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Stiff Polymers, Foams, and Fiber Networks
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We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that, in
contrast to cellular foamlike structures, affine strain fields are generically unstable. Instead, a subtle
interplay between the architecture of the network and the elastic properties of its building blocks leads to
intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive
numerical studies based on a finite element method complemented by scaling arguments.

DOI: 10.1103/PhysRevLett.96.017802 PACS numbers: 61.41.+e
(a) (b)

FIG. 1. Illustration of the different architecture of (a) cellular
and (b) fibrous materials. The foam in (a) is constructed by a
Voronoi tessellation from the centers of the fibers in (b).
Cellular and fibrous materials (see Fig. 1) are ubiquitous
in nature and in many areas of technology. Examples range
from solid or liquid foams over wood and bone to the
protein fiber network of cells [1–3]. On a mesoscopic level,
these materials are comprised of struts and membranes
with anisotropic elastic properties. The systems differ
widely in architecture. One finds patterns which are as
regular as a honeycomb, as sophisticated as the particular
design of a dragonfly’s wing, or simply random [4]. The
manifold combinations of architecture and elastic proper-
ties of the building blocks allow for a rich spectrum of
macroscopic elastic responses. For regular cellular struc-
tures, macroscopic elasticity can already be understood by
considering the response of a single cell [2,5]. In these
systems, local stresses acting on an individual cell are the
same as those applied on the macroscopic scale. In other
words, the local deformation � of a cell with linear dimen-
sion ls follows the macroscopic strain � in an affine way
such that it scales as � / �ls. Since in affine models there
can be no cooperativity between the elastic responses of in-
dividual cells, the effect of the assembled structure can be
predicted simply by counting the number of cells. Fibrous
networks, on the other hand, are dramatically different
already in their morphology as can be inferred from
Fig. 1. The presence of fibers introduces the additional
mesoscopic scale of the fiber length l and, by hierarchically
cutting cells into smaller and smaller compartments, gen-
erates a broad distribution of pore sizes that, in contrast to
foams, has a nonvanishing weight even for the smallest
cells [6]. This difference in architecture crucially affects
the mechanical properties. Recently, a nonaffine regime
has been identified [7] and characterized [8–10] in two-
dimensional networks of classical beams (‘‘Mikado
model’’) commonly used to model the mechanical proper-
ties of paper sheets [11–14]. The nonaffinity of the defor-
mation field necessarily implies that in these networks
cooperativity effects play an important role.

In this Letter, we will contrast the two systems of foams
and fiber networks and relate their different linear elastic
properties to their specific structural features. By system-
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atically tuning the force response properties of the individ-
ual elements, we will be able to show that the hierarchical
architecture of the fiber network leads to a new length
scale, below which correlations drive the system away
from the state of affine deformations. We will, moreover,
describe the mechanism that generates this length and
calculate the resulting power law behavior of the elastic
modulus by a scaling argument.

The fiber network is defined as follows. N anisotropic
elastic elements, geometrically represented by straight
lines of length l, are placed on a plane of area A � L2

such that both the position and the orientation of the ele-
ments are uniformly randomly distributed. The length of
the segments, i.e., the distance ls between any two neigh-
boring intersections, follows an exponential distribution
[6]

P�ls� � hlsi�1e�ls=hlsi; (1)

with a mean value that is given in terms of the density � �
Nl=A as hlsi � �=2�. At any intersection, a permanent
cross-link with zero extensibility is generated. This con-
strains the relative translational motion of the two fila-
ments, while leaving the rotational degrees of freedom
independent. Not allowing for kinking, filaments are as-
sumed to remain straight at the cross-links. The simplicity
of this network structure (one parameter �) makes it an
2-1 © 2006 The American Physical Society
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FIG. 2 (color online). Shear modulus Gl3=� as function of
persistence length lp=l for various densities �l and � � 1. The
second branch in the upper right corner (�l � 120) is obtained
by suppressing the mechanical response (‘‘ks ! 1’’). The
dashed line indicates the three regimes as obtained by Eq. (3).
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ideal candidate to obtain physical insight into the relation
of architecture and elastic properties of the constituents,
which we specify next. Previous studies [8,9] have consid-
ered classical beams of radius r and bending stiffness �.
Loaded along their axis (‘‘stretching’’), such slender rods
have a rather high stiffness ks � 4�=lsr2, while they are
much softer with respect to transverse deformations
k?�ls� � 3�=l3s (‘‘bending’’). Here we consider elastic
elements where, in addition to the mechanical stiffness of
beams, a more general stretching coefficient

kk�ls� � 6�
l�p
l3��s

(2)

is introduced. This may result from thermal fluctuations of
the filament immersed in a heat bath of solvent molecules.
The prefactor is chosen such that kk for � � 1 reduces to
the longitudinal entropic elasticity of a stiff polymer de-
scribed by the wormlike chain model grafted at one end
[15]. In this case, the material length lp is called the
persistence length of the polymer and quantifies the ratio
of bending to thermal energy lp � �=kBT. The phenome-
nological exponent � allows us to extend our discussion to
the broad class of systems for which kk is a monomial (with
units energy per area) involving one additional material
length lp. Having two longitudinal deformation modes, the
effective stretching stiffness is equivalent to a serial con-
nection of the ‘‘springs’’ ks and kk. Setting lp � cr, we can
write ks / kk�� � �2�. The constant c is a material prop-
erty of the specific polymer and has been chosen as c �
1:5� 104, which roughly corresponds to the biopolymer
F-actin. The precise value, however, is irrelevant with
regard to the thermal response kk and specifies only the
location of the crossover to ks. The description of a ther-
mally fluctuating network in terms of force constants kk,
ks, and k? is in the spirit of a Born-Oppenheimer approxi-
mation that neglects the fluctuations of the ‘‘slow varia-
bles,’’ the cross-link positions, while assuming the ‘‘fast’’
polymer degrees of freedom to be equilibrated. By mini-
mization of the internal energy with respect to the slow
parameters, we calculate the shear modulus G for a given
macroscopic shear strain of � � 0:01. This procedure is
performed with the commercially available finite element
solver MSC.MARC using periodic boundary conditions on
all four sides of the simulation box.

As indicated in the introduction, the complement to the
fiber network is a regular foamlike material that one can
describe by a mean-field approach [2,5]. Assuming corre-
lations between neighboring segments to be absent, the
response is fully described by the properties of an average
segment of length hlsi / ��1. Marking the force constants
of this segment by an overbar, we can express them in the
form (neglecting numerical prefactors) �k? ’ ��

3, �kk ’
�k?��lp��, and �ks ’ �k?��r��2, respectively. The deforma-
tion modes will act as springs connected in series [5] such
that the modulus takes the form
01780
G�1
foam � a �k�1

k
� b �k�1

? � c
�k�1
s : (3)

The foam will thus show a crossover from thermal stretch-
ing to bending at lp � hlsi and to mechanical stretching at
r � hlsi. This behavior, and for illustration also that of a
completely random foam, are indicated by the dashed lines
in Figs. 2 and 3, where they can be compared with the
actual results of our numerical analysis on the fiber system.
In Fig. 2, the normalized shear modulus Gl3=� is shown as
a function of dimensionless persistence length lp=l for a set
of dimensionless densities �l for the special case of � � 1.
At large lp=l (right part of the plot), we recover purely
mechanical behavior characterized by G / �ks consistent
with the mean-field picture of Eq. (3) [8,9,11]. Our main
interest, however, lies in the regime of small lp=l (left part
of the plot), where the persistence length is small enough
for thermal fluctuations to become relevant. To analyze the
modulus in the thermal regime (ks ! 1), it will be helpful
to use dimensional analysis and write the modulus in terms
of the two remaining response coefficients �k? and �kk of an
average segment

G��; l; lp; �� � �k?g��l; �kk= �k?�: (4)

The first argument of the scaling function g, the density
x � �l, is of geometrical origin and counts the number of
cross-links per filament. The second argument, y �
�kk= �k? ’ �lp, relates to the energy balance between
stretching and bending of an average segment and marks
a crossover at y � 1 or lp � hlsi. From Fig. 2 and the inset
in Fig. 3, one infers that for low densities g � yf�x�,
implying for the modulus G � �kkf��l�. This linear depen-
dence on the ‘‘preaveraged’’ stretching compliance �kk hints
at a foamlike stretching dominated regime [10] where
correlations are absent. As one can also infer from these
figures, the domain of validity of this linear regime is
2-2
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FIG. 3 (color online). Scaling function g as a function of �lp
for various values of x � �l. For comparison, we present also
the scaling function of a random foam (dashed line).
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extremely narrow and confined to low densities x 	 20 and
persistence lengths y
 1. For medium and high densities,
Fig. 3 shows two nontrivial scaling regimes where g�x�
1; y� � yz becomes independent of x (and, therefore, of the
filament length l) and exhibits power law behavior with
exponents z � 0:46 and z � 0:9 for small and large values
of y, respectively. In both cases, the modulus can be written
as a generalized geometric average

G / �k1�z
?

�kz
k
; (5)

which has to be contrasted with Eq. (3), where bending and
stretching modes are assumed to superimpose linearly.
Here correlation effects between the segments induce the
nontrivial form of the modulus and distinguish the fiber
network from the ordinary foamlike behavior obtained by
single segment considerations. Whereas foams may be
considered as a limit where the number of cross-links per
fiber is small (filament length identical to the cell size), the
scaling limit of fiber networks corresponds to infinite fiber
length.

To understand the origin of the correlations, one has to
take into account the full distribution of segment lengths,
Eq. (1). This will have a pronounced effect on an affine
deformation field �aff / �ls, as can be seen by considering
the axial force fk along an affinely stretched segment of
length ls, fk � kk�aff ’ �l

�
p�=l

2��
s . In any but the purely

mechanical situation, where � � �2 (and, thus, fs ’
��=r2), fk strongly depends on the segment length. This
implies that, in general, two neighboring segments on the
same filament produce a net force at their common node
that has to be taken up by the crossing filament which then,
preferentially, will start to bend. From the exponential
distribution of segment lengths in Eq. (1), one can easily
show that the size of these residual forces �f can be
arbitrarily large. The corresponding probability distribu-
tion Q��f� shows polynomial (fat) tails
01780
Q��f� / �f��3���=�2���P�0�; �f ! 1; (6)

and has a diverging mean value. This is due to the finite
probability P�0� � P�ls � 0� � 0 of finding segments
with zero length. As a consequence, there are always
residual forces high enough to cause significant bending
of the crossing filament. Hence, we conclude that an affine
deformation field is unstable and that the system can easily
lower its energy by redistributing the stresses to relieve
shorter segments and remove the tails of the residual force
distribution Q��f�.

This mechanism can be used to derive an expression for
the modulus in the parameter region y
 1, where the
value of the exponent z � 0:46 indicates that bending
and stretching deformations contribute equally to the elas-
tic energy. We assume that segments up to a critical length
lc—to be determined self-consistently—will fully relax
from their affine reference state to give all their energy to
the neighboring segment on the crossing filament. The
energy of segments with ls > lc will then have two con-
tributions: first, a stretching part from the imposed affine
strain field (for simplicity, we will set � � 1 in what
follows.)

ws�ls� ’ kk�
2
aff ’ ��

2
lp
l2s
; (7)

second, a bending part

wb�ls� ’ k?�02aff ’ ��
2 l
02
s

l3s
; (8)

that arises only if the segment under consideration is
neighbor to an element on the crossing filament with l0s <
lc (the prime refers to the neighboring small segment).
Adding both contributions and averaging over all seg-
ments ls > lc and l0s < lc, we arrive at the expression
w ’ ��2���lp=xc � xc�, where xc :� �lc 
 1 in the
parameter range of interest. Minimizing with respect to
xc gives the required expressions xmin

c ’ �lp��
1=2 and G ’

�2wmin=�2 ’ ��7=2l1=2
p , corresponding to a value z � 1=2

for the exponent that compares well with the measured
value z � 0:46. Repeating the calculation for general val-
ues of � gives z��� � �=�1� ��. We have verified this
result by simulations with an accuracy of about 10% [16].
The nontrivial behavior of G observed in Figs. 2 and 3 can
thus be explained by a length scale lc � hlsi�lp=hlsi�1=2,
below which the affinity of the deformation field breaks
down. The mechanism is illustrated in Fig. 4, where a
histogram for the fraction of energy stored in segments
of various lengths is shown. Increasing the persistence
length, the short segments one after the other lose their
energies in favor of additional excitations in longer
segments.

When, eventually, lc � lp � hlsi (y � 1), the affine
strain field does not serve as a reference configuration
any more, since it is strongly perturbed by a majority of
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FIG. 4 (color online). Fraction of energy stored in the various
segment lengths; the curves correspond to different persistence
lengths at a density of �l � 80, equivalent to hlsi=l � 2� 10�2.
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segments with ls < lc. Moreover, the unloading of the
smaller segments now produces significant stretching de-
formations of their neighbors on the same filament such
that the available energy for bending of the crossing fila-
ment is reduced. At this stage, one enters the second
intermediate asymptotic regime where, as in the affine
regime at low densities, stretching modes dominate the
modulus. As can be seen in Fig. 4, only the longest seg-
ments carry substantial amounts of energy such that the
displacement field must be highly nonaffine. For lp=l �
1:5� 10�2, about 90% of the energy is stored in the
longest 30% of the segments. In this parameter range,
bending is on average the softer mode y � �kk= �k? � 1
and, therefore, contributes only very little to the total
energy. Raising the density to still higher values, it is
conceivable from our data that the exponent z � 0:9 ap-
proaches z � 1, which would mean that the energy in the
bending modes is completely negligible and G� �kk as in
the affine regime. A transition into a regime dominated by
the low-energy bending modes would not be favorable,
however. As is known from the mechanical fiber model [8],
such a regime must not be characterized by the preaver-
aged force constant �k? � k?�hlsi� but by an effective stiff-
ness hk?i ’ �=�3 with a new length scale � � l��l���=3

and � � 6:7 that is highly dependent on fiber length l.
In summary, we found that, for a broad range of parame-

ters, the macroscopic shear modulus of fibrous networks is
asymptotically independent of the fiber length. Affine
stretching is energetically unstable towards a redistribution
of energies in favor of longer segments. This gives rise to a
correlation-induced elasticity that cannot be explained
within a ‘‘single cell’’ model. This physical picture is of
general validity and will apply whenever the distribution of
segment lengths is sufficiently broad. Cellular systems,
being the appropriate structures for rather flexible poly-
01780
mers, will therefore show nonaffine behavior only if they
are highly irregular [16–18]. In the complementary case of
the fiber network with its hierarchical, scale-invariant ar-
chitecture, the nonaffinity even leads to asymptotic scaling
regimes. These networks are particularly well suited to
describe the macroscopic linear response of stiff polymer
networks. Therefore, our results may be directly relevant
for two-dimensional networks of the filamentous biopoly-
mer F-actin, assembled on top of microfabricated pillars
[19]. In addition, it might shed new light on very recent
rheological measurements on cross-linked actin networks
[20,21], which emphasize the single-polymer origin of the
measured elastic moduli. Our simulations, on the contrary,
highlight the potentially nontrivial effects of interpolymer
correlations on the macroscopic elasticity.
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