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Localization Transition of the Three-Dimensional Lorentz Model and Continuum Percolation
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The localization transition and the critical properties of the Lorentz model in three dimensions are
investigated by computer simulations. We give a coherent and quantitative explanation of the dynamics in
terms of continuum percolation theory and obtain an excellent matching of the critical density and
exponents. Within a dynamic scaling ansatz incorporating two divergent length scales we achieve data
collapse for the mean-square displacements and identify the leading corrections to scaling. We provide
evidence for a divergent non-Gaussian parameter close to the transition.
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FIG. 1 (color). Typical particle trajectories in a 2D Lorentz
model slightly below n�c over a few thousand collisions each.
Colors encode different initial conditions; obstacles have been
omitted for clarity. Most trajectories being in the percolating
void space have some overlap; a few trajectories are confined to
finite clusters. Blowup: a particle squeezes through narrow gaps
formed by the obstacles.
Transport in heterogeneous and disordered media has
important applications in many fields of science including
composite materials, rheology, polymer and colloidal sci-
ence, and biophysics. Recently, dynamic heterogeneities
and growing cooperative length scales in structural glasses
have attracted considerable interest [1,2]. The physics of
gelation, in particular, of colloidal particles with short
range attraction [3–6], is often accompanied by the pres-
ence of a fractal cluster generating subdiffusive dynamics.
It is of fundamental interest to demonstrate the relevance of
such heterogeneous environments on slow anomalous
transport.

The minimal model for transport of particles through a
random medium of fixed obstacles is known as the Lorentz
model, and already incorporates the generic ingredients for
slow anomalous transport. Earlier, the Lorentz model
played a significant role as a testing ground for elaborate
kinetic theories, shortly after the discovery of long-time
tails in autocorrelation functions for simple liquids in the
late 1960s [7], since the nonanalytic dependence of trans-
port coefficients on frequency, wave number, and density
predicted for simple liquids [8–12] has a close analog in
the Lorentz model [13,14].

The simplest variant of the Lorentz model consists of a
structureless test particle moving according to Newton’s
laws in a d-dimensional array of identical obstacles. The
latter are distributed randomly and independently in space
and interact with the test particle via a hard-sphere repul-
sion. Consequently, the test particle explores a disordered
environment of possibly overlapping regions of excluded
volume; see Fig. 1. Because of the hard-core repulsion, the
magnitude of the particle velocity, v � jvj, is conserved.
Then, the only control parameter is the dimensionless
obstacle density, n� :� n�d, where � denotes the radius
of the hard-core potential. At high densities, the model
exhibits a localization transition, i.e., above a critical den-
sity, the particle is always trapped by the obstacles.

Significant insight into the dynamic properties of the
Lorentz model has been achieved by a low-density ex-
pansion for the diffusion coefficient by Weijland and
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van Leeuwen [13] rigorously demonstrating the nonana-
lytic dependence on n�. As expected, for low densities the
theoretical results compare well with molecular dynamics
(MD) simulations [15]. Elaborate self-consistent kinetic
theories [16,17] have allowed going much beyond such
perturbative approaches. They give a mathematically con-
sistent description of the localization transition, which al-
lows the calculation of the critical density within a 20%
accuracy and allows the extension of the regime of quanti-
tative agreement to intermediate densities. In addition, they
have provided a microscopic approach towards anomalous
transport and mean-field-like scaling behavior [16].

A different line of approach focusing on the localization
transition starts from the fractal nature of the void space
between the overlapping spheres in the Lorentz model and
considers it as a continuum percolation problem [18–22],
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FIG. 2 (color). (a) MSD �r2�t� for various obstacle densities
n� varying from 0.30 (top) to 1.10 (bottom). The thick black line
represents a power law, �r2�t� 	 t2=z with z � 6:25. (b) Scaling
functions �r̂2

��t̂� for the MSD. Right panels include corrections
to scaling at leading order. Units are chosen such that v � � �
1; color key as in Fig. 2(a).
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which in this context has also been termed the ‘‘Swiss
cheese’’ model [20]. These authors conjectured that the
transport properties close to the percolation threshold can
be obtained by analyzing an equivalent random resistor
network. The equivalence, however, has been shown only
for geometric properties close to the percolation point [23].
As a peculiarity of continuum percolation, differences to
lattice percolation may arise due to power-law tails in the
probability distribution of the conductances (‘‘narrow
gaps’’). Such random resistor networks have been inves-
tigated extensively by means of Monte Carlo simulations
[24,25] and renormalization group techniques [26,27],
providing reliable numeric and analytic results for the
critical behavior [28].

In this Letter, we present a direct numerical analysis of
the dynamic properties of the Lorentz model without re-
sorting to random resistor networks. By means of extensive
MD simulations, we obtain a quantitative description of the
dynamic properties over the full density range, in particu-
lar, focusing on both sides of the critical region. This
allows for a quantitative test of the conjectured mappings
to continuum percolation theory. Furthermore, we explore
the range of validity of the dynamic scaling hypothesis for
the Lorentz model [29]. The probability distribution of
particle displacements, i.e., the van Hove self-correlation
function, G�r; t� :� h��r� �R�t��i, and its second mo-
ment, the mean-square displacement (MSD), �r2�t� :�
hj�R�t�j2i, are the appropriate quantities for this purpose;
�R�t� � R�t� �R�0� denotes the displacement of the test
particle at time t.

Over a wide range of obstacle densities, we have simu-
lated several hundred trajectories in three dimensions,
employing an event-oriented MD algorithm. For each of
Nr different realizations of the obstacle disorder, a set ofNt
trajectories with different initial conditions is simulated.
Below the critical density, we have chosen Nr � 25 and
Nt � 4. At very high densities, where the phase space is
highly decomposed, these values have been increased up to
Nr � Nt � 600. In order to minimize finite-size effects,
the size of the simulation box, Lbox, has been chosen
significantly larger than the correlation length �, Lbox �
200�� � [30].

The results for the MSD cover a nontrivial time window
of more than seven decades for densities close to the
transition, see Fig. 2(a). At low densities, one observes
only a trivial crossover from ballistic motion, �r2�t� �
v2t2, to diffusion, �r2�t� 	 t, near the mean collision
time � � 1=�nv�2 as expected from Boltzmann theory.
With increasing density, an intermediate time window
opens where motion becomes subdiffusive, �r2�t� 	 t2=z

with z > 2. This time window extends to larger and larger
times upon approaching a certain critical density n�c. For
the density n� � 0:84, the subdiffusive behavior is obeyed
over more than five decades and is compatible with a value
of z 
 6:25. The power law, �r2�t� 	 t2=z, indicated in
Fig. 2(a), nicely discriminates trajectories above and below
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n�c. One also observes a density-dependent length scale l
characterizing the end of the subdiffusive regime by
�r2�t� ’ l2; upon approaching n�c this crossover length
scale l is found to diverge. For long times, the dynamics
eventually becomes either diffusive or localized for den-
sities below or above n�c, respectively.

The diffusion coefficient D has been extracted from the
long-time limit of �r2�t�=6t; in Fig. 3, D is shown in units
of the Boltzmann result, D0 � �v2=3. With increasing
density, D is more and more suppressed until it vanishes
at n�c as a power law, D	 j"j�, where " :� �n� � n�c�=n

�
c

defines the separation parameter. Anticipating the expo-
nent � from percolation theory, a fit to our data yields the
critical density, n�c � 0:839�4� [31], and the power-law
behavior is confirmed over five decades in D. Above the
critical density, the long-time limit of the MSD is compat-
ible with a power law over more than one decade, l	
"����=2, where �� �=2 
 0:68 (bottom inset in Fig. 3).
Our finding of n�c coincides with the percolation point of
the void space [18,19,32]. This provides clear evidence for
the intimate connection between continuum percolation
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and the Lorentz model; i.e., diffusion is not blocked as long
as there is an infinite path through the medium—a purely
geometric reason.

Considering the underlying continuum percolation prob-
lem, a geometric transition occurs at n�c, above which the
void space falls completely apart into finite clusters. Just
below this density, the volume fraction P of the percolating
void space (infinite cluster) vanishes as a power law, P	
j"j�. There are two divergent length scales characterizing
the structure of the percolation network: the linear dimen-
sion of the largest finite clusters, �	 j"j��, and the mean
cluster radius (radius of gyration), l	 j"j����=2 [33]. The
geometric exponents � and � are believed to be the same
for lattice and continuum percolation [19]. Our results in
Fig. 3 clearly identify the geometric mean cluster radius l
with the localization length of the MSD as anticipated by
our choice of notation.

In continuum percolation, transport of a particle is lim-
ited by narrow gaps in the void space. It was argued that
this feature of the dynamics is captured by an associated
random resistor network with a distribution 	�W� of weak
conductances W exhibiting a power-law tail, 	�W� 	
W�
, 
< 1 for small W [20,21]. Depending on the value
of 
, the suppression of diffusion, D	 j"j�, may be
dominated by this tail, and dynamic exponents become
different from lattice percolation, �>�lat. In this case,
the hyperscaling relation, � � �d� 2��� 1=�1� 
�,
holds [22,34]. There is a discrepancy in the literature about
the value of 
 in the Lorentz model [20,21,28]. Only the
result of Machta and Moore [21], 
 � �d� 2�=�d� 1�, is
consistent with our data. In d � 3, it implies� � �� 2 

2:88, and therefore, �>�lat 
 2:0 [35]. By means of a
scaling relation [33], z � �2�� ����=��� �=2�, one
finds the dynamic exponent, z 
 6:25, describing anoma-
lous transport at critical density, �r2�t� 	 t2=z. Note that
this dynamic exponent is not independent but entirely
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FIG. 3. Suppression of the diffusion coefficient D=D0 with
increasing density n�. Top inset: Power-law behavior of D close
to n�c. Bottom inset: Divergence of the localization length l upon
approaching n�c with exponent �� �=2 � 0:68.
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determined by the geometric properties of the random
environment.

In conclusion, the values obtained from the simulated
MSD for the critical density n�c, the dynamic exponent z as
well as the exponents for the diffusion coefficient � and
the localization length �� �=2 agree with the predicted
values for continuum percolation. Within the statistical
accuracy, no deviations can be inferred.

The quality of our data allows to go beyond determining
critical exponents and to give a full analysis of the dynamic
scaling properties. It has been argued by Kertész and
Metzger [29] that the van Hove correlation function obeys
scaling. Rewriting their ansatz in a more transparent way
yields,

G�r; t; "� � ���=��dG��r=�; tl�z�; (1)

where G� are master functions above (�) and below (�)
the critical density. This ansatz clearly reflects the role of
the two length scales: the correlation length � rescales ge-
ometry whereas the crossover length scale l rescales time.
The scaling form of the MSD is easily inferred from
�r2�t; "� �

R
ddrr2G�r; t; "� as, �r2�t; "� � t2=z�r̂2

��t̂�,
where t̂	 tl�z. Plotting t�2=z�r2�t; "� versus t̂ for various
densities [left panels of Fig. 2(b)], the data collapse nicely
in the diffusive and localized regimes (t̂� 1) and con-
verge rapidly to the corresponding large-t̂ asymptotes,
�r̂2
��t̂� 	 t̂

1�2=z and �r̂2
��t̂� 	 t̂

�2=z. Convergence to the
critical asymptote, �r̂2

��t̂� 	 const, for t̂
 1 becomes in-
creasingly better as the critical point is approached.

Deviations from scaling can be rationalized by consid-
ering the again universal corrections to scaling. Extending
the ansatz, Eq. (1), by an irrelevant parameter u leads to
�r2�t; "; u� � t2=z���tl�z; ut�y�, where y is a universal
exponent. Since �� is assumed to be analytic for small
arguments, one obtains the leading-order correction upon
expanding �� to first order in u,

�r2�t; "� � t2=z�r̂2
��t̂��1� t

�y���t̂��; (2)

introducing some analytic functions ���t̂�. Specializing
Eq. (2) to the critical density, i.e., t̂ � 0, yields �r2�t; " �
0� / t2=z�1� Ct�y�, with a single amplitude C � ���t̂ �
0�; it also identifies y as the leading nonanalytic correction
exponent at criticality. Our data for n�c � 0:84 are compat-
ible with values for y between 0.15 and 0.4. For the follow-
ing, we found the choice y � 0:34 and C � �0:8
reasonable, the value for y is supported by theoretical
arguments to be presented elsewhere.

Inspection of Fig. 2(b) reveals that corrections to scaling
are less relevant for long times, t̂� 1, whereas significant
deviations are visible in the critical regime, t̂
 1. This
observation is consistent with the scaling behavior of the
diffusion coefficient and the localization length, see Fig. 3.
These findings also suggest approximating the corrections
by its value at t̂ � 0, i.e., substituting ���t̂� � C in Eq. (2)
for all times, �r2�t; "� � t2=z�r̂2

��t̂��1� Ct
�y�. With y and

C already inferred from the data close to criticality, the
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correction terms should apply for all densities. Indeed,
including this leading-order correction improves the data
collapse substantially [Fig. 2(b), right panels].

The presence of two different length scales, l and �, in
the scaling hypothesis, Eq. (1), is not manifested in the
MSD; it will, however, affect the higher moments of the
probability distribution, e.g., the mean-quartic displace-
ment (MQD), �r4�t; "� �

R
ddrr4G�r; t; "�. Above n�c, it

is easily inferred that the long-time limit of the MQD
scales as �r4�t! 1� 	 �2l2. At the critical density, we
obtain the long-time asymptote, �r4�t� 	 t4=~z, with the
exponent ~z :� �2�� ����=��� �=4� 
 5:45 different
from z. We have evaluated the MQD by our simulation and
find agreement with the prediction of continuum percola-
tion at a similar level of significance as for the MSD, see
Fig. 4. In particular, for the density n� � 0:84 the MQD
follows a power law with the predicted exponent ~z for a
time window of more than four decades.

A more sensitive quantity is the (first) non-Gaussian
parameter (NGP), 
2�t� :� 3

5�r
4�t���r2�t���2 � 1, quanti-

fying deviations from a Gaussian distribution [36]. At
criticality, it diverges as 
2�t� 	 t4=~z�4=z 
 t0:097; direct
observation of this very small exponent is expected to be
a considerably difficult task. The long-time limits of 
2�t�
diverge upon approaching n�c from either above or below as

2�t! 1� 	 j"j

��. In particular, the NGP does not vanish
in the diffusive regime close to the transition due to the
presence of localized particles even below n�c. Although
there are significant statistical errors in the data for the
NGP, Fig. 4 (inset) provides evidence for a significant
increase of 
2�t� as density approaches n�c from either
side. The properties of the NGP demonstrate that the
presence of two divergent length scales is crucial for the
understanding of the dynamics close to the localization
transition.
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