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Abstract

A polynomial structural errors-in-variables model with normal underlying distributions is
investigated. An asymptotic covariance matrix of the SLS estimator is computed, includ-
ing the correcting terms which appear because in the score function the sample mean and
the sample variance are plugged in. The ALS estimator is also considered, which does not
need any asumption on the regressor distribution. The asymptotic covariance matrices
of the two estimators are compared in border cases of small and of large errors. In both
situations it turns out that under the normality assumption SLS is strictly more efficient
than ALS.

Keywords: Polynomial regression; structural errors-in-variables model; asymptotic co-
variance matrix; efficiency.

1 Introduction

We deal with the structural case of a polynomial regression with measurement errors. For
the normal case, Thamerus (1998) developed a structural least squares (SLS) estimator.
The method is based on a quasi-likelihood score function. We consider a certain modi-
fication of the method. We follow the recommendation of Carroll et al. (1995), p. 271,
and mention that a similar procedure for a quadratic regression was used by Kuha and
Temple (1999). We show the consistency of the proposed quasi-likelihood method using
the consistency criterion of Aitchison and Silvey (1958), which was adopted in Heyde
(1997), p. 183.

Once the consistency is established, to prove asymptotic normality is an easy exercise
in calculus. However a particular feature of the SLS procedure is that we plug in the
sample mean and the mean variance instead of the unknown parameters of the regressor
distribution. This causes the additional terms in the asymptotic covariance matrix of the
estimator. These terms are written down below, and we remark that they were neglected
in Kuha and Temple (1999).

Cheng and Schneeweiss (1998) elaborated the consistent adjusted least squares (ALS)
estimator for a polynomial errors-in-variables model, which corresponds to a functional
case and does not need any asumption on the regressor distribution. The SLS estimator,
ALS estimator and its small sample modification MALS were compared by Schneeweiss
and Nittner (2000). Via simulations it was shown in particular that SLS is more efficient
than ALS or MALS whenever the normality assumption holds true.



We compare the asymptotic covariance matrices of the estimators and give theoretical
proof of such efficiency conclusion. The structure of the matrices is quite complicated,
and we were able to handle only the border cases of small and large errors. As criterions
of relative efficiency we used (for small errors) the trace of the normalized asymptotic
covariance matrix and (for both cases) its determinant. The trace characterizes the second
moment of the normalized estimator, while the determinant is related to the volume of
the asymptotic confidence ellipsoid. To compare the determinants, we established an
interesting generalization of the Cauchy-Schwarz inequality, which seems to be new.

In the next section the ALS estimator is presented. In section 3 we introduce the
SLS estimator and prove its consistency. In section 4 we derive the asymptotic covariance
matrix of the SLS estimator. In the next two sections the asymptotic covariance matrices
of the estimators are compared for small and for large errors, respectively. The auxiliary
matrix inequalities and a general expression for the asymptotic covariance matrix are
given in the Appendix.

2 The ALS estimator

Throughout this paper we consider a polynomial structural errors-in-variables model

k

vi = Y Bt +e (1)
j=0

x, = &+6;, i=1,...,n. (2)

We assume that & ~ i. i. d. N(ug,ag) and the errors (€;,0;) to be ii.d. Gaussian,
independent of the &;’s, with variances o? and o} and covariance o5 = 0. Then it is
possible to construct polynomials ¢.(z) of degree r, such that Et,.(£ + 6;) = £", for any
non-random ¢. Let H; be a (k + 1) x (k + 1) matrix with elements (H;)ps = tris(2;),
r,s =0,...,k and h; be a (k+ 1) x 1 vector with elements (h;), = yit-(z;), r =0,..., k.
Then the (unmodified) ALS estimator BALS of 8= (0o,.-.,B)" is given as a measurable
solution of

Hpavs = h, 3)
where the bar denotes averages, e. g. , H = % S Hi.

Note that the ALS estimator can be defined by (3) also in a functional polynomial
errors-in-variables model, i. e. , the model (1), (2) with non-random latent variables &;.
In that model the estimator is consistent and asymptotically normal, see Cheng and
Schneeweiss (1998).

Of course, the ALS estimator preserves these asymptotic properties in a structural
model (1), (2), with random &;’s. In the structural case,

Vn(BaLs — B) = N(0,ZaLs)
in distribution, with the asymptotic covariance matrix
SaLs = (BH)™' -E(HB — h)(HB —h)' - (EH) ™" (4)
Here H and h have the same distribution as H; and h;.

Remark 1. In Cheng et al. (2000) a small sample modification of the ALS procedure,
called MALS, was introduced. But it was shown there that ALS and MALS estimators
are asymptotically equivalent, i. e., plimnﬁm\/ﬁ(BMALs — BALS) = 0. Therefore these
estimators have identical asymptotic covariance matrices, and in the present asymptotic
comparision we do not consider the MALS estimator.



3 The SLS estimator and its consistency

3.1 The estimating equations

In the structural model (1), (2) we suppose that o3 is known, while 02, p, and o2 are
unknown, and 8 = (B,, ..., Bk)' is the parameter of interest. We find a new mean-variance
model in the observable variable x by taking conditional expectations given x:

E(yls) = Z@m ) Yz, ), (5)
Vylz) = ﬁ+§jmmwmm—w@mw»¥mLm, (6)
7,l=1

where . (z) = E(€"|z). Now, L(&|z) = N(u1(z),7%) with
() = pet+(1-03/03) (@~ pa), (7)
™ = oj(1-0j/o3). (8)

Here pp = Ex1 = pe. The conditional moments p,(z) are given by

r

o) =3 (1) -, ©)

=0 M
where pf =1, and for j =1,2,...

| .
—Ele=m@V={ | 5 G _ns i (10

The nuisance parameters p, and o2 can be estimated by

o 1 ~
fiu =T, 62= — Z(mz —7)%. (11)

If these are substitued for p, and o2 in (7) to (10), estimates of y; (z) and 72 and finally of
ur(z) arise. Replacing the u,(z) in (5) and (6) by their estimates fi,(z) and substituting
the observable values z; for the variable z, we finally get a mean variance model for the
observable data with mean and variance functions

R b df
Byle =) = > Biy(x:) = m(xs, B), (12)

=0

k
Vile =2:) = o2+ > BiBi{ijr(z) — (z)iu(z)}
Jil=1
df o(xy, B,02). (13)
Quasilikelihood estimates BSLS and 62 for 3 and o? are measurable solutions of the
conditionally asymptotically unbiased estimating equations

Z%%f3ﬂw=o (14)
_ 'r“ )]2 _n- k-1 . 1 B
Z{ xz;ﬁ; ) n } @(wi,ﬂ,af) = 0, (15)



where ji(xz) = (fo(z),...,ar(x)). We follow here the recommendations of Carroll et
al. (1995), p. 271, and construct the equations similarly to Kuha and Temple (1999).
Now, (1,5 is by definition the SLS estimator in the model (1), (2).

Remark 2. In Thamerus (1998) and Schneeweiss and Nittner (2000) instead of (15)
it was proposed to update the estimate for o using the residuals of the previous step.
We do prefere (15) because we are able to write down the asymptotic covariance matrix

for the solution of (14) and (15).

3.2 The algorithm

Denote the true values of parameters 3 and o2 in the model (1), (2) by 8° and 0%,
Introduce the following further assumptions for the model:

(i) B°edp , where G is a given bounded open set in RFF!,
(i) o2 € (ay,by) , where 0 < a, < b, < co and a,, b, are given.

We look for a solution of (14), (15) in the domain Gg x (ay,by). The reason of such
restrictions is that in (14) and (15) both score functions tend to 0, as ||3]] — oo or
02 — oo; for 0 = 0 we have a singularity in the score functions. In the latter case the
expected values of the score functions might not exist, therefore, whenever there should
be a solution with o2 — 0, consistency is not guaranteed. From another point of view,
the restrictions 8 € Gg, 0? € (ay,b,) provide computational stability of the numerical
procedure.

The following iterative algorithm to solve (14), (15) can be proposed, which is similar
to the one from Kuha and Temple (1999).

1. Given estimates 31 € G from the j-th round of the algorithm, solve (15) for

o2 € (ay,b,), treating 3U) as known. It is possible to use the Newton-Raphson

algorithm for this purpose. Denote the solution by ol @,

2. Solve (14) for § € G, using o?(j) and Y for computing 4(z;, 8,02). The updated
estimate BUTY) € G is given by a weighted least squares estimate from regressing
y; on fi(x;), with weights

wi = [6(zi, B9, 02D

The unweighted least squares estimate B* € G, constructed from (12) alone, can
be used as an initial value (%) for §.

3.3 Existence and consistency

Lemma 1. Under the conditions (i) and (ii) from Section 3.2 the system (14), (15) has
a solution 3, 62 a. s. for all n > ng(w).

Proof. Denote by pgo and o2, the true values of the parameters pu, = p¢ and o2,
respectively. We define the score function G, corresponding to the equations (14), (15):

1 n i—p' ()8
W int SGeped M)

Gn(ﬂ:”f?ﬂw:"'i) = ) . (16)
1N g lyi—w/(@)B  n—k-1y 1
n Zi:l{ U(wiﬁ,vg) n } U(Ii,ﬂ,a'g)




Here p(x) = (uo(x), ..., pr (), with p,.(x) given in (7) to (10) but with parameter values
pz and o2 which may be different from the true values pgo and o%;. The estimating
equations (14), (15) can then be written as

Gn(ﬂaoga/ﬁl‘ao’%) = 07 ﬂ E G,B: 0-52 E (ayaby)' (17)

Fix the finite intervals (yg1, ftz2) and (ag,b;) containing p.o and o2, respectively, with
a; > 0. Denote by Eg the expectation under the condition that in the model (1), (2)
B =73 02 =02, e = pzo and 02 = 02, and let Py be the corresponding probability
measure. Now, we list certain properties of the functions (16).
(a) Py — almost surely G, (83,0%; z,02) = Goo(B,02; piz,02) uniformly in © =
G,@ X (ayab ) (le;ﬂw2) (a:c;bz)a with
(ﬁ? 65/‘Lz7 2) _llmn*)OOEO n(ﬁ?ag;u-T?U%)'
It is easy to verify this property because we are in an i. i. d. case. Indeed, for
any fixed argument z € 0, G, (z) = G (2), a. s. due to the LLN. Moreover,
the functions G,, are equicontinuous in z € O, a. s. For instance, for the first
component G} in (16), we have by the LLN a. s.

! 031 ( yz;mzaz)
sup o | —Qa
zeo || 02 Zze@
9s1(y1, 215
— Esup 51,015 2) ) (18)
2€0 0z
with s1(ys, 245 2) = % ().
Then sup,,>; sup,ce || % =-+|| < 00 a.s., and therefore the functions G, (z) are

equicontinuous on 0, a. s. Similar con51derat10ns can be employed for G%(z).
It is important also that G (2) is continuous in z € O a.s., see (b) below.

(b) (ﬁ: G,Mzoa zO) (Gl Ggo)’,wlth

G}X) =~Ho (Ugi)gogg) A/B; (19)
G2, = -Ev%(z,B,02%) (02 — 0 0
k
+ 4lZ:1 ABi B+ () — pj(z) ()} — (1 (x) AB)2)]

Here in (19), (20) pu(z) is given via true values pgo and o2y, and A3 = g — Y,
ABiB) = BB — B} By
(c) The matrix

0G (0; Hz0, 030)

So = 90’ (21)
6=0¢
is nonsingular, where § = (8',02)" and 6y = (60’,0620)'.
This property follows from the relations
0GA(0) _ . mi@)  0Gh(B) _
a5 Yoz, 0°,0%)°  8o? ’
0G%(0) _ gL
do? O v2(x, 3°,02)
Now, Sy is nonsingular because 86%%(,00) is negative definite, % =0, and
G2 (60) <0
002 '



Now, we apply Theorem 12.1 from Heyde (1997) to the sequence (17) of esti-
mating functions. Set

H,(0) = =Sy ' - Gn(8; 1z,62), 0 € Gy=Ggx (ay,by,).

The functions H,(#) are continuous in # a. e. on the probability space 2. We have to
show that for all small § > 0 a. e. on

gs = lim sup( sup (6 —6y) H,(0)) <O. (22)

N0 19—ol|=6
Due to property a) and because of the consistency of the estimators fi,, 6> we have

gs = sup (8 —60) - (=S5 - Goo(8; przo, 730))- (23)
16—6ol|=s

Now, Geo(fo; ttz0,02,) = 0 which is easily seen from (19), (20), and from the definition
(21) of Sy we get the expansion

(0= 60)" - (=S "+ Goo(8; a0, 070)) = —16 = bol[” + (/|6 — 6o][*),

as 0 — 6y. From (23) we obtain that for all small 6 > 0, the inequality (22) holds. And by
the above mentioned theorem from Heyde (1997) the equation H,(f) = 0 has a solution,
for all n > ng(w). This proves Lemma 1.

Now we can give a more rigorous definition of the SLS estimator. For those (small)
n for which (14), (15) has no solutions we set fsis = fy, 67 = o7;, where 3; € Gp
and o7; € (ay,by) are arbitrary but fixed values. If n is such that (14), (15) has many

solutions we choose one of them for every w in such a way that fg.g(w) and 62(w) are
measurable. This is possible due to, e. g. , Pfanzagl (1969).

Theorem 1. Under the conditions (i), (ii) the estimators fg,g and 62 are strongly
consistent, i.e. , Py — a. s. fsp.s — 3° and 62 — 0%, as n — oo.

Proof. By Lemma 1 the estimators are well defined by the estimating equations (17).
Owing to property a) in the proof of Lemma 1 and because of the strong consistency of fi,
and 62, there is a set o of probability 1 where G, (8;072; iz, 62) = Goo(B; 025 tiz0,02)
uniformly in 3 € cl(Gp), 02 € [ay,b,]. Here cl(G) is the closure of a set G. Fix w €
Qo. The sequence (f3,(w))),82,(w) is in a bounded domain Gz x (ay,b,). Consider an
arbitrary convergent subsequence (Bn(k) (w), &fn(k) (w)) = (Bi,0%) € R¥1 x (0,400).
Then Gy (Bs, 0% ; tzo,02) = 0 and hence 3. = 3°, 02, = 02, because obviously (3°,0%,)
is the unique solution of G (8;072; 1z0,02,) = 0, see (19) — (20). This implies the
convergence of the whole sequence (3,(w)),52,(w)) to the true value (3°,0%). Theorem
1 is proved.

4 The asymptotic covariance matrix of the SLS esti-
mator

We apply Lemma 2 from the Appendix to the estimating equations (14), (15). The
estimated parameter is # = (f’,02)". As a nuisance parameter we shall consider v =

(fta,1/02)" = (71,72)". Denote vo = (pz0, %20),

(i, y0) ' (i, 70)

o
¢, = E
H 0 U('ria 070620)




and .

op ) 0
;o p=12
8% o b

Fy, =Eo (Ul(miaﬁoaofo K
where p = pu(zi,70)-

Theorem 2. Under the conditions (i), (i) from Section 3.2, \/n(Bszs—30) 4 N(0,XsLs),
with 5
Teis = &3 + @ <050F1F1' + UTF2F2'> 2T

z0

Proof. The compound score function (16) can be written as

n

1
n = GnlU; Uy ) =— irYi n 24
Sn(8,7) = Gn(0; e, 03,) n;S(w,yHr : (24)
with
L -t
() = (25)
ly—n' (@8] _ 1

v¥(@.8,02)  v(w,B,07)

and 7, a (r+2)-vector with first r+ 1 components equal to zero and last component equal
to

Ck+1L 1 _0ep()
Th= "3 ZU(M&UE) = adn (26)

n :
=1

for each 0 and . The estimators BSLS and 62 satisfy the equation
Sn(BsLs, 675 fies 0, %) = 0.

~ ~ !
Let us check the conditions of Lemma 2. By Theorem 1, § = (ﬁ’SLS, 2) is consistent.
a1

The random field S,(0,7), § € G % (ay,by), v € Gy = (fa1, Pa2) X (bz’i)’ has C*-
smooth paths, a. s. Consider condition c¢) of Lemma 2. Set z; = x; — p,,. We have under
P

Pa,02 "
1 n
flo = =) i (27)
i3
1 « 1 — 2
A2 N2 2
6, = n_IZ(z,—z) _Ezzi_n(n—) Z 22
i=1 i=1 1<i<j<n
1 @ Op(1
= L2
i3
because
1 S|
E‘E Z Zizj| = 3 Z E(zfz?)gconst.
1<i<j<n 1<i<j<n
Then
~2 2 1 - O 1
B TERT IRt (28)
0202 lops n



From (24), (26) — (28) we get

S(xia yi:’YO)
\/ﬁsn(eoa’YO) 1 & Op(l)
=— Hz0 + . (29)
\/ﬁ(’?n - ’70) \/ﬁ i=1 2 2 \/ﬁ
_ 1U:Ow0

Note that Eos(x;, yi;7) = Eo(Eo(s(xs,y:)|zi)) = 0. From (29) we have by the CLT for
i. i. d. random vectors:
(V1S (60.70) V(3 —70))" 5 N(0, %),
with
S(Iiayi)

— Ti — Mz0
X = cov s R

2 2

(zi—pag) =05,

- a4
0‘20

. . ! . -
o 2800 1 (2000) g o2 gy o) 02 207, (30)

Y = di
lag( ’U(ﬂ:i, 907 70)

Now, pass to condition d) of Lemma 2. By the LLN

0s(x;,y; )
Vi= Eoﬁ, with v = 0.
Let S(l’,y) = (81 (xay)lis2(may))l' Then
951 (i, %) - (i, 70)
i —Eo ” = —®y,
089 1 Ov
Oa_ﬂ’ = - O(U_Qa_ﬂ’)__q)u’
681 682 _9
0802 = 0 B do? =B R

Here v = wv(z;,00,7). Now, ®;; is positive definite, and @90 > 0. Therefore V] is
nonsingular, and

o, 0
Vit=- ) I -t (31)
E"PHQH E

Pass to the condition e) of Lemma 2. We have

sz v
V2:E07S(§z;yz), with v = 0.
Y
In particular
0s1(x;, y; 15)
EO% = —Eo(; Mﬂol 'u) — &1, (32)
Y
0s2(wi,y;) 1 ov
EOT = —Eo (_28_) = —®y. (33)
Therefore
®yy
V2 = _®27 (1)2 =
D



Here in (32), (33) p = p(zi,v0). At last, condition f) of Lemma 2 holds because for 6 and
v in the e-neighbourhood of 6y and ~y,

95,(6,7) _ 8Su(lo, )| _
a(0",7") a0",y") ||~
928,,(0,7)
< sup ——————||€ const,
(16—ball<e.ll7—nolI<e) || O(0:7)8(6",7")
and
825(%‘7%‘;9:7)
E sup || < oo,
* o—tol1<e flv—oll<e) || D(:1)D(O"7")

for sufficiently small €. All the conditions of Lemma 2 hold, and

BsLs —Bo '\
\/7_7‘ — N(Ov 29)5
&62 _‘7?0
Iy yo
S = &, (Tpyo, —P2)T et
_(plg

Introduce the (k+ 1) x (k+ 2) selection matrix Ps = (Ix41,0). According to (31) we have
for the asymptotic covariance matrix 3gy,g for fgyg:

Ty (I)1_11
Ysrs = PsXe Py = (®17',0)(Ix42, —92)%
—d 0
Denote
¢y = (1, F)
with
oy’
F, =Eg (vlu > B; p=12 (34)
P O

Using the block-diagonal structure (30) of X, we have finally
2
TeLs = &) + @y <030F1F1' + UTF2F$> @ (35)
z0

Theorem 2 is proved.

Note that

- <E0 (@i, Yo) i (s, 70)> B (36)

e v(z4,60,7%)

is exactly the asymptotic covariance matrix of the quasilikelihood and variance function
estimate of 3, under the condition that the nuisance parameters g are known, see Carroll
et al. (1995), p. 272. The correcting summands in (35) appear because we plug in the
consistent estimator 4,, instead of 7.



5 Comparison of the estimators for small errors

Before we compare the asymptotic covariance matrices (4) and (35) we show that for the
linear regression the ALS and SLS approaches almost coincide.

5.1 Case of linear regression

In this subsection we consider a model (1), (2), with k& = 1. It is a linear structural
errors-in-variables model.

Denote

Sew == Y@= T Say == > (@i~ T — ).

i=1 i=1

From (3) it is easy to obtain that the ALS estimators are given by

. S,
B1,ALS = SinJ (37)

zx — 0§
and 307 ALs is found from the equation

7= BoaLs + BiaLs - T. (38)

Now, according to (12) in the linear case we have

- ol o3
Eylz=2;) = (fo+Bi =5 fa)+bi({1- =5 )z
G2 o
= Bo+ Bz,

where

~ 2 3 2
ﬂ0260+ﬂ1%ﬂw7 B =P < —%>- (39)

T

Note that according to (13) V(ylz = x;) does not depend upon z;. Solving (14) with
respect to [y, f1 we get

. Sy
BisLs = 5.,
and from (39) and (11) it follows that
2 Swy &;Zc Swy
= . . = . 40
ﬂl,SLS S.I?.II &ﬁ — Ug Szz — nT_lo_g ( )
Similarly to (38), BLSLS is found from the equation
7= BosLs + BusLs - T (41)

Comparing (37) and (40) we obtain \/E(BLSLS - BLALS) — 0, a. s., and from (38), (41)
we have also \/E(ﬁo,SLs - BOALS) — 0, a. s. Therefore in the linear case the asymptotic
covariance matrices of the two estimators coincide.

Note that if the estimate S, instead of 62 is used in the SLS method, then in the
linear case the SLS and ALS estimators coincide.

10



5.2 Case of small errors in the general model

Hereafter we consider the nonlinear regression (1), (2), i. e. , k > 2. Moreover we deal
with a series of models (1), (2) and suppose that the parameters

ﬁO;"':ﬁk;p’E:a—g

do not change, while the variances o2 and o3 may change. Consider the following asump-
tions.

(i) o5 —= 0
(iv) x= 7 < const.
O¢

So both cases are possible:

a) o= const, then y — 0;

b) o0.—0, then o5 = O(o).

5.2.1 Asymptotics for the ALS method

We analyse the asymptotic covariance matrix (4) under the assumptions (iii), (iv). Denote
p = (1,&...,€%), and let hereafter (e,&,8) have the same distribution as (e, &;,d1),
r=£E+0,y= Z?:o B;€7 + €. Then by the definition of the matrices H; and polynomials
t,.(x), we have

EH, = E(E(H,|6)) = E€™**, 1,5 =0,...,k) = E(pp). (42)

Now, H13 — hy has the same distribution as a vector with j-th component
k .
> Biltjgilx) — E'tj(x)) —etj(x), j=0,1,....k (43)
i=1

We expand (43) in the space L2(Q2) of square-integrable random variables. The leading
term of (43) is

k
o (Z Bil(E +0)' - €) - ) , (14)

and the leading term of (44) is

k k
¢ <Z B;-ig 15— e> —0. ¢ (Z iBiE xns — n) , (45)

i=1 i=1
where ng = % and n, = f are mutually independent and independent of ¢ standard
normal random variables. Actually, the difference between (43) and (45) divided by o
tends to 0 in mean square. (If y = g—“ — 0 then the summands containing x also
vanish but it is convenient to preserve these summands to be able to consider the cases
of vanishing and nonvanishing y simultaneously). Introduce the vector z = (zq,...,2)’,

k
zj=¢ (Z i xns — n€> . j=0,...,k
i=1

Then according to the leading terms (45) we have

o 2E(H,8 — h1)(Hy8 — hy) = Ez2' + o(1).

11



But
2

k
Ezjz, =B& - - [ 1+x2| D iBig
i=1
Therefore
o *E(H1f — ha)(H1B — hn)" = Elpp'vo(€, B)] + o(1), (46)
with
& 2
w(&8) =1+ X7 D isg™ (47)
i=1
From (4), (42) and (46) we obtain finally that under (iii) and (iv),
0% Sars = (Bpp')~" - Elpp'vo(&, 8)] - (Bpp') ™! + o(1), (48)

as o5 — 0, ¢ < const.

5.2.2 Asymptotics for the SLS method

We analyze the asymptotic covariance matrix (35) under the same assumptions (iii) and
(iv). Start with the matrix

!
®,, =F <M> _ (49)
v(z, 8)

Contrary to the section 4, hereafter we suppress the index 0 in the denotation of the true
2

values of the parameters, and p(z) is defined in subsection 3.3. Note that now 7> — 1, and
)

72 = 0. The leading terms of pjy;(z) — pj(2)w (x) with respect to 7 (when j > 2,1 > 2)

are:

i+ ()T = o ()7 G+ 7 (0)7) =
i) = () = () + o),

Thus the leading term is jlr2u ™72 (), and therefore
[4j+1(x) — 13 @) (@)] — Jlo2ET2 = 0,(03) (50)
as (iii) holds. The expansion (50) holds also if j =1 or [ = 1. Indeed:
) for j = 1= 1, in(a) - () = 7% ~ oF = jlo3EHHI2,

b) for j =1, | > 2 the leading terms are

it (1) — (i () =
i 72+ o(7%) = GlogettI 2 + 0y (0F).

It follows that

v(z,B) = 062 + 02 Xk L B BETIT? + 0,(03) =
a2 (v, (£, B) + 0p(1)),

with v, given in (47). By Lebesgue’s theorem of majorized convergence we have

2 g —p (P2 L@\ o gl
o ‘I’“‘E0< 0o&, ) >+ W=k en oW (51

12



The first summand in (35) has the order o2. We shall show now that the other summands
in (35) have smaller order. We use (34) and have

Op(z) U_g Opr(z) _ —~ (r ¥l r—j—10_§

The leading term of the summand ®7;' (o2 F1 F{)®7,' has the order o}, which is negligible

with respect to o?. Now, for 72 = 0,2 we have
O (x) , 07’ 4
o~ = —(z — pg)05, ——= = —03;. 53
a(ggz) ( o ) 4 8(052) 1) ( )
Therefore the leading term of 2;‘;52; has the order o7, and again the leading term of the

summand ®7;' (Z FL F3)®7;' has the order of. From (35) and (51) we obtain finally:

o Ngrs = (Evoﬁgﬁ)y +o(1), (54)

as 05 — 0, 28 < const.

5.2.3 Comparison of Ys;5 and X 4.5

Now, we compare the expansions (54) and (48). We distinguish two cases regarding
X = 2%: when x — 0 and when x is separated from 0.

Theorem 2. Let the conditions (i) to (iii) hold. Assume also
(v) x = = —0.

Then
lil?rl J:2ESL5 = liry U?ZEALS ,
(050,22 —0) (05—0,25—0)

and the limit is equal to a positive definite matrix (Epp’) L.

Proof. Under (v), vo(&,8) — 1 a.s., see (47). The statement follows now from (48)
and (54).

Theorem 2 is applicable in the case o, = const, and g5 — 0. Simulation studies made
by Schneeweiss and Nittner (2000), p. 5, corroborate this statement. The corresponding
case in the simulations is 03 = 0.01 and normally distributed design points.

Denote

S =Epp'. (55)

Theorem 3. Let the conditions (i) to (iii) hold.

a) Under (iv),

lim inf 0;2[tT(2AL5 -S) —tr(Zsrs - S)] >0, (56)

(65§—0,06=0(0.))
and
liminf  [det(07*Sars) — det(07*Ss15)] > 0. (57)

(05—0,06=0(0¢))

13



b) Suppose that

(vi) k>2and Y5, 32 #£0,
(vii) for positive constants ¢; and c¢a,

o
C1§X:J—6§CQ-
€

Then (56) and (57) become strict inequalities.

c¢) In the particular case of b) when x — x0,0 < xo < 00, the following inequalities

hold:
lim o.2-tr(Ssps - S) < lim o2 tr(Sars - S), (58)
(ag—)O,Z—i—)XO) (05%0,5—‘2—)){0)
lim det(c7? - Ys15) < lim det(07% - Y ars). (59)
(05—)0,2—‘2—)){0) (0'5—)0,2—‘2—))(0)

Proof. Part a) follows immediately from the expansions (48), (54) and Lemma 4 from
the Appendix with a = —1, see also Remark 3 and Corollary from Lemma 6. Now,
the relations (58), (59) follow from Lemma 4, see also Corollary from Lemma 6. It is
important in this case that under (vi) the limit function

k
li -1 2 cn ¢i—1)2
Jim (¢, 8) +><o|;zﬂl§ |

has a distribution without atoms, and this provides the strict inequalities (58) and (59).

Now, prove part b). For certain xo € [¢1, c2] we have

lim inf(ogao,clg‘;—ﬁgcz) o 2[tr(Zars -S) — tr(Zsrs - S)] =

tr(S™% - Elpp'vo (€, B; x0)] - S72) — tr(S* (B —24—)718%) > 0,

according to (58). The consideration of the determinants relies similarly on (59) and
Lemma 6. Theorem 3 is proved.

Relation (56) shows that the second strong moment of the limit distribution for the
1 A
normalized estimator \/n-S2 (Bsrs — B) is less then the respective one for the normalized

estimator y/n - S%(BALS — ). In this sense BsLs is more concentrated near 3 than Bars,
for large n.

And relation (57) shows that the volume of the asymptotic confidence ellipsoid for the
SLS estimator is less than the respective volume for the ALS estimator.

Theorem 3 means that for small errors, when both errors in the model (1), (2) have
the same order and under normality assumptions, the SLS estimator is asymptotically
more efficient than the other one (with respect to both the trace and the determinant
criteria).

5.3 Case of large errors
In the present subsection we deal with a series of models (1),(2) and suppose that the

parameters o, ..., Bk; pte do not change, while all the variances in the model may change.
Consider the following assumptions.

14



(viil) ¢ — 0.
(ix) o5 > const > 0, and o5 = o(o¢).

(x) For positive constants ¢; and c¢s,

Oe¢
&t <X= 07—
o 05

S Co.

Remark that x in (x) has another meaning than in (iv). Under (viii) to (x), o¢ and o,
tend to infinity, while the measurement errors do not vanish, and o¢ increases quicker
than os.

5.3.1 Asymptotics for the ALS method

We analyze the asymptotic covariance matrix (4) under the assumptions (viii) to (x). We
use the same denotations p, €, &, 9, z,y as in subsection 5.2.3. Denote also

(p:(17N7"'7Nk)I7 (60)
where N is a standard normal variable. From (42) we obtain

det(EH,) = [}, (02)'det(Epy'). (61)

k2

Now, we counsider E(H;8 — h1)(H18 — h1)'. The random vector Hy 3 — hy has the same
distribution as a vector with j — th component given in (43). The leading term in L2(12)
of that expression is:

Br(tjsk(z) — EFtj(x)) — etj(x) = mﬂlﬂk((é +0)F —¢k) —ead + rest; (62)
= I (kBrEF16 — €) + resty.

Here rest; and rest, have smaller order under (viii) to (x) than the other summands, and
we used here that t,(z) = 2" +a,_sz"~2+. .., see Cheng and Schneeweiss (1998), Lemma
1. By condition (x), e has the same order as £¥~16. Therefore the leading term in (62) is

vj = Nja?rk_1 o5(kBr N*tns — xn).

Here N = E;sf, ng = 06_5 and n, = UL are independent standardized random variables.
Note that ' '
E(vjus|N) = N]Nsaz+k_1U§+k_1o§(k26§N%_2 +x2).
Therefore for v = (vo, ..., vy)’
det(E(Hl,B — hl)(Hlﬁ — hl)’) ~ det Evv' = (63)
(03)"*1 - TTj_o (03)7+*=1 - det Elpi'vi (N, B)],
where
vl(N, B) = x* + K BEN*"2. (64)
From (61), (63) and (4) we get finally that under (viii) to (x),
k
i—1 detE[pp'v1 (N, B)]
d tz ~ 2\ k+1 . 2\i—1 ’ 65
et¥ars ~ (05) g(%) det2(Epy') (65)
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5.3.2 Asymptotics for the SLS method

Under the conditions (viii) to (x) we analyze

_1 _1 2 _1 1
Ysis = (1’112 [Ichrl + ‘1’112 (UiFlFll + 0_4F2F21)¢’112]¢’ 2 (66)

T

see (35). Expand firstly det®;;. Consider the conditional variance v(z,3) given in (6).
We have

v(z, B) = 0 + B (nzx (z) — pj () + rests, (67)
where rests has smaller order. Write down the leading term of prop — p2:
pae =t = R )7 (T (5) 77 +rests =
=" 2(Y) — 2(3)] + rests,
ok (&) — (@) = 1252 (2)72 2 + rests.

Here the terms in rests, resty and rests; have smaller order than

p1(x)**=2 . 72, Note that by (x) o2 is of the same order as pu(z)%*~2 - 72. Now,
v(z,B) = ngﬁog (x? — K2BEN? 72 4 restg), (68)
where N = % ~ N(0,1), and x is fiven in (x). Our matrix
%FE(M@ _Mm)
Voule,B) /u(z,f)
is a Gramm matrix of random values z; = i@ o 0,...,k, in the space L2(f2), and

Vv(z,8)’

pi(x) has a leading term z° = &' + rest; = o{N' + rests. From (68) we get

og ( N?
af tos \/ur(N,B)

z; = + resty), (69)

with ||restg||r, — 0, where vy (N, 3) = 22 + k23 N2*~2. Therefore for z = (2o, ... z;)’

det®y; ~ detE(z2")

1 ' 70
e PR i
We show now that under (viii) to (x),
-1 2 _1
P2 (00 FLFy + S Fh Fy)® 7 — 0. (71)
JZ‘
We use (34). Denote
W = @,F (L), with 1 = (uo(@), ..., (@), v = vz, B)
11 \/E ) 0 yeoey Mk ) ) ’
and 5
W
Yp =7 —Bp=12
? Mp
Then the rs-element of the matrix (71) equals to:
ry = 070 (E485 Eo(282) + ZEo () En(£282). (72)
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Now, v > ¢2 and Ew? = 1. Therefore, by the Cauchy-Schwarz inequality,
2 2 5
.'L‘
|ars| 62 E0¢1 0_;10_62 E0¢2' (73)

We use firstly (52) to bound Eg¢p?. The leading term of 1 is Spuf ' 25 and the expec-

0.27

tation of the leading term of ¥ has the order (o2)¥~! :’;—i Therefore, using (x),
k
Z—“ZEO@/@ < constl()(rJ
€ )k 2,4 o2 (74)
< constgw = constsy - é — 0.
Now, we use (53) to bound Ege?. The leading term of 1 is By, put ! a(i“—lQ = —Bpp (z—
)03, and the expectation of the leading term of 12 has the order (02)¥o}. Therefore
9 o2 \k=2 54
ﬂngg < constg( = ¢ 50, (75)
T~ e €

see (74). Relations (73) to (75) show that a,s — 0. Thus (71) holds. By (66) and (70)
we get finally

(03)" ! Mo (0d)"
-1 =
detESLS ~ (det@ll) ~ detE[ L,D o ] (76)
5.3.3 Comparison of Ysr5 and Y415
Now, we compare the expansions (76) and (65).
Theorem 4. Let the conditions (i) to (iii), and (viii) to (x) hold. Then:
det®
a) lim inf germaLs 1; (77)

(og—00,05=0(0¢),c1<x<c2) detYXsrs —

b) if additionally k£ > 2 and Sy # 0 then strict inequality in (77) holds;

c¢) in the particular case of b) when y = akfia — Xo the following inequality holds:
€ )

. detXars
lim — > 1.
(0e—00,05=0(0¢),x—X0€(0,400)) detXsrs
Proof. Due to (76) and (65), under (i) to (iii) and (viii) to (x) we have:

detSaps Bl &35 - detElpia'vi (N, B)]
detYsrs det?(Epy')

By the Corollary of Lemma 6 from the Appendix, the last ratio is greater or equal to 1,
which proves (77). Moreover for any xo € [c1, 2]

R etXars
hm lnf(af—)oop'(;:o(af),Clg)(SCz) detXsrps —
detE[m det E[po’v1 (N,B;20)] (78)

det2(Eey) ’

and by the Corollary of Lemma 6 the last ratio is greater than 1 in case b), because then
v1 (NN, B) has a nonatomic distribution, see (64). This proves b). In case c¢) we observe
simply that the underlying limit exists and equals the right hand side of (78). Theorem
4 is proved.
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6 Conclusion

We derived an asymptotic covariance matrix of a structural least squares estimator in a
structural polynomial errors-in-variables model. In doing this, we used a general method,
which may be helpful in situations when the estimates of the parameters of interest depend
on nuisance parameters which have to be estimated aforehand.

Under normal assumptions, we compared the asymptotic covariance matrices of the SLS
and ALS estimators in border cases of small and large errors.

If the error in the response variable is fixed and the measurement error decreases, the
covariance matrices coincide asymptotically. The simulations of Schneeweiss and Nittner
(2000) corroborate this theoretical finding.

If both errors tend to 0 then the SLS method is strictly more efficient with respect to
two criteria. The first one involves the trace of the normalized covariance matrix, and
the second one is based on the determinants. Actually, the first criterion compares the
asymptotic MSE of the normalized estimators, while the second one compares the volumes
of the asymptotic confidence ellipsoids.

If the error in the response variable is large, and the variance of the latent variable is also
large, while the measurement error is fixed, the SLS method is strictly more efficient as
well, with respect to the second criterion.

Simulations made by Schneeweiss and Nittner (2000) show that under normal assumptions
and nonvanishing measurement errors, SLS is more efficient than ALS. It is an open
problem to prove this theoretically.

Acknowledgement. We thank T. Augustin for useful discussions.

7 Appendix

7.1 Asymptotic normality of an estimator in the presence of nui-
sance parameters

Consider a sequence of random fields S,,(4,v),n = 1,2, ... with values in IR?,6 € Gy and
v € G.,, where Gy and G., are open sets in IR? and IR*, respectively. We suppose that
Sn(6,7) are score functions constructed by an observed sample.
Let 69 € Gy and v9 € G be the true values of the parameters. Suppose that a consistent
estimator 4, of vy is given. We define an estimator én of 8y as measurable solution of the
equation

S’n(ayﬁ/n) = 07 0 ¢ GG-

~

More precisely, we suppose that the equality S, (6,,%,) = 0 holds with probability tend-
ing to 1l as n = oo.

Lemma 2. Let the following conditions hold.

a) 0, is consistent, i.e. 0, — 6o in probability Py, -
b) S,(0,7) € C' (G x G,), ass.

c) (\/\/"_Tf(fyig_o%"))) < N(0,%), where X is a positive semidefinite matrix.

d) W — V1 in Py, , where V7 is a non-random nonsingular matrix.

850 (6o,
e) 6() 0 70)

- — Vi in Py,,,, where V5 is a non-random matrix.
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f) For each 6 > 0,
lim¢ o limsup,,_, o Poyy, = 0,

where

14 {(.U . sup | 8871,(077) _ 8871/(00770)

> ).
(10=00]|<e,[y—ol|<e)  9(6,7) a(0,v) =2}

Then 7 (0, — 6) 5 N(0, %), with

o = Vi (1g, Vo) (14, Vo) VI

Proof. Let S be the i-th component of the column vector S, and

B(fo,71), B (’Yo,Tg) be open balls in IR and IR* with centers at 6 and 7, respectively.
Consistency of 6,, and 4 4, implies that 6, € B(6o,r1) C Gg and 4y, € B(y0,72) C G with
large probability, i.e. with probability tending to 1, as n — oco. From the definition of 6,
we obtain that with large probability

95} (8:, %)
o9’

aS;} ( 27'72)

(en - 00) 8,_}/[

S (60,70) + (¥n —70) = 0.

Here (;,9;) are intermediate points on the line connecting (8,,7,) and (6y,,%,). Then

95y, (90; 70)
o'

aS’n (00 ’ 70)

GYT \/_(7 =) + R, = 0.

\/Hsn(em'}/o) + \/ﬁ(én - 00)

Here .
R, = An\/ﬁ(en —6o) + Mn\/"_lﬁ/n - 70);

c s ()S ( is )/z) ()Sl (60,’}/0)
AiT — n —
n 90 90] I 7/7.] PRt B

855, (6i,%) _ 9S;(60,70)
9 9
Then for 8, = /n(f,, — bo) we obtain

(2525550 4+ An) 8 = =S (B, 70) — (2228820 + M) (79)
Vn(im —0)-

Now, A,, = 0 on probability. Indeed

M =

n

)

P9070(||An|| > 6) < P90’Yo(||0n - 00” > € or ||r3/n - ’70” > 6)
+Pooro (SUD (|18, — 00 || <e, | |5: = 0| |[<eri=1,....d) | Anll = 6),
and

imsup,,, o Pogro ([[An]] > 8) <
Hm sup,, _, o Pogro (SUP|17,—0, | <, |17 -0l <e) [[An]] = ) = 0,6 = 0,

by condition f). Thus A,, — 0 in probability. Similarly M, — 0 in probability. Then (79)
implies the desired convergence of L(d,). Indeed, using c), d), and e) we get

S 5 V7 (Ig, V2) - N(0, %),

which implies the statement of Lemma 2.
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7.2 Matrix inequalities

Lemma 3. Suppose that x,y are r.v. with > 0 and y > 0 a.s., Ez = 1, E(zy) < o0,
and for each d > 0, P(y # d,z # 0) > 0. Then for each a € (—00,1) and g € (1, +0),

{E(zy®)}= < E(zy) < {E(zy?)}7, (80)

where by definition
1 n
{Blay™)} [, = oM.

Proof. Let F(x,y) be the joint d.f. of x and y. Then for each ¢ # 0

E(zy°) = /}R ydG(y), (81)

with
G) = [ adF(a), yeR
R
The funcion G(y) is a probability d.f. as
G(+x) =Ez =1.

Denote the integral on the right hand side of (81) by E,y°. Note that G(y) is not
concentrated in a single point y = d because P(y # d,xz # 0) > 0. For a # 0 the
inequality (80) can be written in the form

(Exy®)* < Euy < (Buy®)?

and follows from Jensens’s inequality, because E,y = E(zy) < co. For a = 0 we have to
show that

eBelny |y (82)

where

E,Iny:= / In ydG (y).
R
But (82) also follows from Jensen’s inequality. This completes the proof.
Lemma 4. Let v be a positive r.v. with distribution which has no atoms, i.e. for each

¢ > 0,P(v(w) # ¢) = 1. Let w be a random (column) vector in IR™, with Eww' = I,,.
Then for each a € (—o00,0) U (0,1):

tr{E(ww'v®)}* < trE(ww'v), (83)

if
E(|Jw|[*v®) < oo,  E(J[wl|*v) < co.

Proof. Let (A, ¢) be a pair of eigenvalue and normalized eigenvector of E(ww’v®). Then

P{Euw'v)}ae =A% = {gEww'v)p}s
= {E(p'w)*v*}= = {E(zv)}=,

where r = (¢'w)?, and Ex = ¢'(Eww')p = ¢'¢ = 1. The distribution of v, has no atoms,
therefore for each d > 0, P(v # d,¢’w # 0) > 0. From Lemma 3 we have as a < 1

{E(zv*)}# < E(av) = ¢'E(ww'v)e.
Thus )
GH{E(ww'v®)}= ¢ < ¢'E(ww'v)ep.
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Now, summing up ¢ belonging to an eigenbasis of E(ww'v®), we obtain (83) and the
Lemma is proved.

Remark 3. If the distribution of v has atoms then (83) holds with nonstrict inequality.
Remark 4. For # > 1 we will have similarly

trE(ww'v) < tr{E(ww'vﬁ)}%.
It is possible to extend (83) also to v = 0. In this case
{E(wwlva)}é |a:0 - eE(ww' Inv)
and to prove (83) with @ = 0 we need additionally that v > 1.
Consider an application of Lemma 4.
Lemma 5. Let v and w satisfy the condition of Lemma 4, @ € IR, and v > 1, and
E(||w|[?v*) < 00, E(]|w|[>v® In* v) < co. Let
A = E(ww'v?),
B := E(ww'v*Inv),
C := E(ww'v® In® v).
Then
tr(AT'BA™'B) < tr(A'C). (84)
Proof. We set @ := (A~ 2w)v? and % := In?v. Then Edw@’ = I,,,5 > 0. We have

tr(A"'BA™'B) =tr(A"2BA"7)? = tr{E(0@'52)}?,
tr(A=10) =tr(A"2CA™7) = trE(0d'D).

Now, (84) follows from (83), with the exponent 1 < 1.

Lemma 6. Let v and w satisfy the conditions of Lemma 4, and v > 1, and E(||w||*v) <
o0, E(JJw||?v™!) < oo. Then

ww'

detE( 5 YdetE(ww'v) > 1. (85)

Proof. Consider a matrix valued function
A= A(a) := E(ww'v®),-1 < a < 1.

A(a) is positive definite for each a € [-1,1] and continuous in a. The inequality (85) is
equivalent to

IndetA(1) + IndetA(-1)
2

> IndetA(0). (86)

We prove that the continuous function

h(a) :=IndetA(a), a €[-1,1],
is strictly convex. For a € (—1,1) we have h/(a) = tr(A~142) where 24 = E(ww'v® Inv).
The last matrix is positive definite because Inv > 0. Then

,dA [ dA _d?A
h”(a) :—tT(A 1@14 1£)+t’l°(A 1@),
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where 3%1 = E(ww'v®In® v). Now h"(a) > 0,-1 < a < 1, by Lemma 5.

Thus h(«) is strictly convex. Therefore

h(1) + h(-1)

5 > h(0).

We showed (86), and the Lemma is proved.

Corollary. Suppose that all the conditions of Lemma 6 hold, but w = (w1, ..., wy)" is
an arbitrary (not necessarily orthonormal) system of linearly independent in Lo (2) r.v.
Then

ww'

det’BE(ww') < detE(

5 YdetE(ww'v) (87)

Proof. Denote S := Eww', S is positive definite. Let z := S~2w. Then (87) is equivalent

to ,
2z
—)

1 < detE(=—)detE(zz'v)
v

Now, Ezz' = I, and the inequality follows from Lemma 6. The Corollary is proved.
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