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We study a periodic one-dimensional exclusion process composed of a driven and a diffusive part. In a
mesoscopic limit where both dynamics compete we identify bulk-driven phase transitions. We employ
mean-field theory complemented by Monte Carlo simulations to characterize the emerging nonequilib-
rium steady states. Monte Carlo simulations reveal interesting correlation effects that we explain
phenomenologically.
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One-dimensional (1D) driven diffusive systems [1] have
not only served as fruitful testing grounds for fundamental
questions in nonequilibrium physics [2] but have also been
the focus of recent interest in applications relevant to
biological problems [3,4]. Restricted 1D motion may either
result from geometric confinement as in a nuclear pore
complex of cells [5] or artificial crystalline zeolitical struc-
tures [6], or arise because molecular engines move along
one-dimensional tracks as, for example, in intracellular
transport [7] and protein synthesis [8,9].

In these systems interesting collective effects emerge
since mutual passage of particles is excluded. The nature
of these effects depends on whether the system is purely
diffusive (passive) or driven due to the presence of an
external field or an internal driving mechanism inherent
to the particles (active), e.g., motor activity in intracellular
transport. In addition, one has to distinguish between open
and closed boundary conditions. Independent of their
boundary conditions, both active and passive systems
show interesting dynamic anomalies [10–12]. In contrast,
only systems with open boundaries are known to exhibit
nontrivial nonequilibrium steady states [13].

Inspired by traffic of molecular motors in closed com-
partments [3] and colloidal motion in optical traps [12], we
present a model that combines the symmetric and the
totally asymmetric simple exclusion process (SEP and
TASEP, respectively). It is intended to investigate the
competition between driven and diffusive motion in 1D
systems. While the breaking of translational invariance is
known to be necessary for nontrivial steady states to
evolve, we show that additionally time scale separation
between the two processes requires a mesoscopic scaling to
guarantee a finite current and a physical behavior in the
continuum limit.

SEP and TASEP serve as the two paradigms for passive
and active transport in one dimension. In these lattice gas
models particles occupy the sites of a 1D lattice subject to
the simple exclusion rule that each site may be occupied by
at most one particle. In the SEP particles jump indepen-
dently and randomly at rate D to vacant neighboring sites
with equal probabilities to the left and right, while hopping

at a rate R is strictly unidirectional for the TASEP. In the
following we will measure time in units of 1=R; i.e., we set
R � 1. For a closed ring geometry both processes are
characterized by a steady state with a uniform density
profile since translational invariance gives equal weight
to all permissible configurations. For open boundary con-
ditions, the steady state of the SEP always shows a linear
density profile [14], whose slope depends on the boundary
condition’s difference. In stark contrast, TASEP exhibits
several distinct nonequilibrium phases [13] as a function of
the magnitude of the entrance and exit rate, � and �, at the
left and right boundary, respectively. Two different phases
can be characterized by their global particle density (low
and high) and one by a maximal current. The validity of the
initial mean-field analysis of the phase diagram was later
supported by several exact solutions [15].

In this Letter we aim at identifying the nature of the
nonequilibrium steady states of a closed ring system con-
sisting of two equally sized compartments with i �
1; . . . ; N lattice sites, whose dynamics is governed by a
symmetric and a totally asymmetric exclusion process,
respectively; see Fig. 1. To distinguish between the active
and passive compartments of the ring, quantities for the
passive part like the location of the lattice sites, ~xi, or the
occupation numbers ~ni 2 f0; 1g are indicated by a tilde.
Particle exchange between both sublattices is exclusively
allowed at their junctions with dynamic rules defined by
the originating site. Thus a vacancy on the right-hand side
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FIG. 1. Schematic model of the ring system. The dynamics of
the upper (passive) lane with lattice sites ~xi is governed by a SEP
with rate D, and the dynamics of the lower (active) lane with
lattice sites xi by a TASEP with unity jump rate.
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(r.h.s.) ~x1 of the passive part can be filled with a particle
from site xN of the active section with rate unity, while the
corresponding event at the left junction will occur with rate
D. Since the system is closed, the particle number Np �PN
i�1�ni � ~ni� is conserved and the particle density

 np �
Np
2N

(1)

serves as a dimensionless control parameter confined to the
interval �0; 1�. Having chosen the inverse hopping rate 1=R
on the active part as our time unit, we are left with a two-
dimensional parameter space (np, D). As these parameters
are bulk quantities, resulting phase transitions will be bulk-
induced in contrast to boundary-induced phase transitions
in TASEP. In order to explore the phase behavior in this
parameter space we will exploit the fact that for a closed
system the steady state current J�np;D� is spatially
constant.

We analyze the ring system by mean-field (MF) theory
complemented by Monte Carlo simulations (MCS). The
MF analysis allows one to decouple the two parts of the
ring and consider them as separate lanes with effective
entrance and exit rates. Once these rates are identified we
can use known results for the SEP and TASEP with open
boundaries. To begin with, we introduce the following
notation for the stationary densities �i � hnii at the junc-
tion sites: � � ~�1 and � � ~�N for the passive part, and
� � �1 and 1� � � �N according to TASEP convention
for the active part. The incoming current to site x1 is the
product of the average occupation number on the originat-
ing site, the jump rate to the destination site, and the
probability that the latter is empty: �D�1� ��. Because
of current conservation this has to equal the current to site
x2: ��1� ��. Using particle-hole symmetry, one can pro-
ceed accordingly at the other junction to arrive at the
following relations:

 � � D�; � � 1� �: (2)

To analyze the interplay of the two junctions, we will
exploit the conservation of current mentioned above. On
the active part, directed motion results in a current of J �
�i�1� �i�1�. Conservation of current can be fulfilled only
for a spatially constant or piecewise constant density dis-
tribution. In the latter case, two sections of constant density
U and V are connected by a domain wall and their densities
have to fulfill the condition �U � 1� �V to conserve the
current.

As particle motion is bidirectional on the passive part,
the current between two sites is obtained as the balance of
their bilateral particle exchange, which is proportional to
their density difference. Conservation of current thus de-
mands a linear density slope and the current takes the
form J � ��� ��D=N reminiscent of Fick’s law [16].
Evidently the passive part current vanishes with system
size, while the active part current is constant. Because of

current conservation this implies that the smaller current,
and thus the diffusive process, is dominating the system in
a trivial way. To broaden our analysis to a wide parameter
range for arbitrary system sizes we introduce a mesoscopic
scaling [4] and a new control parameter:

 d �
D
N
: (3)

This scaling can be understood as a time scale separation
and ensures competitive behavior between the system’s
constituents. The specific form (3) even guarantees a
well-behaved approach to the continuous case N ! 1.
With the new control parameter the passive part current
is expressed as J � d��� �� and allows for a relation
between the two junctions:

 � � ��
J
d
: (4)

Having derived suitable entry and exit rates for the
active part, we can now apply the TASEP results. The
low (high) density (LD and HD, respectively) phases are
realized in the periodic system equally and are character-
ized by a uniform density below (above) 1=2 and a bound-
ary layer at the right (left). Special attention has to be paid
to the phase boundary � � � between the LD and HD
phase, where the boundaries are matched by a piecewise
constant density profile with an intervening domain wall
(DW). Because of the randomness of entry and exit events
this DW is delocalized and subjected to a random walk that
explores the complete system on long time scales. In the
ring system, however, our MCS reveal a DW localization
(Fig. 2). We understand this as a consequence of entry and
exit rates that are not statistically independent as in TASEP
but rather connected via the passive part, dependent on the
amount of available particles and the diffusion rate.

To proceed with a quantitative analysis, we connect the
boundary conditions of the two sublattices in a self-
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FIG. 2. Simulated density profiles of the active part in a system
of N � 500 and np � 0:38 for different diffusion strengths d
(indicated in the graph). The system is in the LD-HD phase
featuring a domain wall. With increasing d the domain wall
position (intersection with the solid line) is shifted to the left [see
Eq. (5)] and DW fluctuations increase. The left boundary layers
are due to current limitation caused by correlations at the passive
part boundaries (see text).
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consistent manner to obtain a junction density solely de-
pendent on the two control parameters. The precondition
� � � guarantees a conserved active part current of J �
��1� ��. This allows one to rewrite Eq. (4) as � � �1�
���1� �=d�. Since � is of order 1=N in the thermody-
namic limit (TL) N ! 1, we find � � d�O�1=N�.
Having derived �, the remaining densities �, �, and �
are easily calculated and we can proceed to connect the
position of the DW to the global particle density. To this
end continuous density distributions are assumed, which
are applicable for large systems where the lattice spacing
vanishes. To begin with, a DW is assumed to be present on
the active part. Hence, a Heaviside function that connects
two regions of constant density at DW position xw is
chosen as ��x� � ����x� xw��1� �� ��. For the
passive part’s density distribution a linear slope ~��x� �
�� ��� ��x is appropriate. Now particle conservation
can be expressed as 2np �

R
1
0 dx�~��x� � ��x��. Solving

this in the TL, the DW position evaluates to

 xw �
�3� 3d� 4np

4d� 2
: (5)

The DW position is left to depend on the two control
parameters: the diffusion strength (see Fig. 2 for an ex-
ample) and the particle density. The resulting �d; np�-phase
diagram exhibits several phase transitions and regimes of
which three can be characterized by the domain wall
position. In the case xw � 0 the DW has left the active
part at the left junction resulting in a HD phase with
constant density ��x� � 1� �. A constant low density
corresponding to the left boundary condition ��x� � � is
established for 1 � xw, while the DW is localized inside
the system for 0< xw < 1 connecting the two boundaries
by a phase of coexistence (LD-HD). Its phase boundaries
can be obtained from Eq. (5) as d � �3� 4np�=3 for xw �
0 and d � 4np � 1 for xw � 1. The phase boundaries
intersect at a critical point at (np � 3=8, d � 1=2) where
the DW height vanishes (Fig. 3). The extremal points at

d � 0 of the LD-HD phase can be readily explained by the
particle fraction of a quarter that has to be bound on the
passive part for vanishing diffusion (signifies � � � � 0).
Hence, at np � 1=4 there are no particles available to the
active part and the system crosses over into the LD phase.
Analogous, the HD phase is entered for values of np >
3=4. The existence of the LD-HD phase is a distinctive
difference to TASEP [18]. It replaces one discontinuous
phase transition with two continuous transitions that meet
at a multicritical point.

Similar to TASEP, the ring system also features a
maximal-current (MC) phase. In this regime the active
part current imposes its maximum JMC � 1=4 on both
lanes. MF approximations allow one again to derive the
extent of the MC phase in dependence of the two control
parameters d and np. To this end we have to assume a
different density distribution than above for the active part.
The corresponding distribution in TASEP is established for
boundary conditions �;� > 1=2 and has to be constant at
� � 1=2 with the exception of possible boundary layers
that vanish in the TL. Hence, N=2 particles have to be
present on the active part. We can then deduce from
particle conservation: 2np�1=2��������=2, where
the r.h.s. is just the integral over the passive part’s linear
density distribution. Using the equality of the passive part
and the active part current allows one to solve for � �
2�np � 1=4� � 1=�8d�. The active part constraints can be
rewritten as constraints on the passive part by use of
Eqs. (2) and (4) to � > 1=�2dN� and � < 1=2� 1=�4d�.
The last three equations constitute planes in the ��; d; np�
space. Computing now the intersection of the first plane
with the two inequalities, one can finally deduce the phase
boundaries of the MC phase in �d; np�-phase space in the
TL as d � 1=�16np � 4� and d � 1=�8� 16np�, where
the latter is the boundary with the HD phase. Notice that
the former phase boundary could already be derived by
considering only terms of order 1 in the TL (i.e., with � �
0), while the HD boundary is obtained only if � � O�1=N�
is considered. The MC phase originates at the critical point
in phase space and asymptotes for d! 1 at values of 1=2
and 1=4 (see Fig. 3) as can easily be explained. At particle
densities below np � 1=4 there are not enough particles
available to establish a constant density of � � 1=2 on the
active part. On the contrary, the system makes a transition
to the HD phase if both active and passive part are half
filled at np � 1=2. At this point, � > 1=2 implies a viola-
tion of the MC phase requirement �> 1=2.

We have complemented our MF analysis by extensive
MCS. Their results deviate from the phase diagram derived
above (see simulation data in Fig. 3). The key difference is
that the multicritical point is shifted to higher values of d.
To rationalize this we compare the density profiles from
simulations and MF theory. While the density distribution
on the passive part has been assumed to be linear according
to SEP results, simulated data exhibit a distinct curvature in
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FIG. 3. Phase diagram obtained by MF (solid lines) exhibits
four phases. Simulations [MC (triangles) and LD-HD (circles)
phase boundaries, N � 200] reveal a failure of the MF analysis:
correlations at the passive part boundaries cause a diminished
current that shifts the MC phase.
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the profile [19]. A closer examination of the present bound-
ary conditions reveals that these are different from open
boundaries used for the derivation of the linear SEP density
profile. As particles enter the passive part with a rate of
unity while the internal dynamics of the diffusion are much
faster, the SEP experiences a boundary that is reflective for
a considerable amount of time. Like in other problems,
exhibiting time scale separation, as forest-fire models [20]
the stationary state results from competition between a
process that strives towards equilibrium (diffusion) and
another process repeatedly driving the system to nonequi-
librium (particle entrance). The rare particle entrance
events provide a particle excess at the right boundary.
This density surplus then spreads into the bulk by diffusion
before the next entrance restores the particle excess [21]. A
time average then results in a strictly convex density profile
on the passive part. Its curvature renders Fick’s law for the
passive part current inappropriate because the smallest
gradient (here at the left interface) acts as a current bottle-
neck. The consequences for the phase diagram are obvious:
since the current is effectively reduced, the MC phase is
established only at higher diffusion values (Fig. 3). The
current limitation caused by the bottleneck is also respon-
sible for the boundary layers on the left-hand side. of the
active part (Fig. 2). Here global conservation of current
forces the density to decay quickly to a value conform with
the system’s minimal current. Thereby the extension of the
LD-HD phase to values of d > 1=2 can be explained. By
introducing a correction factor for the reduced current, a
refined MF theory can explain the shift of the MC phase at
least qualitatively [21]. Recalculation of the LD-HD phase
boundaries in this realm completely fails, also due to
correlation effects on the left interface.

Our analytical and numerical studies have shown that
the presented system exhibits a rich phase behavior unex-
pected for periodic systems. While boundary-induced
phase transitions in exclusion processes occur in several
geometries [4,13] and nontrivial nonequilibrium steady
states are known in periodic systems if translational sym-
metry is broken by defects [22], comparable bulk-induced
phase transitions have not been studied, to our knowledge,
so far. Crucial to this behavior is the competition between
the two processes, which the scaling Eq. (3) ensures for a
broad parameter range. The time scale separation between
the subprocesses is also responsible for the quantitative
failure of MF that comes as quite a surprise, since up to
now similar approximations have been known as a reliable
tool to reproduce the phase diagram of lattice gas systems
with an astonishing accuracy.

For the system presented, these characteristics indicate
the existence of interesting correlation phenomena that call
for analytical methods beyond MF. The phenomenological
explanation and the modified MF theory should therefore
only be considered preliminary. As MCS near the multi-
critical point require considerable computation resources,

we cannot give any reliable predictions about the exact
phase topology. The exact form of the phase diagram and
the behavior near the multicritical point remain an open
question to whose solution different techniques like Bethe
ansatz [14] or density matrix renormalization group [23]
may contribute. Furthermore, possible experimental real-
izations [12] could make this system an intriguing problem
to study.
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