Insulin-Like Growth Factor (IGF)-I and -II and IGF-Binding Proteins-1, -2, and -3 in Children and Adolescents with Diabetes Mellitus: Correlation with Metabolic Control and Height Attainment*

BRIGHTT STRASSER-VOGEL, WERNER F. BLUM†, ROSWITHA PAST†, ULRIKE KESSLER, ANDREAS HOEFLICH†, BARBARA MEILER, AND WIELAND KIESS†

Department of Pediatric Endocrinology (B.S.-V., R.P., U.K., A.H., B.M., W.K.), Children's Hospital, University of Munich, D 80337 Munich 2, Germany: and Children's Hospital (W.F.B.), University of Tübingen, D 72070 Tübingen, Germany

ABSTRACT

The putative effects of diabetes and metabolic control on circulating levels of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) remain controversial. In the present study, serum levels of IGF-I and IGF-II and IGFBP-1, -2, and -3 were measured in 58 patients (age, 0.8–17 yr) with treated (51 subjects) or untreated (7 subjects) insulin-dependent diabetes mellitus (IDDM) and were compared with the levels in normal subjects. In the untreated patients, IGF-I and IGF-II were decreased as compared with the healthy controls. In the treated diabetes IGF-I and IGF-II were reduced; IGFBP-2 (only in prepubertal subjects) and IGFBP-3 were increased. Furthermore, age-adjusted values of IGF-I, IGF-II, and IGFBP-3 were lower in prepubertal than in pubertal patients. Regression analysis revealed a negative correlation between hemoglobin (Hb)A1c and standard deviation scores (SDS) of IGF-I and a positive association between HbA1c and IGFBP-1 SDS or IGFBP-2 SDS. In the treated patients HbA1c was positively related to IGFBP-1 SDS and IGFBP-2 SDS when applying simple regression analysis and to IGFBP-2 SDS when using a multiple regression model. Strong correlations were observed between height SDS and IGF-I SDS, IGF-II SDS, and IGFBP-3 SDS in prepubertal subjects who had had IDDM for at least 2 yr, but not in adolescents. Such correlations have also been found in healthy children and adolescents. In conclusion: 1) IDDM is associated with alterations of the IGF-IGFBP system, which are partially accounted for by differences in metabolic control and pubertal status; 2) the lower plasma concentrations of serum IGF-I may play a role in the pathogenesis of growth impairment of poorly controlled prepubertal, but not pubertal, children and adolescents with IDDM; and 3) in addition, a potential role of the altered IGF-IGFBP system for the development of diabetic late complications is hypothesized. (J Clin Endocrinol Metab 80: 1207–1213, 1995).

SHORT- and long-term consequences of insulin-dependent diabetes mellitus (IDDM) not only result from insulin deficiency itself but also from secondary metabolic and hormonal derangements. In the last decade interest has focused on insulin-like growth factor-I (IGF-I) as a candidate molecule that may play a key role in the pathogenesis of immediate or late diabetic complications (1–7).

IGF-I is a GH-dependent polypeptide that has a 3-fold function as a mediator of the growth-promoting action of GH, as a potent mitogenic factor, and as a metabolic regulator with insulin-like activity (1, 7). Alterations of IGF-I regulation may provide an attractive explanation for IDDM-associated growth impairment as well as for proliferative microvascular complications. So far, it is unclear whether IGF-II, a peptide that is homologous to IGF-I, could likewise play a pathophysiological role in diabetic complications. In vivo and in vitro studies have suggested mitogenic and metabolic functions for IGF-II that are similar to those of IGF-I. In addition, IGF-II is thought to be an important regulator of fetal and embryonic growth (2, 7). It is unclear whether IGF-II is GH dependent (1, 2, 7). Unlike IGF-I, the serum concentration of which increases during childhood and puberty secondary to rising GH secretion, in the human IGF-II levels remain nearly constant after an initial rise during the first year of life (7–9). In the circulation the vast majority of the IGFs is bound to specific carrier proteins, the IGF-binding proteins (IGFBPs), which greatly prolong their half-time and regulate their bioavailability and their bioactivity (3, 4, 10, 11). So far, six different IGFBPs (IGFBP-1 to -6) have been cloned and sequenced.

The predominant IGFBP in the blood is IGFBP-3, which forms a large 150-kilodalton (kDa) ternary complex. The serum level of this complex determines the total concentration of circulating IGFs and regulates the growth-promoting potential of IGF-I (2, 10–19). Serum levels of IGF-I and IGFBP-3 are positively related to nutritional status and age during childhood and adolescence (20–25). It is not
definitively settled, however, whether IGFBP-3 is acutely regulated by GH or IGF-I (26–28). Current opinion favors GH as the major regulator of IGFBP-3 levels in the human. In vivo and in vitro experiments indicate relatively poor control of IGFBP-3 concentrations by IGF-I (8, 9, 20, 29–31).

The second most abundant IGFBP in the circulation is IGFBP-2, a 31.3-kDa protein with a preferential affinity for IGF-II. Little is known about the regulation and biological function of IGFBP-2. In animals insulin may control IGFBP-2 production (21, 23). However, no such regulation was found in man (20).

IGFBP-1, a 25-kDa carrier protein, might play an important role in modulating mitogenic and metabolic effects of free IGFs. Insulin-like activity is blocked by excess IGFBP-1, whereas the mitogenic potential of the IGFs can be enhanced or inhibited by IGFBP-1 depending on the target cells and the experimental conditions (14–17). Inasmuch as hepatic IGFBP-1 secretion is directly suppressed by insulin and stimulated by substrate deprivation (18, 19, 24–28, 32), this carrier protein might be directly involved in glucose counterregulation. IGFBP-1 might inhibit the glucose-lowering potential of IGFs in response to hypoglycemia and allow for the expression of insulin-like activity after food intake. IGFBP-1 levels are inversely related to insulin levels in healthy (25, 26) and in diabetic subjects (27, 28). They decline with advancing age, coinciding with rising insulin secretion (32, 33). A marked circadian variation with peak levels in the early morning when insulin levels are lowest has been reported (32).

The close relationship between the IGF-IGFBP system and glucose homeostasis has encouraged many investigators to study the influence of diabetes on the serum levels of the IGFs and/or the IGFBPs. The data from these studies are rather conflicting. We have systematically and simultaneously measured serum levels of five components of the IGF-IGFBP system in children and adolescents with diabetes. Importantly, we have asked whether alterations of the IGF-IGFBP system impair growth of diabetic children.

Subjects and Methods

Diabetic subjects

The study population consisted of 58 children and adolescents with IDDM, 21 girls and 37 boys. At the time of blood sampling 7 patients had not yet received exogenous insulin therapy, since they had just been hospitalized with newly detected diabetes; none of them had required intensive care hospitalization. The remaining 51 patients had been diabetic for at least 3 months before blood sampling. Insulin therapy was conventional (2 daily injections) in 40 and intensified (at least 3 daily injections) in 11 subjects. Apart from IDDM, none of the patients had an acute or chronic illness. Other than insulin the patients did not receive any medication. No hormonal deficiency that could be expected to interfere with metabolism of IGFs or IGFBPs was present in any of the patients. The patients' heights, weights, pubertal stages according to Tanner, and HbA1c values were recorded at each clinical visit. HbA1c was measured by high performance liquid chromatography (Diamat, BioRad, Richmond, CA). Venous blood samples for determination of IGFs and IGFBPs were obtained during routine visits in the afternoon together with samples for routine blood testing. The study protocol was approved by the Ethical Committee of the Children's Hospital, University of Munich. Parents and patients gave their informed consent.

Control subjects

The control population consisted of 600 healthy, male and female children and adolescents. Serum samples for measurement of the IGFs and IGFBPs were collected during daytime. The results were used to establish percentiles for each biochemical parameter. Comparisons between the patients and the reference subjects were based on age-independent standard deviation scores (SDS) (29, 34, 35).

Biochemical methods

IGF-I RIA. IGF-I was measured by an IGBP-blocked RIA using a highly specific monoclonal antiserum (anti-IGF-I MA. IGF-I was measured by an IGFBP-blocked RIA using a highly specific polyclonal antiserum with a cross-reactivity with IGF-II of less than 0.05% (a kind gift of Drs. B. Breier and P. Glacken, Children's Hospital, University of Auckland, Auckland, New Zealand) (30, 36). Briefly, serum samples were diluted 1:150 in an acidic buffer to dissociate IGFs from IGFBP. On neutralization, a large excess of IGF-II (Medignost, Tübingen, Germany) was added to block IGFBP-binding sites. Details of the assay will be published elsewhere. The sensitivity at a serum dilution of 1:180 was 3 pg/L, and the intra- and interassay coefficients of variation at 50% B/B0 (n = 20) were 3.7 and 9.6%, respectively.

IGF-II RIA. The assay was performed in acid ethanol extracts using a specific antiserum for the C-peptide domain of IGF-II (29, 30, 35). Cross-reactivity of the antiserum with IGF-I is less than 0.005%. Interference of residual IGFBP was blocked by addition of excess IGF-I as described before (35, 36). Intra- and interassay coefficients of variation at 50% B/B0 (n = 20) were 3.7 and 9.6%, respectively.

IGFBP RIA. IGFBP-1 was measured by a specific RIA as described previously (30). IGFBP-2 was measured by RIA using a polyclonal antiserum against a synthetic partial sequence of IGFBP-2 (176–190) as described before (22), except that for preparation of radiolabeled tracer and of standards, recombinant IGFBP-2 (a kind gift of Sandoz, Basel, Switzerland) was used. IGFBP-3 was measured by RIA using a specific polyclonal antiserum against authentic IGFBP-3 purified from human Column fraction IV, which showed no cross-reactivity with IGFBP-1 or IGFBP-2 up to 1 mg/L. Details of the assay have been reported previously (37).

Statistics

Results are expressed as mean ± sd, median and range. SDS were used if required to remove an obvious or possible age dependence (height and serum levels of IGFs and IGFBPs). For calculating height SDS scores the data from the Zurich longitudinal study were used (38). Statistical calculations were performed with the StatWorks program (Cricket Software, Philadelphia, PA). Differences between groups were evaluated by the unpaired t test. Simple regression analysis was used to assess the relationship between two parameters. Multiple regression analysis was performed to determine which variables were independently associated with constants. Two-way analysis of variance was applied to both regression analysis models.

Results

Clinical results

Clinical and diabetes characteristics of the study population are presented in Table 1. Actual age, age at onset of diabetes and body mass index (BMI) did not differ between treated and untreated patients. Height SDS and HbA1c were significantly higher in the untreated patients (height SDS, 0.32 vs. 0.53, P < 0.001; HbA1c, 8.1% vs. 12.2%, P < 0.0001). When the patients on insulin therapy were grouped as prepubertal (n = 28) and pubertal (n = 23), both groups differed significantly with respect to the duration of diabetes (P < 0.003) but not with regard to height SDS, age at onset of diabetes, and HbA1c.
TABLE 1. Clinical and diabetes characteristics of the study subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>10.9 ± 3.9</td>
<td>11.0</td>
<td>0.8–17.5</td>
</tr>
<tr>
<td>SDS height</td>
<td>-0.23 ± 1.14</td>
<td>-0.17</td>
<td>-2.47–2.9</td>
</tr>
<tr>
<td>Duration (yr)</td>
<td>4.0 ± 3.9</td>
<td>2.9</td>
<td>0–16</td>
</tr>
<tr>
<td>Age at onset (yr)</td>
<td>6.9 ± 3.8</td>
<td>6.6</td>
<td>0.8–14.4</td>
</tr>
<tr>
<td>Insulin (U/kg)a</td>
<td>0.75 ± 0.22</td>
<td>0.78</td>
<td>0.32–1.23</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.6 ± 2.1</td>
<td>8.0</td>
<td>5.2–16.8</td>
</tr>
</tbody>
</table>

a Only treated patients (n = 51).

Biochemical results

Serum levels and SDS of IGF-I, IGF-II, and IGFBP-1, -2, and -3 of treated and untreated patients and P values for differences between the diabetic patients and the reference population are presented in Tables 2 and 3. Figure 1 shows the graphical distribution of the patients’ data within the corresponding percentiles. In the whole group of treated and untreated patients, IGF-I and IGF-II levels were significantly reduced (P < 0.001) and serum IGFBP-3 elevated (P < 0.001) compared with the reference values. Subjects with untreated IDDM had decreased serum concentrations of IGF-I and IGF-II (P < 0.01). IGFBP-2 tended to be increased and IGFBP-3 to be reduced in subjects with untreated IDDM. These differences were not significant due to great interindividual variation. In the group of patients with treated IDDM, a marked reduction of IGF-I and IGF-II levels (P < 0.001) and an increase of IGFBP-3 levels (P < 0.001) was evident. Comparison of patients with and without insulin therapy revealed lower serum concentrations of IGF-I and IGFBP-3 (P < 0.0001) and higher IGFBP-2 levels (P < 0.0001) in the untreated diabetics. When the population of treated patients was grouped into prepubertal and pubertal, serum levels of IGF-I (P < 0.01) and IGFBP-3 (P < 0.03) were lower in the prepubertal patients than in the pubertal patients (IGF-1 SDS, −0.86 vs. −0.21; IGFBP-3 SDS, 0.84 vs. 1.47). Serum concentrations of IGF-I were normal in the pubertal patients but reduced (P < 0.001) in the prepubertal patients. IGFBP-2 levels were normal in the pubertal patients but elevated in prepubertal patients (P < 0.01). Serum IGF-II was reduced (P < 0.001) and serum IGFBP-3 increased (P < 0.001) both in pubertal and prepubertal patients.

Possible interrelationships between clinical or diabetes parameters (age, BMI, insulin dose, duration of diabetes, age at onset, and HbA1c) and the SDS of the IGFs and IGFBPs were assessed by simple regression analysis. The analysis was applied to the overall study population and also to the group of treated patients alone. The results of this analysis are presented in Table 4. Figure 2 shows the relationship between IGF-I SDS or IGFBP-2 SDS and HbA1c in the overall study population: IGFBP-2 and IGFBP-1 levels correlate significantly with HbA1c levels, whereas IGF-I is inversely related to HbA1c. Multiple regression analysis was performed to evaluate independence of variables (gender, age, BMI, duration of diabetes, and HbA1c). Parameters without significant correlations in the simple regression model were not included in this analysis. Possible relationships between SDS height and the SDS of the IGFs and IGFBPs were evaluated only in those patients who had IDDM for at least 2 yr. In this population, simple regression analysis revealed positive correlations between height SDS and IGF-I SDS (r = 0.47; P < 0.004), IGF-II SDS (r = 0.43; P < 0.008), and IGFBP-3 SDS (r = 0.53; P < 0.001). Analogous results were obtained with multiple regression analysis using gender, age, duration of diabetes, and HbA1c as covariates (Table 5). In the prepubertal subjects, however, height SDS was strongly related to IGF-I SDS (F = 4.4; r = 0.76; P < 0.0001), IGF-II SDS (F = 5.3; r = 0.71; P < 0.0001), and IGFBP-3 SDS (F = 5.1; r = 0.8; P < 0.0001). Such correlations were not found in pubertal patients. It is important to realize that height SDS did not differ significantly between both groups of patients (−0.37 in prepubertal vs. −0.13 in pubertal patients).

Discussion

This study reveals the presence of multiple alterations in the IGF and IGFBP system of diabetic children and adolescents. IGF-I levels were reduced in patients with and without insulin therapy. In the literature, data regarding IDDM-associated alterations of IGF-I levels are conflicting (5, 39–46). In adult patients IGF-I has been demonstrated to be decreased (33, 44, 45, 47, 48), normal (6, 27) or increased (5, 44). When IGF-I levels in children and adolescents are measured, the strong age dependence of IGF-I should be taken into account. Of three studies fulfilling this criterion, one found decreased serum IGF-I in well controlled patients (43); another reported subnormal IGF-I levels in adolescents (42); and one found no significant difference of IGF-I levels between diabetics and healthy children and adolescents (40). In none of the studies were age-adjusted IGF-I values of prepubertal and pubertal patients compared. As a reason why IGF-I levels are normal in our adolescent diabetics but low in the prepubertal patients, the following possible explanations come to mind. The diabetes-associated suppression of IGF-I generation is attributed to GH receptor (6, 49) or postreceptor (45, 46) defects. Although GH is the major determinant of circulating IGF-I, other factors such as sex steroids

TABLE 2. Serum levels and SDS of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in 51 treated patients with IDDM

<table>
<thead>
<tr>
<th>Serum levels (μg/L)</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
<th>SDS</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-I</td>
<td>174 ± 98</td>
<td>140</td>
<td>25–496</td>
<td>-0.57±0.03</td>
<td>-0.55</td>
<td>-3.34–+1.63</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>409 ± 120</td>
<td>479</td>
<td>166–777</td>
<td>1.06±1.15</td>
<td>0.8</td>
<td>-4.48–+1.13</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>IGFBP-1</td>
<td>30.6 ± 16.7</td>
<td>25</td>
<td>14–98</td>
<td>-0.15±0.57</td>
<td>-0.23</td>
<td>-1.27–+1.62</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>IGFBP-2</td>
<td>281 ± 141</td>
<td>356</td>
<td>166–680</td>
<td>0.97±1.49</td>
<td>0.38</td>
<td>-2.4–+3.34</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>IGFBP-3</td>
<td>3868 ± 882</td>
<td>3964</td>
<td>1302–5772</td>
<td>1.12±0.98</td>
<td>1.28</td>
<td>-2.24–+2.61</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

a The P values refer to the difference between the patients and the control group, calculated on the basis of SDS.
TABLE 3. Serum levels and SDS of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in seven untreated patients with IDDM

<table>
<thead>
<tr>
<th></th>
<th>Serum levels (µg/L)</th>
<th>SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Median</td>
</tr>
<tr>
<td>IGF-I</td>
<td>75 ± 41</td>
<td>78</td>
</tr>
<tr>
<td>IGF-II</td>
<td>443 ± 185</td>
<td>439</td>
</tr>
<tr>
<td>IGFBP-1</td>
<td>36.1 ± 17.5</td>
<td>34</td>
</tr>
<tr>
<td>IGFBP-2</td>
<td>732 ± 737</td>
<td>437.5</td>
</tr>
<tr>
<td>IGFBP-3</td>
<td>2761 ± 13282</td>
<td>2751</td>
</tr>
</tbody>
</table>

\(\rho^* \) The \(P \) values refer to the difference between the patients and the control group, calculated on the basis of SDS.

TABLE 4. Correlations between the SDS of IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3, and clinical parameters as evaluated by simple regression analysis

<table>
<thead>
<tr>
<th>Constant</th>
<th>Variable</th>
<th>All patients (n = 58)</th>
<th>Treated patients (n = 51)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(r)</td>
<td>(P)</td>
</tr>
<tr>
<td>IGF-I SDS</td>
<td>HbAlc (%)</td>
<td>-0.46</td>
<td><0.0001</td>
</tr>
<tr>
<td>IGF-II SDS</td>
<td>Age (yr)</td>
<td>0.34</td>
<td><0.01</td>
</tr>
<tr>
<td>IGFBP-1 SDS</td>
<td>Age (yr)</td>
<td>0.43</td>
<td><0.001</td>
</tr>
<tr>
<td>IGFBP-1 SDS</td>
<td>Duration (yr)</td>
<td>0.37</td>
<td><0.005</td>
</tr>
<tr>
<td>IGFBP-1 SDS</td>
<td>HbAlc (%)</td>
<td>0.46</td>
<td><0.0001</td>
</tr>
<tr>
<td>IGFBP-2 SDS</td>
<td>HbAlc (%)</td>
<td>0.38</td>
<td><0.003</td>
</tr>
<tr>
<td>IGFBP-3 SDS</td>
<td>Age (yr)</td>
<td>0.36</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Only significant correlations (\(P < 0.05 \)) are depicted.

Fig. 1. Serum levels of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in 58 patients with IDDM. The plots depict IGF-I (a), IGF-II (b), IGFBP-1 (c), IGFBP-2 (d), and IGFBP-3 (e) levels according to age (in years). The lines give the 5th, 50th, and 95th percentiles. Symbols are for individual patients: stars, untreated patients; boxes, treated patients.

also stimulate IGF-1 secretion (50–52). Thus, the puberty-associated increment of sex hormone serum concentrations could lead to the normalization of lowered IGF-I concentrations during puberty. Since diabetes may result in delayed puberty, it is plausible that IGF-I levels that are lower in diabetic children than in controls would be normal when adjusted for pubertal stage rather than for age. However, no obvious pubertal delay was present in our patients.

Several investigators reported a significant increase of IGF-I levels on improvement of metabolic control in children and adolescents with IDDM (5, 6, 40, 44, 47, 53). These data suggest a possible effect of glycemic control on IGF-I serum levels (40, 47). Indeed, we could demonstrate a significant inverse correlation between HbAlc and SDS IGF-I in our study population. In addition, in five of our patients serial IGF measurements could be performed over a 2-yr period: although the number of patients was too small to allow for mathematical calculations, IGF-I SDS scores rose when metabolic control improved in three patients; in one patient IGF-I serum levels remained constant despite improved metabolic control, and in one patient both IGF-I SDS and HbAlc remained stable (data not shown). These findings, along with the data from other studies (5, 6, 39, 40, 44, 47, 53), suggest a possible effect of glycemic control on IGF-I levels in poorly controlled diabetic children.

Since IGF-I plays a major role in growth regulation, we were interested in the relationship between height and IGF-I values. We found a strong association between height SDS and IGF-I SDS in prepubertal patients but not in pubertal patients. This is in agreement with a study from Dacou-Voutetakis et al. (54), who found no significant correlation of IGF-I levels with height SDS in healthy pubertal subjects. In healthy children and adolescents, a steeper regression line between IGF-I and GH secretory capacity is found during puberty than before sexual maturation. As in our diabetic
FIG. 2. Relationship between HbA1c and SDS IGF-I and HbA1c and SDS IGFBP-2 in 58 patients with IDDM (SDS IGF-I vs. HbA1c, r = -0.46; P < 0.0001; SDS IGFBP-2 vs. HbA1c, r = 0.38; P < 0.003).

TABLE 5. Correlations between the SDS of IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3, and clinical parameters as evaluated by multiple regression analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>All patients (n = 58)</th>
<th>Treated patients (n = 51)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F r P</td>
<td>F r P</td>
</tr>
<tr>
<td>IGF-I SDS</td>
<td>5 0.46 <0.0001</td>
<td></td>
</tr>
<tr>
<td>IGF-I SDS</td>
<td>Height SDS</td>
<td>5 0.47 <0.004</td>
</tr>
<tr>
<td>IGF-II SDS</td>
<td>Height SDS</td>
<td>4.5 0.43 <0.008</td>
</tr>
<tr>
<td>IGFBP-3 SDS</td>
<td>Height SDS</td>
<td>5 0.53 <0.001</td>
</tr>
<tr>
<td>IGFBP-1 SDS</td>
<td>Duration (yr)</td>
<td>5.4 0.51 <0.04</td>
</tr>
<tr>
<td>IGFBP-1 SDS</td>
<td>HbA1c (%)</td>
<td>5.8 0.37 <0.001</td>
</tr>
<tr>
<td>IGFBP-2 SDS</td>
<td>HbA1c (%)</td>
<td>2.7 0.38 <0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only parameters with significant correlations in the simple regression model are included in the analysis.

IGFs AND IGFBPs IN DIABETES MELLITUS 1211

IGF-I and height SDS show a significant correlation in patients with IDDM similar to the correlation that exists in healthy children and adolescents.

Little data exist regarding the influence of IDDM on IGF-II serum levels. Normal IGF-II values have been reported in small series of diabetic adults (5) and adolescents (39). Nevertheless, in the study of Amiel et al. (39), four patients with very low serum IGF-I also had depressed IGF-II levels, which were normalized with improved metabolic control. We found a significant reduction of IGF-II levels in treated as well as in untreated IDDM patients.

Since IGFBP-1 seems to be the only component of the IGF-IGFBP system that is directly regulated by insulin, its pathophysiological role in diabetes is an area of intense investigation. When considering only studies with adequate age-matching or age-corresponding reference values, a significant increase of serum IGFBP-1 in adults and adolescents with IDDM is reported consistently (27, 28, 33, 48, 55, 56). In contrast, we did not find any significant alteration of IGFBP-1 levels in our patients. The reason for this discrepancy is not clear.

Although mean HbA1c values of our patients were much lower than those reported in most previous studies, differences in glycemic control cannot explain our unexpected findings, since we could not demonstrate markedly elevated serum IGFBP-1 levels even in patients with newly diagnosed, untreated IDDM. The serum samples of our study and control populations were collected under nonstandardized conditions. An optimal study design had to take into account that IGFBP-1 levels vary depending on daytime and food intake. However, substantial fluctuations of serum IGFBP-1 are mainly demonstrable during the night, whereas the variations during daytime and after meals are rather small (56). The age-adjusted IGFBP-1 values of our treated patients were positively related to the duration of IDDM. Since the mean diabetes duration was rather short (4.5 yr), a longer diabetes duration in other study populations could provide an explanation for the higher IGFBP-1 values reported in the literature. Despite the normal IGFBP-1 levels, we found a significant inverse relationship between SDS IGFBP-1 and HbA1c. This finding is in accordance with previous studies (33, 48, 57). The association between elevated IGFBP-1 levels and IGF-I inhibitory activity on cartilage sulfation in poorly controlled diabetic adolescents has led to the suggestion that IGFBP-1 may play a role in diabetes-related growth impairment (58). However, our study failed to demonstrate a significant relationship between height SDS and IGFBP-1 SDS.

In agreement with the literature (48), our study demonstrated a complete abolition of the normal age dependence of IGFBP-1 levels in diabetic patients. This finding is not surprising, since the physiological decrease of serum IGFBP-1 during childhood and puberty results from increasing insulin secretion. In our study population the insulin dose per kilogram did not differ between prepubertal and pubertal patients.

In the group of insulin-treated patients, serum IGFBP-2 was normal in pubertal and elevated in prepubertal subjects (P > 0.01). Comparison of patients with and without therapy revealed significantly higher IGFBP-2 levels in the untreated subjects. Interestingly, IGFBP-2 SDS was positively related to HbA1c. This finding would be consistent with a direct or indirect regulation of IGFBP-2 by insulin, analogous to the insulin dependence of IGFBP-1, a hypothesis that is supported by results from animal experiments (21). In contrast, dynamic studies in man rather point to a role of free IGF-I (23) or IGF-II (11, 12, 23, 29) as a major regulator of circulating IGFBP-2. Although IGFBP-3 is not involved in glucose homeostasis, marked alterations of IGFBP-3 levels have been demonstrated in patients with IDDM. Baxter et al. (59) reported a 40% reduction of serum IGFBP-3 in 10 adults with insufficient metabolic control. Other studies revealed decreased IGFBP-3 levels in diabetic adolescents (42, 48). In
contrast, we found a significant elevation of serum IGFBP-3 in our treated, fairly well controlled patients. Only the 7 subjects without insulin therapy had a tendency toward reduced IGFBP-3 levels. Although these data could point to an influence of glycemic control on IGFBP-3 levels, no relationship between HbA1c and IGFBP-3 SDS was found. In contrast to the data of Batch et al. (48) and in agreement with the findings in Dunger et al.’s study population (42) and in healthy subjects, our study revealed a positive relationship between IGFBP-3 levels and chronological age. A strong positive correlation between IGF-I and IGFBP-3 (data not shown) was present both in healthy subjects (37) and in IDDM patients.

It is unclear which of the alterations of the IGF-IGFBP axis that are found in diabetes patients are of clinical significance. Although the influence of juvenile-onset IDDM on adult height is controversial, most data indicate a negative effect of diabetes on linear growth (60, 61). Intensification of insulin treatment resulting in decreased HbA1c values is not only associated with a significant increase in serum IGF-I, but also with a marked acceleration of growth velocity (6, 53). In our study, mean height SDS was within the normal range. Nevertheless, we found a strong correlation between height SDS and the SDS of IGF-I, IGF-II, and IGFBP-3 in prepubertal patients with a diabetes duration of more than 2 yr. No such correlation existed in adolescents. This finding suggests that circulating IGF-I may be a major determinant of linear growth in young diabetics only during childhood, but not during puberty, where other factors such as sex hormones may play a more important role. The decrease in IGF-I levels seems to be even more marked when freely available IGF-I is considered: since IGF-I levels are low and IGFBP-3 levels elevated in IDDM, the IGF-I-to-IGFBP-3 ratio is markedly reduced. It is tempting to speculate that poor metabolic control may impair linear growth of diabetic children at least partially via depression of circulating IGF-I levels and the alteration of IGFBP serum concentrations. The question whether such changes of IGF and IGFBP levels during childhood and adolescence also might contribute to the development of late diabetic complications needs to be addressed in the future.

References

