PRL 110, 208001 (2013)

PHYSICAL REVIEW LETTERS

week ending
17 MAY 2013

Long-Range Ordering of Vibrated Polar Disks

C.A. Weber,' T. Hanke,' J. Deseigne,2 S. Léonard,” O. Dauchot,*> E. Flrey,1 and H. Chaté*?

YArnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics,
Ludwig-Maximilians-Universitit Miinchen, 80333 Munich, Germany
2Laboratoire de Physique, ENS de Lyon and CNRS UMR 5672, 69007 Lyon, France
3Service de Physique de I'Etat Condensé, CEA-Saclay and CNRS URA 2464, 91191 Gif-sur-Yvette, France
*EC2M-Gulliver, ESPCI-ParisTech and CNRS UMR 7083, 75005 Paris, France
>Max Planck Institute for the Physics of Complex Systems, Nothnitzer Strafle 38, 01187 Dresden, Germany
(Received 31 December 2012; published 13 May 2013)

Vibrated polar disks have been used experimentally to investigate collective motion of driven particles,
where fully ordered asymptotic regimes could not be reached. Here we present a model reproducing
quantitatively the single, binary, and collective properties of this granular system. Using system sizes not
accessible in the laboratory, we show in silico that true long-range order is possible in the experimental
system. Exploring the model’s parameter space, we find a phase diagram qualitatively different from that

of dilute or pointlike particle systems.
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Collective motion in driven or self-propelled particle
systems is a topic of recent interdisciplinary interest
[1-4]. Within physics, following the works of Vicsek
et al. [5,6] and Toner and Tu [7-9], most progress was
achieved by studying microscopic models [5,6,10-22] and
their continuous descriptions [7-9,23-36]. For the simplest
situation in which the surrounding fluid can be neglected
(““dry flocking”) and the sole interaction is some local
effective alignment, a picture of basic universality classes
has emerged, which connects models similar to the
Vicsek model [5] to continuous theories of the Toner-Tu
type [7-9,23-29]. Among the landmark results are the
possibility of true long-range orientational order in two
dimensions, the generic presence of strong, long-range
correlations [7-9,23], and/or spontaneously segregated
dense and highly ordered nonlinear structures in moving,
ordered, fluctuating phases [27,29].

These numerical and theoretical results still largely lack
experimental confirmation. This is mostly due to the fact
that decisive experimental tests must be performed on large
numbers of objects under controlled conditions. The advent
of experiments using purified proteins (motors, filaments,
etc.) offers a promising playground [37—41], but another
line of attack, for dry flocking, is to build on the experience
of the granular physics community and shake manmade
objects [42-48]. Recently, some of us have designed and
studied the collective motion of vibrated polar disks, i.e.,
millimeter-sized objects with a built-in oriented axis and a
circular top metallic part rendering the particles isotropic
with respect to collisions (Figs. 1(a) and 1(b);
Refs. [42,43] and the Supplemental Material [49]). Large-
scale collective streams and anomalous, ‘“‘giant” number
fluctuations were reported in collections of approximately a
thousand disks moving on a carefully vibrated plate.
Unfortunately, in this experiment—as in others involving

0031-9007/13/110(20)/208001(5)

208001-1

PACS numbers: 45.70.—n, 05.65.+b, 05.70.Ln, 64.60.Cn

manmade objects [44—48]—the number of particles used
was still too small to reach asymptotic results. Moreover,
the most ordered regimes that could be explored were
probably close to the onset of collective motion, making it
impossible to disentangle the properties of the ordered
moving phase from those of the order-disorder transition.
In this work, we bypass the inherent difficulties of the
experimental setup for vibrated polar disks by studying the
system in silico: We construct a model for the motion and
collisions of the polar disks of Refs. [42,43], which
accounts quantitatively for most of the known experimen-
tal properties at the single and pair interaction level. Our
model also agrees well with observations at the collective
level. This allows us to study system sizes and boundary
conditions unreachable in the laboratory. We show that
even in the most ordered regimes observed experimentally,
no long-range collective motion exists. However, changing
parameters only slightly, we find ordered regimes that
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FIG. 1 (color online). (a) Photograph and (b) sketch of one
polar disk, with the particle’s polarity n indicated. Typical
snapshots in the petal-shaped geometry, for the experiment
(c) and the model (d). Particles that are oriented parallel [per-
pendicular] with respect to their neighborhood are depicted in
red (black) [green (gray)]. For details refer to the Supplemental
Material [49].
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could be observed in the laboratory. Exploring the model’s
parameter space systematically, we discover a phase dia-
gram qualitatively different from that of dilute or pointlike
particle systems [18,27]. In particular, we find, at rather
large packing fractions, “inverse bands” and a possibly
direct transition from disorder to a Toner-Tu [7-9,23]
collectively moving phase.

The polar disks [Figs. 1(a) and I1(b)] are vibrated
between two plates. Rather than modeling their full
three-dimensional dynamics, we describe their effective
two-dimensional motion. Dictated by the experimental
system the main new features of the model are (i) the
dynamics of the particles’ intrinsic polarity with respect
to their velocity is explicitly described, and (ii) no explicit
alignment rules are employed, but collisions are modeled
explicitly. Building on experimental observations, notably
that single particles move backward for significant time
periods with their velocity essentially antiparallel to their
director, we were led to the following model: Particle i is
subject to a noisy acceleration along its polarity axis n'
(with anisotropic, intrinsic, “active’ noise, respecting the
particle’s polar symmetry), balanced by an effective linear
friction term along its velocity v/ = 4 r!, with r’ denoting
the particle’s coordinates. Particles i and j with [r’ — r/| <
d, where d is the particle diameter, interact by means of a
pairwise, inelastic, repulsive interaction force FY, yielding
the equations

d_ | o ;
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where © and B are constants giving rise to a stationary
speed v = w/B, n'| is a unit vector perpendicular to n’,
71|, L represent Gaussian distributed white noises with zero
mean, i.e., {(n) L (#)ny L (') = 2Dy, L 6(t — '), where D |
denotes the corresponding diffusion constant. The interac-
tion force F¢ is given by the established spring dash-pot
model [50,51], which, for hard particles, depends on only a
single parameter, the restitution coefficient € [52].

Equation (1) must be complemented by one governing
the polarity of particles, which was observed to remain
anti-aligned to the velocity during episodes of backward
motion. In other words, when a' = 2 (v/, n‘), the angle
between velocity and polarity, is acute, frictional interac-
tions with the vibrating plate are assumed to rotate m'
toward v/, while for |a’| > 7/2, n’ rotates toward —v'.
We thus propose the following equation for the polarity
angle ¢’ [with n’ = (cos¢’, sing’)]:

d . ) )
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where  characterizes the strength of the coupling between
polarity and velocity. This parameter is expected to be
rather small given the observed persistence of n even
when v changes sign abruptly.

To make contact with the experimental results, we re-
scale time r — /7, with 7, the inverse of the vibration
frequency f = 115 Hz [42,43]. Length is measured in
particle diameters d: x — x/d. Our model possesses six
parameters: u, B, {, D), D, and €. At fixed experimental
vibration amplitude I', one parameter can be eliminated by
matching the typical experimental speed with the model’s
velocity v = u/B. In the following, we use the experi-
mental data gathered at the vibration amplitude I' = 2.7,
where the most ordered regimes have been observed, and
for which v = 0.025 [42,43].

We first analyze the single-particle dynamics in order to
test the overall quality of the model and to estimate four of the
remaining parameters (i.e., 8, {, D), D ; the restitution
coefficient € only affects particle interactions). To find the
best-matching set of parameters, we consider the following
two quantities: the angular diffusion constant D and the
ratio of the displacement fluctuations parallel and perpen-
dicular to the polarity (for definitions, see Ref. [53]).
Scanning the four-dimensional parameter space, we select
a best-matching parameter set for which both quantities
agree with the experimental value within an accuracy of
+30%. This is approximately equal to the imprecision aris-
ing due to different preparations of the experimental setup
(see the Supplemental Material [49] for more information).
In spite of this modest accuracy, the model captures quanti-
tatively the observed experimental particle dynamics. We
compare the probability distribution functions (PDF) of the
parallel displacements normalized by 7, denoted as v|(7) =
Ary/7 (Ary is defined in Ref. [53]), and of the angle a(7) =
/2 (m(z), r(t + 7) — r(r)) those recorded experimentally. We
find a very good agreement for all values of 7 considered
[Figs. 2(a) and 2(b)]. Note that, as expected, the particles
exhibit backward motion for significant time periods [tails in
the negative sector in Fig. 2(a) and peaks at = 7 in Fig. 2(b)].

We now turn to binary collisions, for which the restitu-
tion coefficient € must be chosen. The following results are
presented for € = 0.4, but we observed that changing € in
the range =30% does not influence collision properties
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FIG. 2 (color online). (a) PDF of vj(7) and (b) PDF of the
angle @ = £ (n(?), Ar(¢ + 7)) [lin-log] for selected values of the
time increment 7. Experimental data are indicated with symbols;
model data are illustrated with lines.
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FIG. 3 (color online). Scatter graph 6;, — 6., for the 0 malinial .11 '¢
experiment (a) and our model (b). Values of the impact parame- 0 02 04 06 08

ter b are indicated by the color bar. PDF of the duration 7y
(¢) [lin-log] and the extension €., of a collision (d) [log-log].

significantly (see the Supplemental Material [49]).
Experiments have revealed that one “‘encounter’ typically
involves many successive collisions, where the particles
bounce back without turning their polarity much, so that
they quickly collide again. These encounters last for a
finite time and take place over some finite spatial exten-
sion. It was found experimentally that they are well delim-
ited using the following criterion: an encounter starts when
two particles get closer than some threshold collision
distance, i.e., |[r' —r/| =d. = 1.7, and their polarities
point “inward,” ie., |(r' +n’) — (r/ +n/)| = |r' — /|
[43]. An encounter ends when either particles are separated
by more than d, or their polarities point “outward.” We
have used the same criterion for our model. Figure 3
depicts the results of a scattering study for the experimental
setup and the model. Thousands of binary encounters
(hereafter called collisions for simplicity) were recorded,
and the outgoing relative angle 6, of the two particles
plotted against their incoming relative angle 6;,, the impact
parameter b € [0, 1][51] is indicated by the shade [Figs. 3(a)
and 3(b)]. The model data show a striking agreement with the
results measured in the experiments: most collisions actually
leave the polarities unchanged (6, = —6;,), and a minority
of them align the particles almost perfectly (6, = 0). We
estimated the fraction of polar aligned events [54], finding
0.14 for the model and 0.18 for the experiment. The model
also matches the distribution of head-on (b = 0) and glanc-
ing (b = 1) collision events. We further determined the PDF
of the duration of collisions 7, as well as that of their spatial
extension €, given by the center of mass displacement. The
model reproduces the observed exponential distribution of
Teo quantitatively, while it fails to reproduce the roughly

FIG. 4 (color online). (a) PDF of the average polarization ¢,
evaluated within the ROI, for the experimental system, the model
in the petal-shaped geometry and in periodic boundaries using
two values of packing fractions: ¢ = {0.39, 0.47}. (b) Average
polarization (W), as a function of the noise fraction y? =
D||/Dﬁ:2‘7 = D, /D727, shown for three boundary sizes L €
{50, 100, 200} and ¢ = 0.47. Inset: {(¥), [log-log] for y = 1 and
¢ = 0.47 as function of system size L. (c) Sketch of packing
fraction(¢)-noise(y) phase diagram: States with (¥), = 0.5 are
indicated by squares, polar homogenous states with (W), > 0.5
by triangles, and states exhibiting heterogenous patterns trans-
versal to the average moving direction (bands) are depicted by
circles. (d) Representative snapshots for selected ¢-y values
indicated by numbers in (c).

algebraic decay of €., (but nevertheless gives a correct
mean extension) [55].

We performed simulations using the same flower-shaped
geometry [Figs. 1(c) and 1(d)] and number of particles
(N = 890) as in the experiment [42,43]. For the parameter
values matching the single particle dynamics and binary
collisions (for vibration amplitude I' = 2.7), we observe,
as in the experiments, fairly large, polar aligned, moving
clusters (Figs. 1(c) and 1(d); for videos refer to the
Supplemental Material [49]). However, the order parame-
ter (1) = ML(t) I3 .crom’l, with M(#) denoting the number
of particles currently located within the central “‘region of
interest”” (ROI) of radius 10, is typically smaller than in the
experiment [Fig. 4(a)]. The effective packing fraction
observed in the ROI is found to be very close to that of
the experiment (¢ = 0.39, whereas the nominal packing
fraction is 0.47), indicating that particles accumulate at
the boundary in the model as well. Running the model
at ¢ = 0.39 in a box of approximately the same size but
with periodic boundary conditions—a privilege of the
in silico approach—yields only a marginally larger average
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polarization [Fig. 4(a)]: a frustration-free geometry is
unable to restore enough order.

We also ran the model in square periodic domains of
linear size L at the nominal packing fraction ¢ = 0.47 and
then found order being slightly stronger than in the experi-
ment [Fig. 4(a)]. Nevertheless, increasing system size L,
we observe that the overall order parameter (W), =
&1ZN nil), decreases first rather slowly, then faster
[Fig. 4(b), inset]. Thus, no true long-range order is present
at the exact conditions probed experimentally. In fact, the
correlation length can be estimated by the kink in the
average polarization as a function of system size [inset of
Fig. 4(b)], leading to a value of approximately 100, which is
larger than the actual experimental system size, confirming
that order was spanning the whole experimental system.

Next we wuse a further privilege of in silico
investigations—the freedom to change parameter val-
ues—and show that asymptotically ordered regimes would
probably be observed in slightly different experimental
conditions. Experimentally, the vibration amplitude I’
was used as a control parameter for the onset of collective
motion. Decreasing I" to around 2.7 in the experiments,
order was observed to increase from near zero to about
(), = 0.5. Unfortunately, due to static friction, the parti-
cles stopped moving for I' values below 2.7. To mimic
different I" values in the model, we multiply both diffusion
constants D and D by a coefficient ¥2, with y € [0, 2],
so that y = 1 corresponds to the experiment at I' = 2.7.
Varying vy, we find the transition to collective motion
to be close to v = 1 [Fig. 4(b)]. The transition point is
observed to move slightly to the left as the system size is
increased. This confirms that vibrated polar disks, in the
experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do exist
nearby, constituting the first report of long-range orienta-
tional order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of the
model varying vy and the packing fraction ¢ in square
domains of linear size L = 200 with periodic boundary
conditions [Fig. 4(c)]. For ¢ =< 0.6, varying y, we observe
the usual phenomenology of models with (effective) polar
alignment like the Vicsek model [5,10,16,18,22]: immedi-
ately below the transition, the particles spontaneously segre-
gate in high-density, high-order “bands,” traveling in a
low-density disordered sea [Fig. 4(d)]. Further away from
the transition, these nonlinear structures disappear, leaving a
statistically homogeneous Toner-Tu phase with its character-
istic giant number fluctuations and long-range correlations
[7-9,23]. However, we detected, for large enough packing
fractions, narrow disordered channels [see Fig. 4(d), (4)] for
small noise values [circles in Fig. 4(c) for large ¢ and small
v]. These “inverse bands,” not found in dilute or pointlike
particle models, seem to coexist with the Toner-Tu phase. We
believe that the increased frequency of collisions at large

packing fractions triggers the emergence of these inhomoge-
neous structures.

Interestingly, for ¢ = 0.6 we could not observe bands
[Fig. 4(c)]. This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage, how-
ever, we cannot conclude, due to numerical limitations,
whether this feature remains in the limit of large system
sizes and asymptotically large times: the width of the bands
increases with increasing ¢ [cf. Fig. 4(d)] so that their
disappearance might just be a finite-size effect. However,
the longitudinal density profile around ¢ = 0.6 turns out to
be rather flat, with an overall rather low order (as low as
(), = 0.2 for ¢ = 0.6 and y = 1.4). They may thus be of
different nature from the Vicsek-like, sharp, well-ordered
bands found at low ¢ and could cease to exist asymptoti-
cally at a packing fraction below the rise of jamming and
crystallization effects.

To summarize, we have built a simple yet quantitatively
faithful model for the dynamics of the vibrated polar disks
studied in Refs. [42,43]. This model constitutes one of the
first in which the dynamics of the particle’s intrinsic polar-
ity with respect to their velocity is taken into account
[56,57]. An adequate description of the granular system
of vibrated disks requires accounting for the polarity as a
slow variable compared to the velocity, which can change
fast due to collisions with the plate or neighboring parti-
cles. Our in silico study has shown that in the original
experiments the most ordered state reached was in fact in
the region of the transition to collective motion, slightly on
the disordered side. However, asymptotically ordered
regimes do exist nearby. The new features of the phase
diagram, i.e., the emergence of “inverse bands” in the low
noise regimes of sufficiently dense systems and the possi-
bility of a direct transition from disorder to a collectively
moving Toner-Tu-like phase, deserve further investiga-
tions. In particular, this last point, if confirmed in the
future, might reopen the debate about the possibility of a
continuous transition to collective motion since the struc-
tures “‘responsible” for its discontinuous character—the
bands—would then not exist.
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determined by the camera frame rate.

To avoid counting events whose outcomes are possibly
influenced by the limited camera frame rate, we neglected
all events with 6;, < 7/6. Moreover, polar events are
defined by 6., > —6;,/2.

To what degree this is an actual discrepancy between
model and experiment remains to be clarified. In fact,
the very existence of an algebraic decay for the experi-
mental data can be questioned due to the small number of
collisions with large extensions.
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