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Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total
biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological
communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative
LV models and quantify the extinction process by employing the Pfaffian of the network’s interaction
matrix. We illustrate our findings on global stability properties for general systems of four and five species
and find a generalized scaling law for the extinction time.
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Understanding the stability of ecological networks is
of pivotal importance in theoretical biology [1,2].
Coexistence and extinction of species depend on many
factors such as inter- and intraspecies interactions [3.,4],
population size [5-9], and mobility of individuals [10-16].
An intriguing question is how the stability of ecosystems
depends on the interaction network between species.
Is it the topology of the network (whose links may arise
through predation, competition over common resources,
or mutual cooperation) that sets the level of biodiversity?
And how important is the strength of a single interaction
link? Stable coexistence can, for example, be observed
for natural populations in nonhierarchical networks that
are comprised of species that interact in a competitive and
predator-prey-like manner [17,18]. By understanding the
interplay between the structure of the interaction network
and the strengths of its links, it is possible to reveal
mechanisms that underlie this stability.

A paradigm in addressing these ecologically important
questions from a theoretical perspective are Lotka-Volterra
(LV) models [19,20] in which the total biomass of species
is conserved. These conservative LV systems [12,21,22]
originate in the well-mixed limit from agent-based formu-
lations of reaction-diffusion systems, where individuals of
S different species Ay, A,, ..., Ag compete directly with
each other following the simplified reaction scheme [23]:
A; +A; — A; + A;. Species A; beats species A; with rate
k;; and immediately replaces an individual of species A;
with an own offspring. Species A; is thus degraded at the
same rate such that the interaction matrix Gy = {k;;}; ; is
skew-symmetric. The interaction network can be visualized
by a graph; see Fig. 1. Neglecting demographic fluctua-
tions [24], the deterministic dynamics for the species’
concentration vector x = (xy,...,xg)7 is given by the
rate equations (REs)

8,)(:,' = x,»(GSX)i, foralli=1,...,S. (1)
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This conservative LV model has been investigated as a
prototype to understand principles of biodiversity from a
theoretical point of view [8,25]. While these systems are
also of central importance to many other fields of science
(e.g., plasma physics [26], evolutionary game theory
[27,28], and chemical kinetics [29]), no general scheme
to classify coexistence, survival, and extinction of species
has been established so far. It is frequently assumed that the
topology of the interaction network alone determines coex-
istence of species [30,31], i.e., that such systems can be
regarded as Boolean networks [32]. Recent investigations
of specific topologies indicate, however, that knowledge
about the network topology may not suffice to conclude
whether all species coexist or if some of them go extinct
[33-35]. These questions on global stability properties
have been previously addressed successfully for various
particular LV systems [27,36] and for hierarchical
networks [37,38].

In this Letter, we present a general classification of
coexistence scenarios in conservative LV networks with
an arbitrary number of species. We elucidate the conse-
quences of the interplay between the network structure and
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Two interaction topologies specifying
the conservative LV systems. (a) The general cyclic four species
systems (4SS). (b) The general cyclic five species system (5SS)
as a natural extension of the rock-papers-scissors configuration
(RPS) [44].

FIG. 1 (color online).
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the strengths of its interaction links on global stability. By
analyzing conserved quantities, we find conditions on the
reaction rates that yield coexistence of all species. In our
mathematical framework this amounts to the characteriza-
tion of positive kernel elements of the interaction matrix:
By employing the algebraic concept of the Pfaffian of
a skew-symmetric matrix, we are able to generalize
previous approaches [34,39] and to quantify the extinction
process when no conserved quantities exist. We illustrate
our general results for coexistence and survival scenarios
of four and five species systems (4SS and 5SS); cf. Fig. 1.
Moreover, we demonstrate the implications of our
findings for the stability of stochastic systems: We show
how the extinction time diverges with the distance to
the critical rate at which coexistence of all species is
observed.

First, we discuss some general results for the REs (1)
before the specific interaction topologies in Fig. 1 are
analyzed. In order to characterize the stability of the
generic LV system, we study conserved quantities. We
elaborate on the form of conserved quantities, under which
conditions they exist at all, and how many conserved
quantities there are for a given interaction network. Since
the interaction matrix Gg is skew-symmetric, the REs (1)
conserve the sum over all species’ concentrations
To = X; + ...xg, independent of the interaction scheme.
Hence, the dynamics can be normalized onto the (S — 1)-
dimensional simplex where all concentrations are non-
negative and add up to 1. The vertices of the simplex
correspond to the extinction of all but one species, its edges
reflect the extinction of all but two species, and so on.
Further conserved quantities have previously been derived
as 7= xf‘ ...xg’f [20,27,39]. Interestingly, these con-
served quantities can be obtained from solutions of the
linear problem Ggp = 0 because 7 = —7(Ggp, X), with
p=(pi, ..., ps)’. One infers that 7 is conserved if the
exponent vector p is an eigenvector corresponding to
eigenvalue 0 [39], or in other words, if p lies in the kernel
of the matrix Gg.

Coexistence means that all concentrations stay away
from the boundary of the simplex by a finite distance for
all times. Since the species’ concentrations are bounded to
the interval [0,1], one concludes from the structure of
the conserved quantity 7 that all S species coexist if
the kernel of the interaction matrix is positive; i.e., one
finds an element p in the kernel of G with positive entries
p;>0 for all i. Hence, to reveal coexistence scenarios in
the conservative LV model, one has to characterize the
kernel of the interaction matrix G and identify its positive
elements. Note that this conclusion goes beyond stating
that a positive kernel element corresponds to a stationary
point in the inside of the simplex; see REs (1).

The existence of conserved quantities constrains the
dynamics to a submanifold of the simplex whose
dimension D, is determined as follows. The rank of a

skew-symmetric matrix is always even, because its non-
zero eigenvalues are purely imaginary, conjugate pairs.
The rank-nullity theorem [40] then implies that the dimen-
sion of the kernel of G¢ is odd whenever S is odd, and even
whenever § is even. Each linearly independent kernel
element gives rise to an independent conserved quantity
7 which constrains the degrees of freedom of the trajectory.
Together with 7, one finds that the dynamics in the case
of nonstationary motion is constrained to a deformed
sphere of dimension D.=S—1—dimKer(Gy) for a posi-
tive kernel; see the Supplemental Material [41] for mathe-
matical details. Thus, coexistence in high-dimensional
systems is generically observed on nonperiodic trajectories
(D.>1); see Movie M1 in Supplemental Material [41].
Only if the reaction rates are fine-tuned to a positive and
maximal kernel of dimension S — 2 is the dynamics re-
stricted to periodic orbits (D, = 1); see Fig. 2(a) and
Movie M2 in Supplemental Material [41]. In particular,
for S =3 or 4, a positive kernel immediately implies
coexistence on periodic orbits. This follows from the fact
that with three species, the kernel is always one-
dimensional. For the general 4SS, the dimension of the
kernel of the interaction matrix is either 0 or 2. A two-
dimensional, positive kernel yields coexistence on periodic
orbits; see Fig. 2(a). If dimKer(Gg) = 0, i.e., if the kernel
is trivial, one observes extinction of species as detailed
below.

Next, we focus on the mapping between the reaction
rates in Gg and its kernel elements in order to find the
stationary points. To this end, we apply the concepts of the
Pfaffian and of the adjugate matrix [40,42]. The Pfaffian is
a simpler form of the determinant tailored to skew-
symmetric matrices with the property that its square equals
the value of the determinant. In contrast to the non-
negative determinant of skew-symmetric matrices, the
Pfaffian carries a sign which will turn out to be crucial
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FIG. 2 (color online). Coexistence and survival in the general
cyclic 4SS are controlled by the Pfaffian of the interaction
matrix. (a) For Pf(G,) = 0, one obtains coexistence of all
species on periodic orbits. (b) Deterministic survival diagram:
for Pf(G,) <0, species A, B, and D survive in a stable RPS
configuration, whereas A, C, and D survive for Pf(G4) > 0.
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for our purposes. For a skew-symmetric matrix, the
Pfaffian can be computed recursively as

S
Pf(Gs) = ) (= 1)'ky;PE(Gyy) 2)
i=2

with Gi; being the matrix where both the first and ith
column and row have been removed from the matrix Gg.
The Pfaffian of a 2 X 2 skew-symmetric matrix G, =
{kap}, is given by Pf(G,) = k4p. For the interaction matrix
corresponding to the LV network in Fig. 1(a),

0 kAB kAC _kDA
_kAB 0 kBC kBD

G4= ,
—kac —kpc O kep

kpa  —kpp —kep O
the Pfaffian is Pf(G4) = kABkCD - kACkBD - kDAkBC'

The Pfaffian always vanishes for odd S as opposed to
systems with an even number of species [42]. In the latter
case, the Pfaffian is zero only if a constraint on the reaction
rates is fulfilled. If the Pfaffian vanishes, one finds more
kernel elements than just the null vector and, thus, con-
served quantities of form 7 exist. In the following, we
distinguish between even and odd S.

For an even number of species and a two-dimensional
kernel, positive kernel elements can be identified via the
adjugate matrix Rg which is a generalized inverse of the
interaction matrix such that GgRy = —Pf(Gy)lg, with [
being the identity matrix [42]. The adjugate matrix can be
computed as (Rg);; = (— 1)7Pf(G;;), where (—1)7 denotes
the sign of the permutation o = (ij1 col...j...8), and
the columns of Ry give two independent kernel
elements of Gg.

As an example, consider again the general cyclic 4SS
depicted in Fig. 1(a). By setting all reaction rates equal
to each other (e.g., to 1), the Pfaffian does not vanish
and, therefore, not all species can coexist. Only when the
rates are chosen such that Pf(G,) = 0, do we obtain two
independent kernel elements of G,: From its adjugate
matrix, R,, we identify p; = (kcp, 0, kpa, kac)” and p, =
(kpps kpa» 0, ksp)T. We infer the two conserved quantities
T = xﬁCDxﬁ”AxZAC and 7, = xi’*”x’;’“kaA’*, and conclude
that the kernel is positive and coexistence occurs on peri-
odic orbits; see Fig. 2(a). Hence, classifying LV networks
in terms of their topology is incomplete; the strengths of
the interaction links are crucial in general.

In general, if the Pfaffian for a system with even S is
nonzero, i.e., when only the null vector lies in the kernel,
coexistence of all species is not possible. Still one can
quantify the extinction process by generalizing an appr-
oach of Durney et al. [34] for a system with S =4 to
systems composed of an arbitrary even number of species.
We define the function p = x{' ... x¥ in the same way as
the conserved quantity 7, but this time choosing the

exponent vector qg = —Rg1 with 1 =(1,..., 1)T. It is
straightforward to show that this function evolves expo-
nentially in time:

p(t) = p(0)e PHGs), 3)

generalizing previous investigations [24,33-35]. It is quite
remarkable that p quantifies the global collective dynamics
of systems with an arbitrary interaction topology and
even S. Depending on the sign of the Pfaffian, p grows
or decays exponentially fast with the Pfaffian of the inter-
action matrix as rate. Since the system’s dynamics is driven
towards the boundary of the simplex, one can conclude on
the extinction of some species. This feature of p is remi-
niscent of a Lyapunov function; note also that p becomes a
conserved quantity 7 if the Pfaffian is zero. An interesting
question for future investigations is to ask whether further
quantities exist that characterize the dynamics of conser-
vative LV networks.

For the general 4SS shown in Fig. 1(a), we find q, =
(=kep + kpp = ke, kep + kpa + kac, —kpp — kpa —
kag, kgc — kac + kap)?. The fact that (q4), is always
positive suggests that species B goes extinct for a positive
Pfaffian, and that the converse holds true for (q4); and
species C for a negative Pfaffian. In both cases, the system
tends to a stable rock-paper-scissors (RPS) configuration.
In summary, we derive the survival diagram shown in
Fig. 2(b). Interestingly, A and D always survive in this
topology although D can be easily tuned to be the weakest
species. We emphasize that this result depends on the sign
of the Pfaffian and cannot be obtained from applying the
concept of the determinant. Again, since the Pfaffian of the
interaction matrix characterizes the dynamics of this 4SS,
its topology alone does not determine the long-time
dynamics. These findings unify previous results for other
4SS [24,33,34], and show that rules like ‘““survival of the
strongest” or “‘survival of the weakest™ [25,43] cannot be
formulated in general.

For an odd number of species, the kernel of G is always
nontrivial. In general, if dimkerGg = 1, we determine the
independent kernel element via the adjugate vector [42],
rs = (Pf(G;), —Pf(Gy), ..., Pf(G;))", which enables us to
investigate the influence of the reaction rates on the sur-
vival scenarios. For S = 3, only the well-studied RPS
topology [8,27] leads to a positive adjugate vector r3. In
other words, coexistence of all three species depends only
on the topology of the network. This behavior is unique to
S =3 and changes dramatically for systems with more
than three species.

We illustrate the importance of the reaction rates for a
system of five interacting species; see Fig. 1(b). This
interaction topology where each species dominates two
species and is outperformed by the two remaining species,
recently gained attention as a natural extension of the RPS
game [30,44,45]. For specificity, we investigate the depen-
dence of the survival scenarios on the rate k,p with which

168106-3



REVIEW LETTERS

week ending
19 APRIL 2013

PRL 110, 168106 (2013) PHYSICAL
2 ABCDE
(a) BCDE | ACDE
) qoof T N T :
FOTIN, ~1/x
600 = 0af T TN ]
500 F oo N

1 10 100
Rate x=(kap-5) ]

N ]
104
103

400
300}
200f
100f
okE

Extinction time Text

FIG. 3 (color online). Stability of the cyclic 5SS. (a) For the
interaction scheme [left inset of (b)], one obtains coexistence
of all species for the critical rate k45 = 5. (b) Stability of the
stochastic system, reflected by the extinction time T,,,, peaks at
the critical rate, which becomes more pronounced as N — oo.
We find a scaling law for T, in the distance to the critical rate
(right inset). Initial conditions were chosen as x(0) = 1/5 X 1.
Larger line gap corresponds to smaller N.

species A beats species B and chose the other rates [see
Fig. 3(b), left inset] such that either five or four species
survive depending on the value of k,z; see Fig. 3(a). The
kernel of the interaction matrix depends on k,p and is
characterized by the adjugate vector rs = (0,0, 3k,p —
15,5 — kup, Skap — 25)T. For kyp # 5, the kernel is
one-dimensional and nonpositive, and four species survive.
In contrast, for k45 = 5, r5 equals the null vector which in
turn means that the kernel becomes three-dimensional
[42]. Since we have ensured that the kernel is also positive,
we obtain coexistence of all five species on periodic
orbits (D, = 1).

Finally, we discuss the implications of our findings by
asking how demographic noise affects the stability of
stochastic LV systems. We analyze ecological LV systems
with a finite number N of interacting individuals in the eye
of the knowledge gained from the deterministic analysis.
It has been shown that due to demographic fluctuations the
system ultimately reaches an absorbing state that is char-
acterized by the extinction of all but one species [46—49].
Moreover, the scaling behavior of the mean extinction time
with the system size N characterizes the stability of the
interaction network [14,48].

As an example, we continue the discussion of the 5SS
from Fig. 3(b), left inset. We have carried out extensive
computer simulations employing the Gillespie algorithm
[50] to measure the time T, until the first species has
become extinct for different system sizes N and different
reaction rates k,p. The results are displayed in Fig. 3(b)
and highlight the significance of the deterministic drift
underlying the stochastic dynamics. We observe a peak
in the extinction time as the reaction rate k,p approaches
the critical value k., = 5 for which we obtain coexistence

of all species in the deterministic case. The divergence
of the extinction time for k45 — k. becomes more pro-
nounced for larger system sizes as the system reaches the
deterministic limit for N — oo.

A scaling analysis reveals how the extinction time peaks
in the vicinity of the coexistence scenario. Near the critical
rate, the extinction time scales linearly with the system size
leading to neutrally stable interaction networks [8,24,51].
At larger distance from the critical rate, the deterministic
driving force to the absorbing boundary becomes more
dominant than the demographic fluctuations; see Fig. 3(b),
right inset. The interplay between the stochastic and deter-
ministic forces is reflected by the scaling law

N
Text & InN

|kAB_kcr|

for kAB == kcr,

for kyp # ke @

which extends the linear scaling T, « N of neutral coex-
istence. We observe a power-law dependence in the dis-
tance of the reaction rates to the critical rate and
logarithmic scaling with N for attracting boundaries [8,52].

The observed scaling law (4) for k,p # k. can be
attributed to the exponentially fast extinction of species
x; = x;(0) exp(—«;1); see Eq. (1). The extinction rate «; is
computed via the temporal average over the trajectory (x)
as a; = —(Gg(x));, which becomes linear in the distance
to the critical rate |k, — k| for large times. The logarith-
mic dependence on N follows by defining that a species
with concentration x; less than 1/N has become extinct.
With this scaling behavior at hand, we are able to compare
the ecological stability of different interaction networks
based on our analysis of the REs (1).

In this Letter, we investigated global stability properties
of conservative LV networks. By employing the Pfaffian
of the interaction matrix, we revealed the relation between
the reaction rates and the conditions for coexistence, and
exemplified the implications for the stability of ecological
networks with finite populations. We expect that our results
will also stimulate further progress for the investigation of
extinction scenarios. Beyond analyzing whether an eco-
system is stable or unstable, it would be highly interesting
to actually predict which of its species ultimately survive
for a general conservative LV system. This would, for
example, allow us to predict the eventual outcome of an
unstable version of the five species system shown in
Fig. 1(b), and to formulate the conditions under which
3- or 4-species cycles are attained. First insights into these
extinction dynamics will be outlined in a future publication
[53]. We believe that a full characterization of general
conservative LV dynamics is possible.
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