonal effects or spurious duration dependence effects. In all simulations
we use the estimating equations (6) and (7) derived from the ideal likelihood
for parameter estimation, once with the true data, once with the heaped
data. Each simulation runs the estimation procedure 200 times. We assume
that spell lengths are measured in continuous time (the unit is months) and
that there is no censoring.

4.1 Symmetric heaping

Let us start with heaping of the symmetric type. In the first set of simula-
tion studies we consider different Weibull distributions as DGPs of the spell
data. We assign each spell a specific calendar month at which it starts,
such that there is an equal probability that a spell starts in any month of
the year. Table 4.1 presents results from the 200 estimations applied to
the heaped data. The heaping is such that there is 40 percent chance that
the spell starts December and February are changed to January, so that
the corresponding spell length is altered by one month. Next, there is a
30 percent chance that the spell starts November and March will become
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January'!, so that duration is altered by two months. Thus, the percentage
of heaped spells is of a reasonable size, considering that Kraus and Steiner
found a January inflow in the GSOEP-West that is about twice as high as
its population value. On average some 11% of the spells are affected by
heaping. We ran simulations for one DGP assuming a constant () of one,
and another assuming a constant of two. Next, we distinguish between the
results for a sample size of 250 observations and one of 500 observations.
Also the duration dependence parameter («) is varied.

Table 4.1 presents the average parameter estimates of the constant and the
duration dependence parameter that result from estimation with the heaped
data. The corresponding average standard errors and those that are achieved
by ML estimation with the original data (prior to heaping) are also displayed.

Panel a) shows the simulation results without any duration dependence, i.e.
for exponentially distributed spell lengths. Where 3, equals one we find
that both the constant and the duration dependence parameters estimated
with the heaped data are slightly higher than their true values. For both
sample sizes, according to the average standard errors the coefficients are
not significantly different from their true values. Next, regard the mean
estimated standard errors of the constant and of the natural logarithm of
the duration dependence parameter that result from the heaped data. They
are hardly different from those of the original data. Now turn to the lower
part of panel a) which shows simulation results for a constant of value two,
so for a higher average spell length. The mean coefficients in the presence of
heaping are very close to the true parameter values.

In Panel b) the underlying DGP is a Weibull distribution with positive dura-
tion dependence (v=1.4). The mean parameter estimates in this table hardly
differ from the parameters of the DGP. Neither are the simulation results for
the standard errors in the case of the heaped and the original data any dif-
ferent. We carried out the same analysis for a Weibull DGP where « is set to
0.6, i.e. negative duration dependence. The results are displayed in panel c)
of Table 4.1. Here, we clearly see that the mean estimate of the constant for
the heaped data exceeds somewhat its true value. Also the average duration

1 This type of heaping leads to some non-positive spell lengths. E.g., a spell that lasts
for one month of which the start is heaped from December to January would never have
been observed. So we discarded such spells in the heaped sample. This means, we analyze
the behaviour of 43* from (11) and not that of 3 from (10).
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Table 4.1: Simulation results for Weibull distributed spell lengths, 40
percent of the spell starts heaped from December and February to Jan-
uary, 30 percent of the spells starts heaped from November and March
to January

a) @« = 1 (no duration dependence i.e. exponentially distributed spell
lengths)

Number of obs.: 250 500
heaped data original data ‘ heaped data original data
Estimated mean Estimated mean

Coeft. SE SE ‘ Coeft. SE SE
true fy=1
o 1.033  0.066 0.067 1.04 0.046 0.047
« 1.02 - - 1.027 - -
In(«) 0.019 0.05 0.049 0.026  0.035 0.035
true Gyp=2
Bo 2.008 0.067 0.066 2.017  0.047 0.047
« 1.019 - - 1.017 - -
In(«) 0.017  0.05 0.049 0.016  0.035 0.035

b) a = 1.4 (positive duration dependence)

Number of obs.: 250 500

Estimated mean Estimated mean

heaped data original data heaped data original data

Coefl. SE SE Coeff. SE SE
true Gy=1
Bo 1.021 0.048 0.048 1.025 0.034 0.034
« 1.407 - - 1.403 - -
In(«) 0.34 0.05 0.049 0.338 0.035 0.035
true Fyp=2
o 2.005 0.048 0.048 2.005 0.033 0.033
« 1.402 - - 1.414 - -
In(«) 0.337 0.05 0.049 0.346 0.035 0.035

¢) a=0.6 (negative duration dependence)

Number of obs.: 250 500

heaped data original data | heaped data original data
Estimated mean Estimated mean

Coeff. SE SE ‘ Coeff. SE SE

true Gy=1

o 1.078 0.108 0.11 1.075  0.077 0.079

Q@ 0.625 - - 0.618 - -

In(«) -0.471  0.05 0.049 -0.482 0.035 0.035

true fyp=2

Bo 2.064 0.109 0.11 2.055 0.077 0.078

@ 0.62 - - 0.621 - -

In(«) -0.479  0.05 0.049 -0.478 0.035 0.035

Number of simulations = 200
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dependence coefficient is higher than the true a. None of these differences is
significant according to the average standard errors. Next, the reason for the
bias may be less the measurement error due to symmetric heaping than the
fact that some spells of an original length of less than two months are com-
pletely discarded due to the heaping. The proportion of such spells increases
with shorter average spell length and is relatively high for the samples that
underlie panel c¢). Due to discarding of a relatively large number of short
spells the constant is likely to become somewhat higher than its true value.

Taken together, the conclusion so far is that symmetric heaping, provided a
plausible share of the spells are heaped, would have no considerable effect
on the parameter estimates of the Weibull model. We carried out another
set of simulations for spell lengths that follow the log-logistic distribution.
They lead to no different conclusion'?. In Appendix B, we also show the
results of a simulation of the effects of heaping, when covariates determine
the hazards. The underlying random sample was generated such that it
reflects characteristics of a real world sample of unemployment spells. These
simulation results point to no considerable effect of symmetric heaping on
the parameter estimates.

4.2 Heaping that leads to prolonged spell lengths only

The following simulations consider a heaping pattern that is not symmetric
and so closer to what Kraus and Steiner identified for the unemployment
duration data of the GSOEP-West. Suppose we have spell lengths that are
exponentially distributed, so there is no duration dependence. Some respon-
dents who start their spells between February and April would heap their
spell start to January, while their reported spell end remains correct. This
only leads to some prolonged spell lengths, so that the following may be
expected: If one attempts to estimate the parameters of a Weibull distribu-
tion with the heaped data, the estimated constant should be upward biased.
Next, presumably some spurious positive duration dependence (« > 1) may
emerge. The following tables show simulation results for such a case. This
time we leave the sample size at 500 and vary the constant and the amount
of heaping.

I2These results are available on request.
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Panel a) of the Table 4.2 raises on average the length of 40 % of spells that
start in January by one month, while 30 % of spells that start in February are
increased by two months. Thus somewhat less than 6 % of the original spells
are increased in length. Again we carried out 200 simulations, estimating the
parameters of a Weibull distribution. In the case of a constant of one both
the average estimated constant and duration dependence parameter exceed
their true values, though never to a considerable extent. This applies even
more to the simulation results where the true constant is set to two. The
biases have the expected sign, but are rather small and not significant for
the chosen sample size (n=500).

In Panel b) of Table 4.2 we raised the measurement error substantially. Now
60 percent of the spells that start in February, 45 percent of those that
start in March, and 30 percent of those that start in April were heaped (on
average) to the starting month January. Thus somewhat more than 11 % of
the spells had their spell lengths changed. The result is that both the average
estimated constant and duration dependence parameter as they result from
the heaped data increased in size as compared to Table 4.2 a). Where the true
constant is equal to one, the average estimated constant is 1.086. According
to the estimated mean standard error it is significantly different from its true
value. There is no significant positive duration dependence and the bias of
the constant becomes again much smaller for a DGP where it equals two.
Again the conclusion is that the Weibull model is rather robust to heaping
and the more so the higher the average true spell length. The latter fact is
again in line with our theoretical results. The mean standard errors of the
estimated parameters remain largely unaltered from the heaping.

4.3 Spurious seasonal effects

The last simulation results show that even a small amount of heaping may
lead to spurious seasonal effects. Let us again choose an exponential distri-
bution as the DGP with a constant taking on the value one. The heaping
pattern will be such that on average 30 percent of the spells that end in Oc-
tober are prolonged by two months and 40 percent of those spells that end in
November will become one month longer. So, their spell end is set to Decem-
ber. We estimated the parameters of an exponential distribution including
the parameters of covariates that should capture seasonal effects. These are
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Table 4.2: Simulation results for exponentially distributed spells (o =1,
,30 =1or ,30 = 2)

a) 40 percent of the spell starts heaped from February to January, 30
percent of the spell starts heaped from March to January

heaped data  original data ‘ heaped data original data
Estimated mean Estimated mean
Coeff. SE SE ‘ Coeft. SE SE
true Gy =1 true Gyp=2
Bo 1.033  0.046 0.047 2.015 0.046 0.047
@ 1.02 - - 1.014 - -
In(«) 0.019 0.035 0.035 0.014 0.035 0.035

b) 60 percent of the spell starts heaped from February to January, 45
percent of the spells starts heaped from March to January, 30 percent
of the spells starts heaped from April to January

heaped data  original data ‘ heaped data original data
Estimated mean Estimated mean
Coeff. SE SE ‘ Coeft. SE SE
true Gy=1 true Gyp=2
o 1.086 0.045 0.047 2.037 0.046 0.047
Q@ 1.036 - - 1.036 - -
In(«) 0.035 0.035 0.035 0.035 0.035 0.035

Number of obs.: 500
Number of simulations: 200
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Table 4.3: Spurious Seasonal Effects - Simulation Results for expo-
nentially distributed spell lengths (8y=1), 40 percent of the spell ends
heaped from November to December, 30 percent of the spell ends
heaped from October to December. Heaped data only

Estimated mean
Coeff. SE

jan  -0.002 0.221
feb  0.009 0.221
mar 0.002 0.221
apr 0.001 0.22

may -0.002 0.22

jun  0.022 0.221
jul 0.002 0.221
aug 0.033 0.221
oct  0.427 0.244
nov 0.672 0.254
dec -0.422 0.196
Bo 1.002 0.155

Number of observations: 500
Number of simulations: 200

a set of time-varying dummy variables for each month from January to Au-
gust and from October to December. Thus we leave September as the base
case. Table 4.3 shows our simulation results when estimating the parameters
with the heaped data. They clearly suggest that there is a spurious seasonal
effect. The coefficients of the October and November dummies are greater
than zero. This implies that hazard rates of these months are below that of
September, the base case. In contrast the December coefficient is negative
and significant, so that the hazards in this month is too high.

5 Conclusions and future work

This study identified effects of heaping on the parameters estimates of some
standard duration models. As far as heaping of the entry month of a size
that is usual in the GSOEP-West is considered we reached the following con-
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clusions: First, a symmetric heaping does not lead to considerably biased
parameter estimates of the Weibull distribution. It hardly leads to stan-
dard errors that differ from those estimated with the original data. However,
heaping patterns of the kind that Kraus and Steiner found for the unemploy-
ment duration data of the GSOEP-West are not symmetric. Their validation
study found that respondents tend to place the start of their spells too often
to January and not frequently enough to February and March. So, the spells
were prolonged. When we consider the Weibull model, intuitively this type
of heaping should lead to a higher constant and some spurious positive du-
ration dependence. These biases should become larger the shorter the true
average spell length. Our results favour all these hypotheses. Yet they also
show that a great deal of heaping is necessary in order to lead to parame-
ter estimates that are far away from those of the parameters of the Weibull
DGP. If the end of spells is heaped forward to specific calendar months, we
would also think that spurious seasonal effects occur. A simulation study
of an exponential DGP showed, that such a heaping pattern indeed implies
such an effect, even if the heaping is only of about 6% of the spells.

There are several possible extensions of this work, which we want to address
theoretically as well as by simulations. First, it is plausible that heaping may
depend on covariates. Suppose there are respondents who become unem-
ployed regularly at around the same time of the year (seasonally unemployed
workers). One may expect that they are more likely than others to heap the
start of their spells to what they consider the month in which they usually
become unemployed.

Second we want to focus on adjustment of the estimates under heaping in
particular based on the use of outside information to identify the overall
distribution of heaping.'® Official statistics on unemployment are readily
available in many countries. Therefore the use of outside information should
generally be possible to study heaping in survey unemployment duration
data.

Further theoretical analysis should also try to incorporate independent ran-
dom censoring and search for direct correction of the likelihood of the ob-
served data. Also a comparison of several correction methods is desirable.

130ne other way to correct for heaping could be by including a set of dummy variables
for the starting months as covariates. Results that are available on request suggest that
this indeed improves the estimates of the constant. However it leads to a larger positive
bias of the duration dependence parameter.



Wolff & Augustin Heaping 23

This should also include alternative methods to deal with the problem, for
instance the treatment of heaping as a type of interval censoring.

Acknowledgement We are grateful to Hans Schneeweif for helpful discus-
sions and comments.
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Appendix Al: Proof of Proposition 3.1

The proof of Proposition 3.1 is based on Slutzky’s theorem, on the law of large
number and on the following lemma.

Lemma A1l Let T be Weibull distributed with parameters A = exp(—/fy) and «.
Then for every { > —«

(+a
F( o > (+a
]ETiC:T:eXP(C'ﬁo)'F<T> :
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To show Lemma A1l one transforms the occurlring integrals by the substitution
u= (M)%, du = Xat*'dt = Y adt and t = ua 5 into Gamma integrals:

00 0 1 F(<+o¢)
_ < =
/tca)\o‘to‘ Lexp(—(A\t)¥)dt = /U,a ﬁexp(—u)du ==
0 0
o

For deriving the formulae for the bias, first introduce a random variable H;,
stochastically independent of Tj, describing the heaping such that

T =T, + H; .
According to (9) one has for I € {1,---,¢},
PH;=1)=v", PH;=-1)=0Y, PH=0)=¢.

Proof of Part a)

E(;Z)-_Em)ﬂWﬂHﬁ—EmHEmﬂ—
= exp(fBo) + > (@ —50) -1
=1
Therefore
T
plim(ﬁa‘—ﬂo) = plim | In (=1 - Bo
T—00 n—00 n

o~

— In|1+ &L

exp(fo)
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Proof of Part b)

E(Z%) = B((1)) = BT} +2- T, Hi+ H?) =
=1
= B(TY) +2- B(T) - B(H;) + E(H) =

= exp(26)-T(2)+2- <exp Bo) - ( )) > -0y +

q

+Z(y(l) +0Wy. 2 =

= exp(26o) - | 1+ +

Therefore
> (T
nlirgo(ﬁ —B) = pEm g g =L - — B | =
Z (1/(1) + 5(0) 2 JT Z ( )
In(exp(26p)) + 5 In | 1+ = n -
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Appendix A2: Proof of Proposition 3.4

Proof of Part a)
From Proposition 3.1, Part a)

q

Z (U(l) _ 5(l)> .1

= plimB —In |1+ =
Po E—»oo IBO eXp(/BO)

q
M _shy.
Zl (1/ 0 ) l

<~ exp(fy) = exp <plimﬁ$>- 1+ = exp(Bo)

n—o0

exp (plim B3 > -exp (Ho)

n— 00

q
exp (Bo) + Z (V(z) _ 5(1)) y
=1

<~ exp(fy) = exp <plim B{;) — Z (,/(l) — 5(0) 1.

Therefore, by Slutzky’s Theorem,
lim DGy = plim |1 51 _ W _ 50 .
pli G 5;{.2(“(6@ (55) =30 (+ =)

(050
=1 lim 3 | — D_s0).q
oo () -2 (-4 4

=1
— In(exp(B0)) = fho -

-1

26
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Proof of Part b)

From Proposition 3.1, Part b)

q q
3 (V(l) +5<z>> NS (V(l) _5<z>> 1
P | =1 =1
= pl ——In|1+ +
fo = plmfls =5t exp(260) exp (o)
exp <2 plim )
= exp (26) = e
3 (,,m 4 5<z>> YN (,,m _ 5<z>> .
1+ =1 + =1
exp (260) exp (o)

q
=0 = (exp(B)’ + (ﬁr -Z(u<”—a<“)-Z> exp (By) +
=1

q
+ ( Z <y(l) + 5(1)> 12 —exp <2 plimﬁé)) .

=1 n—o0

Using (13) the assumption
q
VY (W = 60) 1+ exp(Bo) > 0
=1

made in Proposition 3.4 implies

Z (V(l) + 5(”) 1% < exp (2 plim B{j) .

=1 n—o0

This guarantees that the quadratic form in the variable exp(fy) from above pos-
sesses a well-defined and unique solution, namely

q
exp (By) = % . <_\/7_rlz (V(l) _ 5(5)) A+
=1

+J ™ (i (;ﬂ” - 5”)) -z>2 _4. (Z (u”) + 5(”) 12 —exp <2§E§35>> ) .

=1 =1
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Therefore

[zq: JT (5(1) _ ,,(0) +

=1

NEE (i (u(“ —~ 5(”) -l>2 —4. (i (,,(l) n 5(1)) 12— exp (%3))

=1 =1

N | =

plim 23, = plim ln(

n—oQ n— 00

1 [
= In| = \/7_-( 6(” _ y(l) 4
(s[5 er-)
2 q
+oal T (Z (V(l) - (5(”) -l) —4- (Z <I/(l) + 5(1)> 12 —exp <2 plimﬁé))

=1

Appendix A3: Heaping Which Depends on the
Entry Month

Here we consider the case where the heaping probabilities depend on the entry
month. Let for every month j € {1,..., Smaz} the heaping probabilities v(b3) and
6(7) be defined analogous to Section 3.2. Further let B; be the random variable
describing the entry month of unit 7.

Assume that the true duration T is stochastically independent of B; and, analogous
to above, that H; and T; are conditionally independent given B;. Further the entry
month B; is taken to be independently and identically distributed among all units
1=1,...,n.

We will consider explicitly only the case @ = 2; the case &« = 1 can be treated
in the same way. It is shown that the expectation IE((T}")?) depends only on the
marginal probabilities
Smazx
V(l) = ZV(IJ)P({BZ:J})a lzla"'aqa
7=1
Smazx
6(” = Zé(lyj)P({BZ:]})7 l:17"'7q7

j=1
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of the heaping variable H;. Then the arguments used in Appendiy Al and Ap-
pendix A2 to discuss bias and bias correction are also valid for the case considered

here.

Smaw

B(T1B)) = Y B (T B:) - PUB: = j}) =
j=1
fj( (T2 |B;) + B(T; |B;) - <HZ-|BZ->+1E<H3|B»>-P({&:j})z

B2+ BTy (Z (vt )-z) P({B: = ) +

j=1
+sm” g (G.3) 4 5(bd) ) ({B; = j})
j=1 <z1 ( ) !
B(T7) +
q Smax Smax
+IE(T;) - (Z (ZV P({B; =j}) - 25 W P({B; = J})) ) +
=1 \ j=1

J=1 J=1

+Z<WZM PUB=ih+ 3 609 P {Bm) -

q

q
BT+ B(T) - (v0 = 00) 143 (10 +50) 2.
=1

=1

Appendix B

Appendix Table B.1 shows simulation results, when a number of covariates
is introduced to an exponential DGP. The heaping is again such that there is
40 percent chance for spell starts December and February to be changed to
January and a 30 percent chance that the spell starts November and March
will become January. The probability that a spell starts in a specific calendar
month is no longer 1/12. The calendar start of the spell are drawn such that
the distribution of the inflow over calendar months is by and large in line
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Table B1: Simulation results for exponentially distributed spells includ-
ing covariates, 40 percent of the spell starts heaped from December
and February to January, 30 percent of the spells starts heaped from
November and March to January
Estimated mean
Coeff. (Parameter) SE

age 0026 (-0.021)  0.027
age? /100 0.205 (0.2) 0.038
Education dummies

unskilled 0.688 (0.7) 0.136
vocational training (base)

master /craftsmen -0.518 (-0.5) 0.166
engineer /technical university -0.913 (-0.9) 0.184
university degree -1.451 (-1.5) 0.158
In(Vacancy-Unemployment Ratio) 19.661 (20) 4.473
Bo -0.113 (-0.250) 0.482
a 1.026 (1) ;
In(c) 0.025 (0) 0.035

Number of obs.: 500
Number of simulations: 200

with the distribution of the population inflow over calendar months into reg-
istered unemployment in East-Germany over the period 1991 to 1994. Values
for covariates are drawn such that the sample is reflecting characteristics of
a male inflow sample into registered unemployment from the GSOEP-East
from 1991 to 1994 (Wolff [1998]). Table B.1 displays the mean coefficients
and standard errors of 200 simulations of maximum likelihood estimation of
a Weibull likelihood. The true parameter values of the covariate are dis-
played in brackets. There is no indication, that at the chosen sample size
the simulated parameter estimates are significantly different from their true
values.



