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We demonstrate that a semiflexible bundle of wormlike chains exhibits a state-dependent bending
stiffness that alters fundamentally its scaling behavior with respect to the standard wormlike chain. We
explore the equilibrium conformational and mechanical behavior of wormlike bundles in isolation, in
cross-linked networks, and in solution.
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In recent decades, the wormlike chain (WLC) has
emerged as the standard model for the description of semi-
flexible polymers [1]. The defining property of a WLC is a
mechanical bending stiffness �f that is an intrinsic material
constant of the polymer. Within this framework, numerous
correlation and response functions have been calculated,
providing a comprehensive picture of the equilibrium and
dynamical properties of WLCs [2–4]. A number of ex-
perimental studies have demonstrated the applicability of
the WLC model to DNA [5] and F-actin [6], among other
biological and synthetic polymers. Significant progress has
also been made towards the description of the collective
properties of WLCs, for example, in the form of entangled
solutions. One of the hallmarks of this development is the
scaling of the plateau shear modulus with concentration
G� c7=5 [7–9], which is well established experimentally
[10,11].

Another important emerging class of semiflexible poly-
mers consists of bundles of WLCs [12,13]. Semiflexible
polymer bundles consisting of F-actin or microtubules are
ubiquitous in biology [14] and have unique mechanical
properties that may well be exploited in the design of
nanomaterials [13]. As shown by Bathe et al. [15,16],
wormlike bundles (WLBs) have a state-dependent bending
stiffness �B that derives from a generic interplay between
the high stiffness of individual filaments and their rather
soft relative sliding motion. In this Letter, we demonstrate
that this state dependence gives rise to fundamentally new
behavior that cannot be reproduced trivially using existing
relations for WLCs. We explore the consequences of a
state-dependent bending stiffness on the statistical me-
chanics of isolated WLBs, as well as on the scaling behav-
ior of their entangled solutions and cross-linked networks.

We consider the bending of ordered bundles with an
isotropic cross section. A bundle consists of N filaments of
length L and bending stiffness �f. Filaments are irrevers-
ibly cross-linked to their nearest neighbors by discrete
cross-links with mean axial spacing �. Cross-links are
modeled to be compliant in shear along the bundle axis
with finite shear stiffness k� and to be inextensible trans-
verse to the bundle axis, thus fixing the interfilament
distance b [17]. Bundle deformations are characterized

by the transverse deflection r?�s� of the bundle neutral
surface at axial position s along the backbone and by the
stretching deformation ui�s� of filament i. The torsional
stiffness of the bundle is assumed to be of the same order as
the bending stiffness. Thus, as long as transverse deflec-
tions remain small (‘‘weakly bending’’), the two compo-
nents of r? are decoupled, and the effects of twist are of
higher order [18]. The bundle response may then be ana-
lyzed in planar deformation, where the bending stiffness
results from the superposition of 2M �

����
N
p

bundle layers.
The WLB Hamiltonian consists of three contributions

HWLB � Hbend �Hstretch �Hshear. The first term corre-
sponds to the standard WLC Hamiltonian

 Hbend �
N�f

2

Z L

0
ds
�
@2r?
@s2

�
2
; (1)

which is the same for each of the N filaments. The second
term accounts for filament stretching

 Hstretch � Mks�
Z L

0
ds

XM�1

i��M

�
@ui
@s

�
2
; (2)

where ks is the single filament stretching stiffness on the
scale of the cross-link spacing �. No particular form for
bending and stretching stiffnesses is assumed, but one may
think of the filaments as homogeneous elastic beams with
Young’s modulus E, for which �f � Eb4 and ks � Eb2=�.
Alternatively, ks may represent the entropic elasticity of a
WLC, for which ks � �2

f=T�
4.

The third energy contribution Hshear results from the
cross-link-induced coupling of neighboring filaments. To
minimize the cross-link energy, any relative filament slip
induced by cross-sectional rotations � � @sr? � r0? must
be compensated by filament stretching (Fig. 1). This cross-
link shear energy, which simply suppresses relative sliding
motion of neighboring filaments, is given by

 Hshear �
Mk�
�

Z L

0
ds

XM�1

i��M�1

�
�ui � b

@r?
@s

�
2
; (3)

where �ui � ui � ui�1. A related model for two filaments
was introduced by Everaers, Bundschuh, and Kremer in
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Ref. [19], where special emphasis was placed on the limit
of inextensible filaments ks ! 1. In that model, the an-
isotropic bundle cross section leads to a coupling of in-
plane and out-of-plane bending modes [20] that is absent in
the present model because it has a symmetric cross section.

Functional differentiation of the Hamiltonian results in
the (overdamped) equations of motion

 N�fr0000? �
2Mk�b
�

X
i

��u0i � br
00
?� � F�r?; s�; (4)

 ks�u
00
i �

k�
�
��ui�1 � �ui� � 0; (5)

where F is a transverse force that may represent fluid drag,
random thermal noise, or other external loading. To pro-
ceed, Eq. (5) is solved together with appropriate boundary
conditions, so as to eliminate the ui in Eq. (4). The calcu-
lations are most easily performed in Fourier space, where
we write for the expansions r?�s� �

P
nrn sin�n�s=L� and

ui�s� �
P
nuin cos�n�s=L�, applicable to pinned boundary

conditions. The resulting equation of motion for rn then
takes the simple form �nq4

nrn � Fn, with a mode-number-
dependent effective bending stiffness �n. The general re-
sult for �n is obtained using the standard ansatz ui � wi,
which reduces Eq. (5) to an equation that is quadratic in w.

In the following, we present an approximate solution to
Eqs. (4) and (5) that is based on the assumption that
filament stretching increases linearly through the bundle
cross section ui � �u�i� 1=2� [21]. Although compari-
son with the exact solution demonstrates that ui, in general,
varies nonlinearly with i [22], it turns out that the effective
bending stiffness �n is insensitive to this nonlinearity. At
the same time, the linearization simplifies the formulas
substantially, so that the effective bending stiffness is given
in closed form by

 �n � N�f

�
1�

�
12�̂f
N � 1

� �qn��2
�
�1
�
; (6)

with a dimensionless bending stiffness �̂f � �f=ks�b
2 and

a length scale � � �L=
����
�
p
�
�����������������������������������
M�̂f=�M� 1=2�

q
that depends

on the shear stiffness k� via the dimensionless coupling
parameter � � k�L2=ks�2.

For any given mode number qn � n=L, three different
elastic regimes emerge as asymptotic solutions for N 	 1
and respective values of � [15,16]. For large shear stiffness
(�	 N), the fully coupled bending scenario is obtained,
where the bundle behaves like a homogeneous beam with
�n � N

2ks. For intermediate values of the shear stiffness
(1
 �
 N), the bending stiffness in the shear-
dominated regime is �n � Nk�q�2

n and the full mode-
number dependence of Eq. (6) has to be accounted for.
Finally, decoupled bending of N laterally independent, but
transversely constrained, filaments is found in the limit of
small cross-link shear stiffness (�
 1), where the bend-
ing stiffness is simply �n � N�f.

In the particular limit of N ! 1 and fixed bundle di-
ameterD � b

����
N
p

 L, Eq. (6) reduces to the Timoshenko

model for beam bending [23], which was recently used to
interpret bending stiffness measurements on microtubules
[24,25] and carbon nanotube bundles [13]. In this limit,

 �n �
N2�f

1� �qnD�
2E=12G

; (7)

where we have used the expressions of ks and �f for
homogeneous beams and defined G � k�=�. While this
limit serves as a consistency check for our mathematical
analysis, real bundles consist of a finite, and often small,
number of constituent filaments, for which Eq. (7) cannot
be applied to describe the full range of bending behavior
captured by Eq. (6). Indeed, in Eq. (7), no decoupled
bending regime exists, and the bending stiffness vanishes
as the cross-link shear stiffness approaches zero [26]. The
condition �� N delineating the remaining two regimes
can be rewritten as E=G� �L=D�2 	 1, which reempha-
sizes the small value of cross-link shear stiffness in the
intermediate regime.

For fixed values of �N;��, the bundle bending stiffness
Eq. (6) crosses over from fully coupled to decoupled
bending via the intermediate regime as the mode number
qn is increased. Thus, different modes may belong to
different elastic regimes, rendering the fluctuation proper-
ties of the bundle nontrivial and qualitatively different
from single semiflexible polymers. This crossover is me-
diated by the length scale �, which acts as a cutoff on the
fluctuation spectrum: Whereas wavelengths q�1

n 
 � be-
longing to the decoupled regime are characterized by a
constant bending stiffness, modes with q�1

n 	 � acquire a
higher stiffness �n � q

�2
n and are thereby suppressed.

Finally, for even longer wavelengths q�1
n 	 �

����
N
p

, the
bending stiffness reattains a constant, limiting value. As
an example (taken from Ref. [12]), we found � � 7 �m
for actin/fascin bundles with N � 30, L � 50 �m.

i−1

ui

ui+1

θ

θ

u
b

b

FIG. 1 (color online). Illustration of the geometry of a single
bundle layer (the full bundle consists of 2M layers that are
stacked in parallel). The bundle is deflected through the angle
� � r0?. If filament i stretches the amount ui � ui�1 � b�, the
cross-link (dashed line) remains undeformed with zero shear
energy.
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In situations where modes pertaining to the intermediate
regime are irrelevant, the q dependence of �n drops out,
and one recovers the single WLC result, albeit with a
renormalized persistence length lp ! Nlp in the de-
coupled and lp ! N2lp in the fully coupled regimes, re-
spectively. In other cases, calculation of the tangent-
tangent correlation function demonstrates that the persis-
tence length cannot be defined unambiguously. As indi-
cated in Ref. [19], the correlation function does not decay
exponentially but rather exhibits a complex structure at
intermediate distances [22]. In the following, we will there-
fore explore the consequences on the statistical mechanics
of the WLB, in particular, as regards the intermediate
regime.

First, consider the force-extension relation as cal-
culated from the end-to-end distance R�F� � L�P
nkBT=��nq

2
n � F�, where F is the force applied to the

bundle ends [27]. For small stretching forces, one may
readily calculate the linear response coefficient kentr �
F=�R�F� � R�0� using a Taylor series expansion. The
result in the intermediate regime is

 kentr /
�N�f�2

L�3kBT
��

����
N
p
	 L	 ��; (8)

which is inversely proportional to bundle length, like a
mechanical beam. Importantly, the strong dependence of
kentr�L� � L�4 applicable to single filaments (and the other
two regimes) is lost. This has dramatic consequences on
the plateau value of the shear modulus G in cross-linked
bundle networks, which in affine theories [28] is assumed
to be given in terms of kentr by G� kentr���=�, where the
mesh size � depends on concentration c as �� c�1=2.
Accordingly, in the intermediate regime one finds G� c,
which is a much weaker concentration dependence than
G� c5=2 [29] applicable to single filaments. It is worth-
while noting that the force-extension relation is strongly
nonlinear (see Fig. 2), rendering the linear response valid
only for very small relative extensions. In this particular
example, the linear response formula deviates from the
exact solution by 50% at only � 3% and � 0:7% strain
in the decoupled and the fully coupled limits, respectively.

Bundle behavior under compressive forces further high-
lights the unusual properties of WLBs. Because the bend-
ing stiffness in the intermediate regime scales with the
length of the bundle as �B � L2, the Euler buckling force
Fc � �B=L

2 � N�f=�
2 is independent of bundle length.

This unique property may well be exploited in polymeriz-
ing biological bundles such as filopodia, which may in-
crease their contour length against compressive loads
without loss of mechanical stability.

Complementary to the elasticity of cross-linked net-
works of WLBs, we turn next to the elasticity of their
entangled solutions. The generally accepted theory for
the concentration dependence of the plateau modulus of
entangled WLCs is based on the free energy change �F of
confining a polymer to a tube of diameter d [7,8]. The

associated change in free energy is written as �F�
kBTL=ld, which defines the deflection length ld to be the
scale at which the polymer starts to interact with its enclos-
ing tube. The deflection length itself is connected to the
tube diameter d and the filament concentration c via the
standard excluded volume argument [9] l2dd � ld=cL,
which balances the excluded volume of the tube with the
available volume per filament. All that remains is the
calculation of the tube diameter d of a single polymer
confined by the potential

 V �
N�f
2l4c

Z L

0
dsr2

?�s�; (9)

where the confinement length lc is defined as a measure of
the strength of the potential. While lc � ld in the standard
WLC, we will see shortly that this does not hold for WLBs
in the intermediate regime. First, consider the transverse
fluctuations of an unconfined bundle, in particular, the
average value d2

0 �
1
L

R
shr?�s�

2i. This is most easily cal-
culated as

 d2
0 � L�

2=Nlp ��
����
N
p
	 L	 ��; (10)

which has to be compared to the WLC result for which
d2

0 � L
3=lp. In the presence of the confining potential, the

same calculation yields

 d2 � l2c�=Nlp ��
����
N
p
	 lc 	 ��: (11)

For strong confinement lc 
 �, the potential suppresses all
modes of the intermediate regime, and one recovers the
expression valid for single filaments: d2 � l3c=lp. The gen-
eral result for the tube diameter is depicted in Fig. 3. As the
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/κf
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L

FIG. 2 (color online). End-to-end distance R�F�=L as a
function of stretching force FL2=�f for a bundle of N � 4
filaments and L � lp. The black curves correspond to �=L �
0:01; 0:1; . . . ; 0:7. The thick (red) curves relate to
(bottom) decoupled and (top) fully coupled bending, respec-
tively. The dashed lines correspond to the respective linear
response regimes.
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contour length L of the bundle is increased, it begins to
‘‘feel’’ the presence of its enclosing tube at the deflection
length L � ld. By comparing Eq. (10) with Eq. (11), one
finds ld � l2c=�, which is valid in the intermediate regime.
At the same time, ld � lc in the decoupled and fully
coupled regimes, where the deflection and confinement
lengths are identical.

One may use these results to rewrite the deflection
length as a function of concentration c. In the intermediate
regime, the result is l3d � Nlp=��cL�

2, which replaces the
usual result l5d � Nlp=�cL�

2 valid in the decoupled regime
(strong confinement). The free energy of confinement and
the elastic plateau modulus G� �cL��F=L now depend
on � and thus on the properties and density of the cross-
links. The modulus displays a crossover that is mediated by
concentration:

 G� kBT
�
�cL�5=3�Nlp�

�1=3�2=3; c
 c?;
�cL�7=5�Nlp��1=5; c	 c?;

(12)

where we defined the crossover concentration as �cL�? ���������
Nlp

p
��5=2. Below the even smaller concentration c?? �

c?N�3=4, the fully coupled regime is entered, and the
modulus again scales as G� c7=5.

Having addressed equilibrium properties of WLBs, fur-
ther consequences of the state-dependent bending stiffness
on dynamic response functions remain to be explored,
along with the effects of nonpermanent cross-links.
Additional experiments [12,13,21,30] are required to test
the applicability of the derived results to biological and
synthetic bundles.
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FIG. 3 (color online). Tube diameter d2=�l3c=Nlp� as a function
of contour length L=lc for various �=lc and M � 20. Thick (red)
curves correspond to (top) decoupled and (bottom) fully coupled
bending, respectively. For short filaments, the intermediate re-
gime is visible through the linear slope d2 � L [see Eq. (10)].
For long filaments, the fluctuations saturate. By increasing �, the
tube is becoming wider [Eq. (11)].
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