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Diffusion-limited reactions are studied in detail on the classical coalescing process. We demonstrate

how, with the aid of a recent renormalization group approach, fluctuations can be integrated systemati-

cally. We thereby obtain an exact relation between the microscopic physics (lattice structure and particle

shape and size) and the macroscopic decay rate in the law of mass action. Moreover, we find a strong

violation of the law of mass action. The corresponding term in the kinetic equations originates in long-

wavelength fluctuations and is a universal function of the macroscopic decay rate.
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The law of mass action (LMA) is the fundamental law in
chemical reaction kinetics. It states that the rate of an
elementary reaction is proportional to the product of the
concentrations of the participating molecules. In a seminal
article that helped lay the foundations of a stochastic
theory of chemical reaction kinetics, Smoluchowski pro-
vided a framework for the calculation of macroscopic
decay rates and supported the validity of the LMA for
three-dimensional systems [1,2]. In the 1980s much effort
was put into studying low-dimensional systems, where it
was found that strong correlations can lead to deviations
from the LMA [3–7]. This anomalous behavior was ob-
served, in particular, for the classical problem of coales-
cence, Aþ A ! A, where diffusing particles clot upon
contact with a rate �. By an approach designed for one
dimension, one could even obtain exact solutions [8]. This
was complemented by results of the perturbative renormal-
ization group at and below the critical dimension dc ¼ 2
[9,10]. In contrast to this progress in low dimensions,
advances for three-dimensional coagulation systems have
remained largely elusive. In the experimental analysis, the
LMA is still the ‘‘gold standard’’ [11–13]. Indeed, it has
obtained further support by field theoretic analysis proving
the validity of Smoluchowski’s heuristic arguments for
asymptotically long times and low densities [14,15]. In
this regime the density � obeys the LMA rate equation
@t� ¼ ���2, with a macroscopic decay rate � which is a
function of the microscopic rate � and of the size and shape
of the particles.

In this Letter, we employ a nonperturbative renormal-
ization group approach [16–19] to study coagulation pro-
cesses in three spatial dimensions. We find that the density
obeys an equation of motion @t� ¼ �Fð�Þ, where the
nonequilibrium ‘‘force’’ F is derived from a nonequilib-
rium analog of a thermodynamic potential. It is obtained
upon employing a nonperturbative renormalization group
procedure, which successively integrates fluctuations start-
ing at the microscopic scale. This provides a profound
understanding of the intimate connection between the

macroscopic description and the microscopic properties
of the kinetic process. For low densities we recover the
result from the law of mass action: Fð�Þ � ��2. An exact
flow equation is derived which connects the microscopic
rate � to the (nonuniversal) macroscopic rate�. Moreover,
in contrast to previous work, the renormalization group
approach enables us to explicitly incorporate both the
effect of lattice structure and of shape and size of the
particles. Last, we can calculate the nonequilibrium force
Fð�Þ beyond the low-density limit. We find that long-
wavelength fluctuations give rise to a nonanalytic term of

the form cð�Þ�5=2. Remarkably, cð�Þ is a simple, universal
function of the macroscopic rate �. It depends on the
microscopic features of the lattice and the particles only
indirectly through its argument �.
The coagulation process can be recast in terms of a field

theory, an approach devised by several authors [20–22]. It
has proven a powerful and versatile framework for
reaction-diffusion processes in the past and also forms
the basis of our nonperturbative renormalization group
(RG) calculations. (For a simple example of the procedure,
see [23].) The stochastic dynamics corresponding to the
reaction scheme Aþ A ! A on a three-dimensional lattice
is first mapped to its master equation and then translated to
the action

S½ �c ; c � ¼ S�½ �c ; c � þ S�½ �c ; c �
þ

Z
dt
X
x

�c ðx; tÞ@tc ðx; tÞ;

where the fields �c and c are related to creation and
annihilation of particles, respectively. We wish to study
particles that may extend over several lattice sites. This is
achieved by introducing a reaction kernel �ðy � xÞ defin-
ing the rate at which a particle at site x annihilates another
particle at site y. The coagulation term S�½ �c ; c � then reads

Z
dt
X
x;y

�ðy�xÞ½ �c ðy; tÞ þ 1� �c ðx; tÞc ðy; tÞc ðx; tÞ:
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While this determines the shape and size of the particles,
the lattice structure is encoded in the diffusion term. In
Fourier space it is of the form

S�½ �c ; c � ¼
Z
q;!

�ðqÞ �c ð�q;�!Þc ðq; !Þ;

where
R
!
:¼ R

d!
2� , and

R
q
:¼ R d3q

ð2�Þ3 runs over the first

Brillouin zone. For concreteness, we consider a cubic
lattice, where the dispersion relation reads �ðqÞ ¼
4D

P
3
�¼1 sin

2ðq�a=2Þ [24]. We define the time and length

scale by setting the diffusion constant D and the lattice
spacing a equal to 1.

The mean-field rate equation follows from the ‘‘classical
field equations’’ given by the stationarity conditions
�S=�c ¼ 0 ¼ �S=� �c . The first equation is solved by
setting the auxiliary field �c ¼ 0. Taking spatially homo-
geneous fields c ðx; tÞ � c ðtÞ and identifying c with the
density of particles (c ! �) yields the rate equation
@t� ¼ �P

x�ðxÞ�2. Hence, asymptotically the density be-
haves as �ðtÞ � ½Px�ðxÞ��1t�1.

To account for fluctuations, one has to go beyond such a
mean-field approach and consider the generating func-
tional W½ �J; J� ¼ lnZ½ �J; J�, where Z½ �J; J� is obtained as a
path integral of expð�S½ ��;�� þ �J ��þJ�Þwith respect to
the fields �� and �. This allows us to obtain an exact
equation of motion for the density � from the effective
action �½ �c ; c �, the Legendre transform of W½ �J; J�, with
the stationarity conditions

��=�c ¼ 0 ¼ ��=� �c at �c ¼ 0; c ¼ �; (1)

the macroscopic analog of the classical field equations. Our
analysis below will show that for the coagulation process
the effective action � takes a similar form as the micro-
scopic action S. In fact, all but the term characterizing the
coagulation process, S�, remain unaffected by fluctuations.
For the latter, fluctuations renormalize the microscopic
reaction kernel �ðxÞ to its macroscopic counterpart �ðxÞ.
Moreover, fluctuations give rise to further contributions
in the expansion of the effective action �, the most
relevant of which is found to be proportional toR
dt
P

x
�c ðx; tÞc 5=2ðx; tÞ. Thus, to the order treated in

this Letter, the ‘‘extremal principle’’, Eq. (1), yields the
kinetic equation

@t� ¼ �Fð�Þ; (2)

for states homogeneous in space. The leading term of the
nonequilibrium force Fð�Þ is the LMA term ��2, where
� :¼ P

x�ðxÞ is the macroscopic decay rate. In addition,
there are higher order terms in the density which violate the

LMA, in particular, a contribution��5=2, which is derived
below.

The effective action can be calculated upon employing a
nonperturbative RG analysis based on the Wetterich flow
equation [16–19]

@k�k½ �c ; c � ¼ 1
2 Trf@kR̂kð�̂ð2Þ

k ½ �c ; c � þ R̂kÞ�1g;

with the flow parameter k. The equation connects the
microscopic action S½ �c ; c � � �k¼1½ �c ; c � with the mac-
roscopic, effective action �½ �c ; c � � �k¼0½ �c ; c �, where
all modes are integrated. This is mediated by the cutoff

term R̂k suppressing modes with momentum q2 < k2 while
not affecting those with q2 > k2. The trace Tr runs over the

function space of �c and c . �̂ð2Þ
k and R̂k denote the 2� 2

matrices of the second functional derivatives of �k and of
the mass term �Sk ¼

R
q;! Rkðq2Þ �c ð�q;�!Þc ðq; !Þ,

respectively.
We first apply the RG procedure to calculate the classi-

cal LMA term, before discussing deviations from that law.
To this end, we take as an ansatz a ‘‘minimal’’ truncation
for the effective average action:

�k½ �c ; c � ¼ S�k
½ �c ; c � þ S�k½ �c ; c � þ SZk

½ �c ; c �; (3)

which contains only terms already present in the initial
action. Here SZk

½ �c ; c � ¼ Zk

R
dt
P

x
�c @tc , �k is the re-

normalized reaction kernel, and �k is the renormalized
dispersion relation. Though the RG flow generates higher
order terms outside the functional space defined by the
minimally truncated effective action, the flow of �k, Zk,
and, under certain conditions, also �k remains unaffected.
This can be shown upon recasting the Wetterich equation
in a form amenable to a diagrammatic analysis: @k�k ¼
~@kDk, whereDk ¼ 1

2 Tr lnð�̂ð2Þ
k þ R̂kÞ and ~@k acts on the k

dependence of R̂k only. Familiar from perturbation theory,
Dk creates the one-loop Feynman diagrams to the

ðm; nÞ-vertex functions �ðm;nÞ
k with propagator 1=ð�̂ð2Þ

k þ
R̂kÞ. This flow-equation approach to RG must be integrated
with the full vertex functions and propagators, which re-
constructs all loop corrections.
For coagulation processes, the number of legs in the

Feynman diagrams can only decrease as time passes.
Hence, certain processes, e.g., corresponding to the dia-
gram shown in Fig. 1(a), are physically not allowed, lead-
ing to a drastic restriction in possible diagrams. As a
consequence, similar to the absence of propagator renor-
malization in perturbative RG [9], the dispersion relation
and the field amplitude are not renormalized: �kðqÞ ¼ �ðqÞ
and Zk ¼ 1. The diagrams depicted in Figs. 1(b) and 1(c)
determine the renormalization of the �k

�c c 2 and �k
�c 2c 2

term, respectively, characterizing the coagulation process.
As external legs do not contribute and the internal mo-
menta and frequencies are independent of the external
ones, the diagrams give equal contributions and �k is
well-defined. Moreover, since the diagram [Fig. 1(c)] for
the renormalization of the ð2; 2Þ-vertex function involves
only ð2; 2Þ vertices, one obtains a closed, analytic solution
for �k. Taking the cutoff mass RkðqÞ ¼ ðk2 � �ðqÞÞ�ðk2 �
�ðqÞÞ [24] yields the flow equation for the reaction kernel
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@k�kðxÞ ¼ 2�kðxÞðP � �kÞðxÞ
k3

; (4)

with the projection ðP � �kÞðxÞ ¼
R
q expðiq � xÞ�kðqÞ �

�ðk2 � �ðqÞÞ. For many reaction kernels, this simple equa-
tion is exact and allows us to analyze general coagulation
processes by calculating the macroscopic decay rate � ¼P

x�k¼0ðxÞ. In particular, this applies to spheres in contin-
uum space and particles covering only a single site on a
lattice (‘‘one-site objects’’). This and the derivation of
Eq. (4) are detailed in [23]. Actually, it is possible to derive
a slightly more complex formula, which is exact for all
reaction kernels [25].

For one-site objects, with local interactions, the flow
equation reduces to @k�k ¼ 2�2

k

R
q�ðk2 � �ðqÞÞ=k3,

with �k :¼ �kðx ¼ 0Þ. We thus obtain an exact relation

1

�
¼ 1

�0

¼ 1

�
þ

Z
q

1

�ðqÞ ; (5)

that connects the microscopic decay rate � with its macro-
scopic analog � by a term that depends on the lattice
structure via the dispersion relation �. Numerical integra-
tion yields ��1 ¼ ��1 þ 0:252 731 009 858ð3Þ, in excel-
lent agreement with our stochastic simulations; cf. Fig. 2.
Equation (5) is valid not only for the cubic lattice, but for
all Bravais lattices by inserting the corresponding disper-
sion relation. By the same token, one can treat anisotropic
diffusion and arbitrary dimension d > dc.

The flow equation, Eq. (4), for the reaction kernel can
also be applied to study the reaction kinetics of objects in
continuous space, by simply considering the limit where
the lattice spacing goes to zero. This allows us to verify
Smoluchowski’s result, who studied spheres that coagulate
instantaneously. Indeed, as detailed in [23], we recover his
result � ¼ 4�R [1], with R the radius of the reaction
kernel. To further illustrate the potential and versatility of
our approach, we have solved Eq. (4) numerically
for spheroids of equal volume 4

3�; cf. Fig. 3. We find that

the largest values of the macroscopic rates �0ðxÞ are
attained at the sharp ends and edges of the prolates and
oblates, respectively. This can be traced back to the fact
that large momenta q2 > k2 do not contribute to the
projection P .
Finally, we extend our results beyond the lowest order in

the density and discuss deviations from the LMA. To this
end, we represent the nonequilibrium force as a power
series

FIG. 2 (color online). Relaxation of the density for one-site
objects. On double logarithmic plots, data of stochastic simula-
tions (solid red line) are compared to the theoretical prediction
for the density decay �ðtÞ ���1t�1 (dashed line), with the
macroscopic decay rate ��1 ¼ ��1 þ 0:253 . . . ; cf. Eq. (5).
The initial states in both plots were randomly distributed with
�ð0Þ ¼ 0:2.FIG. 1. Important one-loop Feynman diagrams. Because of

causality, the propagator only connects earlier �c (‘‘creation’’)
to later c (‘‘annihilation’’). Since for coagulation processes the
number of legs can only decrease as time passes, the set of
possible diagrams is substantially restricted. Indeed, there is no
such diagram as in (a) and, therefore, no renormalization of the
dispersion � and of the field amplitude Z. The diagrams depicted
in (b) and (c) both stand for the renormalization of the reaction
kernel �k. Finally, diagram (d) exemplifies the divergence of the
RG flow contribution of one-loop diagrams which contain only
ð2; 1Þ and ð2; 2Þ vertices: Each of the three propagators gives rise
to a factor �1=k2. For small k, the volume of reciprocal space

and time that is integrated is �k5. Thus, gð1;3Þk � k�1.

FIG. 3 (color online). Numerical solution to the flow equation,
Eq. (4), for spheroids of volume 4

3� as a function of their

eccentricity. We observe that the macroscopic decay rate �
increases with the eccentricity and is larger for prolates. In the
images, as yellow (light gray) turns to orange and red (dark
gray), the x-dependent macroscopic rate �0ðxÞ grows. As a rule
of thumb, the more jagged the reaction kernel, the higher �
becomes.
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Fð�Þ ¼ lim
k!0

X
n	2

gð1;nÞk �n;

exploiting the fact that the effective average action �k is
analytic if k > 0 [16]. For small densities we recover

Fð�Þ ¼ ��2 with the macroscopic decay rate � ¼ gð1;2Þ0 .

The flow of the coefficients gð1;nÞk is determined by dia-

grams with n incoming and one outgoing leg. Surprisingly,

the most relevant term beyond gð1;2Þ0 �2 ¼ ��2 is not

gð1;3Þ0 �3 as one might naively expect. In fact, in three

dimensions all coefficients gð1;nÞk (n > 2) turn out to diverge

as gð1;nÞk � k5�2n for k ! 0. [This follows from power

counting, as illustrated in Fig. 1(d).] Therefore, the infinite
sum of diverging terms must scale as

X
n	3

gð1;nÞk �n � k5f

�
�

k2

�
;

for some scaling function f. Since for large systems the
nonequilibrium force must become independent of the

system size, i.e., independent of 1=k, one obtains fðxÞ �
x5=2. This adds a nonanalytic term ��5=2 to the nonequi-
librium force F.

The divergent terms in the nonequilibrium force, origi-
nating in long-wavelength fluctuations, cannot resolve the
reaction kernels and the lattice structure. As elaborated in

[23], this can be exploited to calculate the �5=2 term exactly
from the Wetterich equation. Overall, we find for the
nonequilibrium force (exact up to higher orders in �)

Fð�Þ ¼ ��2 þ �5=2

2
ffiffiffi
2

p
�
�5=2: (6)

This equation bears a new fundamental insight: Beyond the
LMA term, quadratic in the density, the nonequilibrium
force driving the reaction kinetics contains a nonanalytic
term violating the LMA. Similar as for critical phenomena,
long-wavelength fluctuations are the physical origin of this
term. Unlike in critical dynamics, the anomalous power
law is not governed by an RG flow close to a fixed point but
is a genuine strong coupling result. In contrast to low-
dimensional systems, the three-dimensional coagulation
process is not critical. Nevertheless, we find that the term
violating the LMA is a universal function of the macro-
scopic decay rate �. From our theoretical analysis, we
anticipate this to be a generic feature of reaction processes
in three dimensions with upper critical dimension dc ¼ 2.
We have run simulations for a range of models (one-site
objects with both finite and infinitely large reaction rates
and two examples of extended objects that react immedi-
ately on contact)—cf. Fig. 4—which clearly corroborate
our theoretical findings.

Exciton luminescence has been previously used to in-
vestigate low-dimensional reaction kinetics: By accurate
measurements on the fusion of excitons, anomalous behav-
ior was observed in an effectively one-dimensional system

[26,27]. We expect that our prediction of a strong violation
of the LMA could be revealed with similar kinds of experi-
ments for three-dimensional systems. In addition, we be-
lieve that our results will stimulate further theoretical and
experimental activities to explore the fundamental impli-
cations of fluctuations on reaction kinetics and to map out
the range of validity of the LMA.
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