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Abstract

This paper presents methods to analyze and detect non-MCAR processes that
lead to missing covariate values in linear regression models. First, the data situation
and the problem is sketched. The next section provides an overview of the methods
that deal with missing covariate values. The idea of using outlier methods to detect
non-MCAR processes is described in section 3. Section 4 uses these ideas to intro-
duce a graphical method to visualize the problem. Possible extensions conclude the
presentation.

1 Data and problem
We consider the classical linear regression model
y(nx 1) = X(n x p) B(p x 1) + e(n x 1)

with missing data in the n x p covariate matrix X. Reorganization of the n rows of the
data matrix X, the corresponding elements of the response y and the error term e leads
to the following structure

(e )= (o ) () )

The index c indicates the completely observed submodel whereas the index mis corre-
sponds to the submodel with missing values in the covariate matrix X,is (note that y;s
is completely observed).

Using the missing data indicator matrix R introduced by (Rubin, 1976)

R 1 if Z;; is observed
Y1 0 if Zj; is missing

with data Z;; = (y;, X;;), the missing mechanism can be characterized by the conditional
distribution f(R|Z, ¢) of R given the data Z and an unknown parameter ¢. The nx (p+1)
matrix Z consists of observed data Z,,s and unobserved values Zyjs.

The data are said to be missing completely at random (MCAR) if the distribution of
R given Z and ¢ only depends on the unknown parameter ¢ for any Z, i.e.

f(R|Z,¢) = f(R|¢) VZ.

If the conditional distribution of R depends on Z only via the observed values Zyps
(for all Z,s, i.e.

f(R|Z7 ¢) = f(R|Z0b87 ¢) VZmis )

the data are called missing at random (MAR).
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The optimal estimator is the Gauss-Markov estimator b applied to the data in (1):

—1
b= Yo )\ X Xe \' ([ we
Xmis Xmis Xmis Ymis
= (X(’:Xc+XrlnisXmiS)71(Xéyc+X12nisymiS)- (2)

Due to the unknown values in X5, of course this estimator can not be used directly.
There are a variety of methods that deal with this problem.

2 Dealing with missing values

A simple and often used method is to discard all the information available in (ymis, Xmis)
and to use the completely observed data in (y., X.) only:

be = (X¢Xe) ™ Xeye -

Using the available information in Z by estimating

where the elements of i]m and iwy are formed by using all jointly observed pairs z;;, z; j
and x;;,yy is called the available case method.

Maximum likelihood procedures address the missing data problem by factoring the
joint distribution

f(Z,R0,8) = f(Z]0)f(R|Z,€) .

Integration over the missing data Z,;s yields
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If f(R|Z) depends only on the observed data Zgps, i.e. the MAR assumption holds, we
have

ﬂ%mﬂ&@ZﬂM%mO/f@WM%mzﬂM%mﬂﬂ%M®,

which is why the missing data mechanism is also called ignorable in this case.

Imputation procedures form a different approach to the problem. Here the missing
values in X,;s are replaced by new values. Having done this by some procedure, the
estimator (2) with X,,;s replaced by Xg with X as described below becomes operational.
To replace the unknown values in Xy a variety of imputation methods exist: mean
imputation or zero order regression (ZOR) replaces an unknown value z;; by the mean
z;, either formed of the complete cases in X, or the available cases in X, and Xpjs.

Conditional mean imputation or first order regression (FOR) uses auxilliary regressions
to find replacements for the missing values. Regressing the covariate with missing values
on the remaining covaraites (with parameters estimates based on the complete cases)
yields predictions of the missing values that are used as substitutes. If the response y
is also used in these regressions a stochastic element is introduced (see Buck (1960) or
Toutenburg and Shalabh (1998)).

Multiple Imputation (Rubin, 1987; Schafer, 1997) repeats the imputation step and
averages the results. While a single imputation is too smooth, the differences between the
individual imputation steps can be properly used to estimate the variance as the sum of
the average variance within the imputed data sets and the between imputation variance.
This strategy reflects the uncertainty about the imputation process which is ignored in a
single imputation strategy.

By replacing a missing value by zg, the model (2) becomes the mixed model

()= )+ (3)+ (&)



where ¢ addresses the difference between the true but unknown values in X,,;s and their
replacements in Xp. Using the mixed estimator (Theil and Goldberger, 1961) we have

((5)(5) () ()

= (XX, + XpXp) ™ (Xeye + Xpus)
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The weighted-mixed-estimator introduced by Schaffrin and Toutenburg (1990) uses a
weight A < 1 for the values in (ymis, Xr)

b(A) = (XX + AXRXR) ™ (Xiye + AXfyR) - (3)

This estimator may be interpreted as the familiar mixed estimator in the model
()~ (e ()
\/Xy* \/XXR \/ng .
3 MCAR diagnosis with outlier measures

Popular diagnostics to detect non-MCAR processes contain the comparison of correlation
or covariance matrices, the comparison of means (7. vs. mis) or a more general test as
described by Little (?7777). For the situation with only one column affected by missing
values Simon and Simonoff (1986) present diagnostic plots where ‘envelopes’ are compared.

The idea first presented by Simonoff (1988) combines the missing data problem with
statistics that derive from the oulier detection field. A comparison of the values of a
statistic computed with and without imputation is the comparison of the sub-samples Z.
and Zpis.

If the imputation of values can be considered appropriate under MCAR and we really
have MCAR (which is the null hypothesis Hy), the statistics should be ‘more or less’ the
same. If we have something other than MCAR, the statistics should reflect this by having
different values.

Simonoff (1988) uses Cook’s distance, which is based on the confidence ellipsoid

(B = B) (XLX)(Bs = Be)

2
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the residual sum of squares DRSS (Andrews and Pregibon, 1978)

(RSS, — RSSe)/nmis

DRSS = RSSC/(”C — Nmis — P + 1) ’

and the determinant of the X'X matrix DXX (Andrews and Pregibon, 1978)

| Xe Xl

DXX = :
[XIXL

For the construction of tests the distribution of the measures under Hg is needed.
As this distribution also depends on the X values, Monte Carlo methods are used to
determine it by first computing the complete case statistics, and imputing missing values
under MCAR-assumption. The generation of new response values

yxi(sj = Xmis/;)c + MO
with eM® ~ N(0,s%I) generates a new data set where ‘missing values’ are drawn from
using an MCAR mechanism.

After applying the imputation procedure to these data the diagnostic measures are
computed. Repeating the ‘data deletion” and imputation steps a null distribution of the
diagnostic measure is generated. Finally the measure can be applied to the imputed
original data and the resulting value can be compared to the null distribution.



4 Graphical diagnosis of the missing mechanism

Animated residualplots are presented in Cook and Weisberg (1989). In a stepwise proce-
dure weights between 0 and 1 are used to include one case into the regression. The plots
thus represent the influence of that single case. Park, Kim and Toutenburg (1992) present
a similar approach to visualize the inclusion of a further variable into a regression model.

The adaption to the situation with missing data which shows a close relationship to
the procedures of the preceeding section is described in 7. Like in the above procedures,
imputation is performed under an MCAR assumption. Having filled the gaps in X5, the
weighted-mixed-estimator (3) is computed for certain values A € [0,1]. Again the ideas
is, that if we really have MCAR, there should not be any tendency in the residual plot,
when stepwise including Zg in the model by increasing the weight from 0 to 1.

Figure 1 shows a small program that visualizes the following procedure:

for (A =0; XA < 1; A=step) {
compute regression parameters;
compute estimated residuals;
display residual-plot;

B lv.eps) Hi=1 k3

Figure 1: Java program for visualization on computer screen. Reads data for
each frame of the animation and draws the single plots of the animation. See
http://www.stat.uni-muenchen.de/~andreas/

The residual plot in figure 2 shows an example of an animated plot of § (an the X-axis)
versus € (on the Y-axis) for a model y = By + f1x; + P22 + € with missing data generated
by a non MAR process where P(R;» = 0) (a value ;5 is missing) dependes on xs.

An increasing A gives higher weight to the imputed data in the estimation of the
regression parameters. The center of the residual plot in figure 2 shifts towards the
origin. For A = 1 the imputed data have the same weight as the complete data and biased
estimated result. A =0 (the complete case esitmator) on the other hand gives consistent
estimates as the missing process is independent of the response y.

5 Possible extensions

The ideas of animated residual plots could be extended in various ways. Imagine a si-
multaneous plot of € vs. § vs. X; in different windows where the windows are linked. By
brushing selected points of the plot could be highlighted in all windows and their location
or movement can be studied while the value of A changes.

Univariate plots y vs. X for all j together with the estimated regression line BO + /3’,-X,~,
where the points are static (as the imputation does not depend on the weight \) and the
estimated regression line is dynamic. Again, these plots could be linked as described
above.

Creation of a null plot where missing values are created artificially by a known MCAR
mechanism. This plot can be used as a means of comparison in order to have an idea of
what the plot should look like under MCAR.
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Figure 2: Residualplot of § (X-axis) versus € (Y-axis) for a model y = o + f12; + Box2 + €
with a non MAR process where P(R;» = 0) (a value z;» is missing) dependes on z,. A
from 0 (top left) to 1 (bottom right).
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