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Abstract

A polynomial structural errors	in	variables model with normal underlying distributions is
investigated
 An asymptotic covariance matrix of the SLS estimator is computed� includ	
ing the correcting terms which appear because in the score function the sample mean and
the sample variance are plugged in
 The ALS estimator is also considered� which does not
need any asumption on the regressor distribution
 The asymptotic covariance matrices
of the two estimators are compared in border cases of small and of large errors
 In both
situations it turns out that under the normality assumption SLS is strictly more e�cient
than ALS


Keywords� Polynomial regression� structural errors	in	variables model� asymptotic co	
variance matrix� e�ciency


� Introduction

We deal with the structural case of a polynomial regression with measurement errors
 For
the normal case� Thamerus 
����� developed a structural least squares 
SLS� estimator

The method is based on a quasi	likelihood score function
 We consider a certain modi	
�cation of the method
 We follow the recommendation of Carroll et al
 
������ p
 ����
and mention that a similar procedure for a quadratic regression was used by Kuha and
Temple 
�����
 We show the consistency of the proposed quasi	likelihood method using
the consistency criterion of Aitchison and Silvey 
������ which was adopted in Heyde

������ p
 ���


Once the consistency is established� to prove asymptotic normality is an easy exercise
in calculus
 However a particular feature of the SLS procedure is that we plug in the
sample mean and the mean variance instead of the unknown parameters of the regressor
distribution
 This causes the additional terms in the asymptotic covariance matrix of the
estimator
 These terms are written down below� and we remark that they were neglected
in Kuha and Temple 
�����


Cheng and Schneeweiss 
����� elaborated the consistent adjusted least squares 
ALS�
estimator for a polynomial errors	in	variables model� which corresponds to a functional
case and does not need any asumption on the regressor distribution
 The SLS estimator�
ALS estimator and its small sample modi�cation MALS were compared by Schneeweiss
and Nittner 
�����
 Via simulations it was shown in particular that SLS is more e�cient
than ALS or MALS whenever the normality assumption holds true


�



We compare the asymptotic covariance matrices of the estimators and give theoretical
proof of such e�ciency conclusion
 The structure of the matrices is quite complicated�
and we were able to handle only the border cases of small and large errors
 As criterions
of relative e�ciency we used 
for small errors� the trace of the normalized asymptotic
covariance matrix and 
for both cases� its determinant
 The trace characterizes the second
moment of the normalized estimator� while the determinant is related to the volume of
the asymptotic con�dence ellipsoid
 To compare the determinants� we established an
interesting generalization of the Cauchy	Schwarz inequality� which seems to be new


In the next section the ALS estimator is presented
 In section � we introduce the
SLS estimator and prove its consistency
 In section � we derive the asymptotic covariance
matrix of the SLS estimator
 In the next two sections the asymptotic covariance matrices
of the estimators are compared for small and for large errors� respectively
 The auxiliary
matrix inequalities and a general expression for the asymptotic covariance matrix are
given in the Appendix


� The ALS estimator

Throughout this paper we consider a polynomial structural errors	in	variables model

yi �
kX

j��

�j�
j
i � �i 
��

xi � �i � �i� i � �� � � � � n� 
��

We assume that �i � i
 i
 d
 N
��� 	
�
� � and the errors 
�i� �i� to be i
i
d
 Gaussian�

independent of the �i�s� with variances 	
�
� and 	�� and covariance 	�� � �
 Then it is

possible to construct polynomials tr
x� of degree r� such that Etr
� � ��� � �r� for any
non	random �
 Let Hi be a 
k � �� � 
k � �� matrix with elements 
Hi�rs � tr�s
xi��
r� s � �� � � � � k and hi be a 
k � ��� � vector with elements 
hi�r � yitr
xi�� r � �� � � � � k


Then the 
unmodi�ed� ALS estimator ��ALS of � � 
��� � � � � �k�
� is given as a measurable

solution of

H ��ALS � h� 
��

where the bar denotes averages� e
 g
 � H � �
n

Pn
i��Hi


Note that the ALS estimator can be de�ned by 
�� also in a functional polynomial
errors	in	variables model� i
 e
 � the model 
��� 
�� with non	random latent variables �i

In that model the estimator is consistent and asymptotically normal� see Cheng and
Schneeweiss 
�����


Of course� the ALS estimator preserves these asymptotic properties in a structural
model 
��� 
��� with random �i�s
 In the structural case�

p
n
 ��ALS � ��� N
���ALS�

in distribution� with the asymptotic covariance matrix

�ALS � 
EH�
�� � E
H� � h�
H� � h�� � 
EH���� 
��

Here H and h have the same distribution as H� and h�


Remark �� In Cheng et al
 
����� a small sample modi�cation of the ALS procedure�
called MALS� was introduced
 But it was shown there that ALS and MALS estimators
are asymptotically equivalent� i
 e
� p limn��

p
n
 ��MALS � ��ALS� � �
 Therefore these

estimators have identical asymptotic covariance matrices� and in the present asymptotic
comparision we do not consider the MALS estimator


�



� The SLS estimator and its consistency

��� The estimating equations

In the structural model 
��� 
�� we suppose that 	�� is known� while 	
�
� � �x and 	�x are

unknown� and � � 
�o� � � � � �k�
� is the parameter of interest
 We �nd a new mean	variance

model in the observable variable x by taking conditional expectations given x�

E
yjx� �
kX

j��

�j�j
x�
df
� m
x� ��� 
��

V
yjx� � 	�� �

kX
j�l��

�j�lf�j�l
x� � �j
x��l
x�g df� v
x� ��� 
��

where �r
x� � E
�
rjx�
 Now� L
�jx� � N
��
x�� 


�� with

��
x� � �x � 
�� 	���	
�
x�
x � �x�� 
��


� � 	�� 
�� 	���	
�
x�� 
��

Here �x � Ex� � �� 
 The conditional moments �r
x� are given by

�r
x� �

rX
j��

�
r

j

�
� ��j � ��
x�r�j � 
��

where ��� � �� and for j � �� �� � � �

��j � E�f� � ��
x�gj jx� �
�
� � if j is odd
� � � � � � 
j � ��
 j � if j is even



���

The nuisance parameters �x and 	
�
x can be estimated by

��x � x� �	�x �
�

n� �
nX
i��


xi � x��� 
���

If these are substitued for �x and 	
�
x in 
�� to 
���� estimates of ��
x� and 


� and �nally of
�r
x� arise
 Replacing the �r
x� in 
�� and 
�� by their estimates ��r
x� and substituting
the observable values xi for the variable x� we �nally get a mean variance model for the
observable data with mean and variance functions

�E
yjx � xi� �

kX
j��

�j ��j
xi�
df
� �m
xi� ��� 
���

�V
yjx � xi� � 	�� �

kX
j�l��

�j�lf��j�l
x�� ��j
x���l
x�g

df
� �v
xi� �� 	

�
� �� 
���

Quasilikelihood estimates ��SLS and �	
�
� for � and 	�� are measurable solutions of the

conditionally asymptotically unbiased estimating equations

�

n

nX
i��

yi � �m
xi� ��
�v
xi� �� 	�� �

� ��
xi� � � 
���

�

n

nX
i��

f �yi � �m
xi� ���
�

�v
xi� �� 	�� �
� n� k � �

n
g � �

�v
xi� �� 	�� �
� �� 
���

�



where ��
x� � 
���
x�� � � � � ��k
x��
�
 We follow here the recommendations of Carroll et

al
 
������ p
 ���� and construct the equations similarly to Kuha and Temple 
�����


Now� ��SLS is by de�nition the SLS estimator in the model 
��� 
��


Remark �� In Thamerus 
����� and Schneeweiss and Nittner 
����� instead of 
���
it was proposed to update the estimate for 	�� using the residuals of the previous step

We do prefere 
��� because we are able to write down the asymptotic covariance matrix
for the solution of 
��� and 
���


��� The algorithm

Denote the true values of parameters � and 	�� in the model 
��� 
�� by �� and 	���

Introduce the following further assumptions for the model�


i� �� � G� � where G� is a given bounded open set in IR
k��



ii� 	��� � 
ay� by� � where � � ay � by �� and ay� by are given�

We look for a solution of 
���� 
��� in the domain G� � 
ay� by�
 The reason of such
restrictions is that in 
��� and 
��� both score functions tend to �� as jj�jj � � or
	�� � �� for 	�� � � we have a singularity in the score functions
 In the latter case the
expected values of the score functions might not exist� therefore� whenever there should
be a solution with 	�� � �� consistency is not guaranteed
 From another point of view�
the restrictions � � G� � 	

�
� � 
ay� by� provide computational stability of the numerical

procedure


The following iterative algorithm to solve 
���� 
��� can be proposed� which is similar
to the one from Kuha and Temple 
�����


�
 Given estimates ��j� � G� from the j	th round of the algorithm� solve 
��� for
	�� � 
ay� by�� treating ��j� as known
 It is possible to use the Newton	Raphson
algorithm for this purpose
 Denote the solution by 	

��j�
� 


�
 Solve 
��� for � � G� � using 	
�
�
�j�
and ��j� for computing �v
xi� �� 	

�
� �
 The updated

estimate ��j��� � G� is given by a weighted least squares estimate from regressing
yi on ��
xi�� with weights

wi � ��v
xi� �
�j�� 	��

�j�
�����

The unweighted least squares estimate ��� � G� � constructed from 
��� alone� can
be used as an initial value ���� for �


��� Existence and consistency

Lemma �� Under the conditions 
i� and 
ii� from Section �
� the system 
���� 
��� has

a solution ��� �	�� a
 s
 for all n � n�

�


Proof� Denote by �x� and 	�x� the true values of the parameters �x � �� and 	�x�
respectively
 We de�ne the score function Gn corresponding to the equations 
���� 
����

Gn��� �
�
� ��x� �

�
x� �

�
B�

�
n

Pn

i��

yi����xi��

v�xi����
�
� �

� ��xi�

�
n

Pn

i��
f �yi����xi���

�

v�xi����
�
� �

� n�k��
n

g � �
v�xi����

�
� �

�
CA � ����

�



Here �
x� � 
��
x�� � � � � �k
x��
�� with �r
x� given in 
�� to 
��� but with parameter values

�x and 	�x which may be di�erent from the true values �x� and 	�x�
 The estimating
equations 
���� 
��� can then be written as

Gn
�� 	
�
� � ��x�

�	�x� � �� � � G� � 	�� � 
ay� by�� 
���

Fix the �nite intervals 
�x�� �x�� and 
ax� bx� containing �x� and 	
�
x�� respectively� with

ax � �
 Denote by E� the expectation under the condition that in the model 
��� 
��
� � ��� 	�� � 	���� �x � �x� and 	

�
x � 	�x�� and let P� be the corresponding probability

measure
 Now� we list certain properties of the functions 
���



a� P� � almost surely Gn
�� 	
�
� ��x� 	

�
x� � G�
�� 	�� ��x� 	

�
x� uniformly in � �

G� � 
ay� by�� 
�x�� �x��� 
ax� bx�� with
G�
�� 	�� ��x� 	

�
x� � limn��E�Gn
�� 	

�
� ��x� 	

�
x�


It is easy to verify this property because we are in an i
 i
 d
 case
 Indeed� for
any �xed argument z � �� Gn
z� � G�
z�� a
 s
 due to the LLN
 Moreover�
the functions Gn are equicontinuous in z � �� a
 s
 For instance� for the �rst
component G�

n in 
���� we have by the LLN a
 s


sup
z��

�����
������G

�
n

�z�

�����
����� 	 �

n

nX
i��

sup
z��

�����
������s�
yi� xi� z��z�

�����
�����

� E sup
z��

�����
������s�
y�� x�� z��z�

�����
������ 
���

with s�
yi� xi� z� �
yi����xi��
v�xi������ �

� �
xi�

Then supn�� supz�� jj	G

�
n

	z�
jj � � a
s
� and therefore the functions G�

n
z� are
equicontinuous on �� a
 s
 Similar considerations can be employed for G�

n
z�

It is important also that G�
z� is continuous in z � � a
s
� see 
b� below



b� G�
�� 	�� ��x�� 	
�
x�� � 
G

�
�� G

�
��

�� with

G�
� � �E�

	
��x����x�
v�x������ �



 �� 
���

G�
� � �E��v

��
x� �� 	�� � � 
	�� � 	��� 
���

�
kP

j�l��

 
�j�l�f�j�l
x�� �j
x��l
x�g � 
��
x� �����

Here in 
���� 
��� �
x� is given via true values �x� and 	
�
x�� and  � � �� ���

 
�j�l� � �j�l � ��j �
�
l 



c� The matrix

S� �
�G�
���x�� 	�x��

���

�����

�
�


���

is nonsingular� where � � 
��� 	�� �
� and �� � 
��

�
� 	����

�

This property follows from the relations

�G�
�
���
���

� �E� �
x���
x�
v
x� ��� 	����

�
�G�

�
���
�	��

� ��

�G�
�
���
�	��

� �E� �

v�
x� ��� 	����
�

Now� S� is nonsingular because
	G�

�
�
��

	��
is negative de�nite�

	G�
�
�
��

	���
� �� and

	G�
�
�
��

	���
� �


�



Now� we apply Theorem ��
� from Heyde 
����� to the sequence 
��� of esti	
mating functions
 Set

Hn
�� � �S��� �Gn
�� ��x� �	
�
x�� � � G
 � G� � 
ay� by��

The functions Hn
�� are continuous in � a
 e
 on the probability space !
 We have to
show that for all small � � � a
 e
 on !

q� � lim
n��
sup
 sup

jj
�
�jj��

� � ���

�Hn
��� � �� 
���

Due to property a� and because of the consistency of the estimators ��x� �	
�
x we have

q� � sup
jj
�
�jj��


� � ���
� � 
�S��� �G�
���x�� 	�x���� 
���

Now� G�
����x�� 	�x�� � � which is easily seen from 
���� 
���� and from the de�nition

��� of S� we get the expansion


� � ���
� � 
�S��� �G�
���x�� 	�x��� � �jj� � ��jj� � o
jj� � ��jj���

as � � ��
 From 
��� we obtain that for all small � � �� the inequality 
��� holds
 And by
the above mentioned theorem from Heyde 
����� the equation Hn
�� � � has a solution�
for all n � n�
w�
 This proves Lemma �


Now we can give a more rigorous de�nition of the SLS estimator
 For those 
small�

n for which 
���� 
��� has no solutions we set ��SLS � �f � �	
�
� � 	��f � where �f � G�

and 	��f � 
ay� by� are arbitrary but �xed values
 If n is such that 
���� 
��� has many
solutions we choose one of them for every 
 in such a way that ��SLS

� and �	

�
� 

� are

measurable
 This is possible due to� e
 g
 � Pfanzagl 
�����


Theorem �� Under the conditions 
i�� 
ii� the estimators ��SLS and �	
�
� are strongly

consistent� i
e
 � P� � a
 s
 ��SLS � �� and �	�� � 	���� as n��

Proof� By Lemma � the estimators are well de�ned by the estimating equations 
���


Owing to property a� in the proof of Lemma � and because of the strong consistency of ��x
and �	�x� there is a set !� of probability � where Gn
��	

�
� � ��x� �	

�
x� � G�
��	�� ��x�� 	

�
x��

uniformly in � � cl
G��� 	
�
� � �ay� by�
 Here cl
G� is the closure of a set G
 Fix 
 �

!�
 The sequence 
 ��n

���� �	
�
�n

� is in a bounded domain G� � 
ay� by�
 Consider an

arbitrary convergent subsequence 
 ��n�k�

�� �	
�
�n�k�

�� � 
��� 	���� � IRk�� � 
�����


Then G�
��� 	�����x�� 	
�
x�� � � and hence �� � ��� 	��� � 	��� because obviously 
�

�� 	����
is the unique solution of G�
��	�� ��x�� 	

�
x�� � �� see 
��� � 
���
 This implies the

convergence of the whole sequence 
 ��n

��� �	
�
�n

�� to the true value 
�

�� 	����
 Theorem
� is proved


� The asymptotic covariance matrix of the SLS esti�

mator

We apply Lemma � from the Appendix to the estimating equations 
���� 
���
 The
estimated parameter is � � 
��� 	�� �

�
 As a nuisance parameter we shall consider � �

�x� ��	

�
x�
� � 
��� ����
 Denote �� � 
�x�� �

��
x�
��

"�� � E�
�
xi� ����

�
xi� ���
v
xi� ��� 	����

�



and

Fp � E�

�
v��
xi� ��� 	��� � �

���

��p

�
��� p � �� ��

where � � �
xi� ���


Theorem �� Under the conditions 
i�� 
ii� from Section �
��
p
n
 ��SLS���� d� N
���SLS��

with

�SLS � "
��
�� �"

��
��

�
	�x�F�F

�
� �

�

		x�
F�F

�
�

�
"���� �

Proof� The compound score function 
��� can be written as

Sn
�� �� � Gn
���x� 	
�
x� �

�

n

nX
i��

s
xi� yi� � rn� 
���

with

s
x� y� �

�
B�

y����x��
v�x������ �

� �
x�


y����x����
v��x������ �

� �
v�x������ �

�
CA 
���

and rn a 
r���	vector with �rst r�� components equal to zero and last component equal
to


n �
k � �

n�

nX
i��

�

v
xi� �� 	�� �
�

OP 
��

n
p
n
� 
���

for each � and �
 The estimators ��SLS and �	
�
� satisfy the equation

Sn
 ��SLS� �	
�
� � ��x� �	

��
x � � ��

Let us check the conditions of Lemma �
 By Theorem �� �� �
	
���
SLS

� �	��


�
is consistent


The random �eld Sn
�� ��� � � G� � 
ay� by�� � � G� � 
�x�� �x�� � 
 �
bx
� �
ax
�� has C�	

smooth paths� a
 s
 Consider condition c� of Lemma �
 Set zi � xi � �x
 We have under
P�x���x �

��x �
�

n

nX
i��

xi� 
���

�	�x �
�

n� �
nX
i��


zi � z�� �
�

n

nX
i��

z�i �
�

n
n� ��
X

��i�j�n
zizj

�
�

n

nX
i��

z�i �
OP 
��

n
�

because

E

���� �n
X

��i�j�n
zizj

����
�

�
�

n�

X
��i�j�n

E
z�i z
�
j � 	 const�

Then

�	��x � 	��x � � �	
�
x � 	�x
	�x�	

�
x

� � �
		x

 #z� � 	�x� �

OP 
��

n
� 
���

�



From 
���� 
��� � 
��� we get

�
�
p
nSn
��� ���

p
n
��n � ���

�
A � �p

n

nX
i��

�
BBBBB�

s
xi� yi� ���

xi � �x�

� z�i���x�
��
x�

�
CCCCCA�

OP 
��p
n

� 
���

Note that E�s
xi� yi� ��� � E�
E�
s
xi� yi�jxi�� � �
 From 
��� we have by the CLT for
i
 i
 d
 random vectors�



p
nS�n
��� ����

p
n
��n � ����

� d� N
�����

with

� � cov

�
BBBB�

s�xi� yi�

xi � �x�

�
�xi��x� �

�
���x�

��x�

�
CCCCA �

� � diag�E�
��xi� ��� � �

��xi� ���

v�xi� ��� ���
� �E�v

���xi� ��� ���� �
�
x�� ��

�	
x� �� �	
�

Now� pass to condition d� of Lemma �
 By the LLN

V� � E�
�s
xi� yi�

�
��� 	�� �
� with � � ���

Let s
x� y� � 
s�
x� y�
�� s�
x� y���
 Then

E�
�s�
���

� �E� �
xi� ��� � �
�
xi� ���

v
� �"���

E�
�s�
���

� �E�
 �
v�

�v

���
� � �"���

E�
�s�
�	��

� �� E�
�s�
�	��

� �Ev�� � �����

Here v � v
xi� ��� ���
 Now� "�� is positive de�nite� and ��� � �
 Therefore V� is
nonsingular� and

V ��� � �
�
� "���� �

�

��
"��"

��
��

�

��

�
A � �"��� � 
���

Pass to the condition e� of Lemma �
 We have

V� � E�
�s
xi� yi�

���
� with � � ���

In particular

E�
�s�
xi� yi�

���
� �E�
�

v
���

� ��
���
� � �"��� 
���

E�
�s�
xi� yi�

���
� �E�
 �

v�
�v

���
� � �"��� 
���

Therefore

V� � �"�� "� �

�
� "��

"��

�
A �

�



Here in 
���� 
��� � � �
xi� ���
 At last� condition f� of Lemma � holds because for � and
� in the �	neighbourhood of �� and ��������

������Sn
�� ���
��� ���
� �Sn
��� ���

�
��� ���

�����
����� 	

	 sup
�jj
�
�jj���jj����jj���

�����
����� ��Sn
�� ��

�
�� ���
��� ���

�����
������ � const�

and

E� sup
�jj
�
�jj���jj����jj���

�����
������

�S
xi� yi� �� ��

�
�� ���
��� ���

�����
����� ���

for su�ciently small �
 All the conditions of Lemma � hold� and

p
n

�
� ��SLS � ��

�	�� � 	���

�
A d� N
���
��

�
 � "
��
� 
Ik����"���

�
� Ik��

�"��

�
A"�����

Introduce the 
k���� 
k��� selection matrix P� � 
Ik��� ��
 According to 
��� we have

for the asymptotic covariance matrix �SLS for ��SLS�

�SLS � P��
P
�
� � 
"

��
�� � ��
Ik����"���

�
� Ik��

�"��

�
A
�
� "����

�

�
A �

Denote

"�� � 
F�� F��

with

Fp � E�

�
v���

���

��p

�
�� p � �� �� 
���

Using the block	diagonal structure 
��� of �� we have �nally

�SLS � "
��
�� �"

��
��

�
	�x�F�F

�
� �

�

		x�
F�F

�
�

�
"���� � 
���

Theorem � is proved


Note that

"���� �

�
E�

�
xi� ����
�
xi� ���

v
xi� ��� ���

���

���

is exactly the asymptotic covariance matrix of the quasilikelihood and variance function
estimate of �� under the condition that the nuisance parameters �� are known� see Carroll
et al
 
������ p
 ���
 The correcting summands in 
��� appear because we plug in the
consistent estimator ��n instead of ��


�



� Comparison of the estimators for small errors

Before we compare the asymptotic covariance matrices 
�� and 
��� we show that for the
linear regression the ALS and SLS approaches almost coincide


��� Case of linear regression

In this subsection we consider a model 
��� 
��� with k � �
 It is a linear structural
errors	in	variables model


Denote

Sxx �
�

n

nX
i��


xi � x��� Sxy �
�

n

nX
i��


xi � x�
yi � y��

From 
�� it is easy to obtain that the ALS estimators are given by

����ALS �
Sxy

Sxx � 	��
� 
���

and ����ALS is found from the equation

y � ����ALS � ����ALS � x� 
���

Now� according to 
��� in the linear case we have

�E
yjx � xi� �

�
�� � �� � 	

�
�

�	�x
� ��x
�
� ��

�
�� 	��

�	�x

�
xi

� $�� � $��xi�

where

$�� � �� � ��
	��
�	�x
��x� $�� � ��

�
�� 	��

�	�x

�
� 
���

Note that according to 
��� �V 
yjx � xi� does not depend upon xi
 Solving 
��� with
respect to $��� $�� we get

$���SLS �
Sxy
Sxx

�

and from 
��� and 
��� it follows that

����SLS �
Sxy
Sxx

� �	�x
�	�x � 	��

�
Sxy

Sxx � n��
n
	��

� 
���

Similarly to 
���� ����SLS is found from the equation

y � ����SLS � ����SLS � x� 
���

Comparing 
��� and 
��� we obtain
p
n
 ����SLS � ����ALS� � �� a
 s
� and from 
���� 
���

we have also
p
n
 ����SLS � ����ALS� � �� a
 s
 Therefore in the linear case the asymptotic

covariance matrices of the two estimators coincide


Note that if the estimate Sxx instead of �	
�
x is used in the SLS method� then in the

linear case the SLS and ALS estimators coincide


��



��� Case of small errors in the general model

Hereafter we consider the nonlinear regression 
��� 
��� i
 e
 � k � �
 Moreover we deal
with a series of models 
��� 
�� and suppose that the parameters

��� � � � � �k���� 	
�
�

do not change� while the variances 	�� and 	
�
� may change
 Consider the following asump	

tions



iii� 	� � �


iv� � �
	�
	�

	 const�

So both cases are possible�

a� 	� � const� then �� ��

b� 	� � �� then 	� � O
	���

����� Asymptotics for the ALS method

We analyse the asymptotic covariance matrix 
�� under the assumptions 
iii�� 
iv�
 Denote
� � 
�� �� � � � � �k��� and let hereafter 
�� �� �� have the same distribution as 
��� ��� ����
x � �� �� y �

Pk
j�� �j�

j � �
 Then by the de�nition of the matrices Hi and polynomials
tr
x�� we have

EH� � E
E
H�j���� � E
�r�s� r� s � �� � � � � k� � E
����� 
���

Now� H�� � h� has the same distribution as a vector with j	th component

kX
i��

�i
tj�i
x� � �itj
x�� � �tj
x�� j � �� �� � � � � k� 
���

We expand 
��� in the space L�
!� of square	integrable random variables
 The leading
term of 
��� is

xj

�
kX
i��

�i

� � ��i � �i�� �

�
� 
���

and the leading term of 
��� is

�j

�
kX
i��

�i � i�i��� � �

�
� 	� � �j

�
kX
i��

i�i�
i���n� � n�

�
� 
���

where n� �
�
��
and n� �

�
��
are mutually independent and independent of � standard

normal random variables
 Actually� the di�erence between 
��� and 
��� divided by 	�
tends to � in mean square
 
If � � ��

��
� � then the summands containing � also

vanish but it is convenient to preserve these summands to be able to consider the cases
of vanishing and nonvanishing � simultaneously�
 Introduce the vector z � 
z�� � � � � zk�

��

zj � �j

�
kX
i��

i�i�
i���n� � n�

�
� j � �� � � � � k�

Then according to the leading terms 
��� we have

	��� E
H�� � h��
H�� � h��
� � Ezz� � o
���

��



But

Ezjzs � E�
j � �s �

�
�� � ��

�����
kX
i��

i�i�
i��
�����
�
�
A �

Therefore

	��� E
H�� � h��
H�� � h��
� � E����v�
�� ��� � o
��� 
���

with

v�
�� �� � � � ��

�����
kX
i��

i�i�
i��
�����
�

� 
���

From 
��� 
��� and 
��� we obtain �nally that under 
iii� and 
iv��

	��� � �ALS � 
E������ � E����v�
�� ��� � 
E������ � o
��� 
���

as 	� � �� ��
��
	 const


����� Asymptotics for the SLS method

We analyze the asymptotic covariance matrix 
��� under the same assumptions 
iii� and

iv�
 Start with the matrix

"�� � E

�
�
x���
x�
v
x� ��

�
� 
���

Contrary to the section �� hereafter we suppress the index � in the denotation of the true

values of the parameters� and �
x� is de�ned in subsection �
�
 Note that now ��

��
�

� �� and


� � �
 The leading terms of �j�l
x� � �j
x��l
x� with respect to 
 
when j � �� l � ��
are�

�l�j� �


l�j
�

�

��l�j��� � 
�j� � �j���



j
�

�

�� � 
�l� � �l���



l
�

�

�� �


��l�j��� 



j�l
�

�� 
j��� 
l��� � o

���

Thus the leading term is jl
��l�j��� 
x�� and therefore

��j�l
x�� �j
x��l
x��� jl	���
l�j�� � op
	

�
� � � 
���

as 
iii� holds
 The expansion 
��� holds also if j � � or l � �
 Indeed�

a� for j � l � �� ��
x� � ���
x� � 
� � 	�� � jl	���
l�j���

b� for j � �� l � � the leading terms are

�l��
� � �l��� 
�



l��
�

�� ��
�
l
� � �l��� 
�



l
�

�
� �

l�l��� 
� � o

�� � jl	���
l�j�� � op
	

�
� ��

It follows that

v
x� �� � 	�� � 	��
Pk

j�l�� jl�j�l�
l�j�� � op
	

�
� � �

	�� 
vo
�� �� � op
����

with vo given in 
���
 By Lebesgue�s theorem of majorized convergence we have

	�� � "�� � Eo

�
�
x� � ��
x�
vo
�� ��

�
� o
�� � E

� � ��
vo
�� ��

� o
��� 
���

��



The �rst summand in 
��� has the order 	�� 
 We shall show now that the other summands
in 
��� have smaller order
 We use 
��� and have

���
x�

��x
�

	��
	�x

�
��r
x�

��x
�

rX
j��

�
r

j

�
� ��j 
r � j��r�j���

	��
	�x

� 
���

The leading term of the summand "���� 
	
�
xF�F

�
��"

��
�� has the order 	

	
� � which is negligible

with respect to 	�� 
 Now� for �� � 	��x we have

���
x�

�
	��x �
� �
x� �x�	

�
� �

�
�

�
	��x �
� �		� � 
���

Therefore the leading term of 	�r�x�

	����
x �

has the order 	�� � and again the leading term of the

summand "���� 

�
��x
F�F

�
��"

��
�� has the order 	

	
� 
 From 
��� and 
��� we obtain �nally�

	��� �SLS �

�
E

���

v�
�� ��

���
� o
��� 
���

as 	� � �� ��
��
	 const


����� Comparison of �SLS and �ALS

Now� we compare the expansions 
��� and 
���
 We distinguish two cases regarding
� � ��

��
� when �� � and when � is separated from �


Theorem �� Let the conditions 
i� to 
iii� hold
 Assume also


v� � � ��
��
� �


Then
lim

������
��
��
���

	��� �SLS � lim
������

��
��
���

	��� �ALS �

and the limit is equal to a positive de�nite matrix 
E������


Proof� Under 
v�� v�
�� �� � � a
s
� see 
���
 The statement follows now from 
���
and 
���


Theorem � is applicable in the case 	� � const� and 	� � �
 Simulation studies made
by Schneeweiss and Nittner 
������ p
 �� corroborate this statement
 The corresponding
case in the simulations is 	�� � ���� and normally distributed design points


Denote

S � E���� 
���

Theorem �� Let the conditions 
i� to 
iii� hold


a� Under 
iv��

lim inf
���������O�����

	��� �tr
�ALS � S�� tr
�SLS � S�� � �� 
���

and

lim inf
���������O�����

�det
	��� �ALS�� det
	��� �SLS�� � �� 
���

��



b� Suppose that


vi� k � � and Pk
j�� �

�
j 
� ��


vii� for positive constants c� and c��

c� 	 � �
	�
	�

	 c��

Then 
��� and 
��� become strict inequalities


c� In the particular case of b� when � � ��� � � �� � �� the following inequalities
hold�

lim
������

��
��
����

	��� � tr
�SLS � S� � lim
������

��
��
����

	��� � tr
�ALS � S�� 
���

lim
������

��
��
����

det
	��� ��SLS� � lim
������

��
��
����

det
	��� � �ALS�� 
���

Proof� Part a� follows immediately from the expansions 
���� 
��� and Lemma � from
the Appendix with � � ��� see also Remark � and Corollary from Lemma �
 Now�
the relations 
���� 
��� follow from Lemma �� see also Corollary from Lemma �
 It is
important in this case that under 
vi� the limit function

lim
����

v�
�� �� � � � ���j
kX
i��

i�i�
i��j�

has a distribution without atoms� and this provides the strict inequalities 
��� and 
���


Now� prove part b�
 For certain �� � �c�� c�� we have

lim inf������c����
��
�c�� 	

��
� �tr
�ALS � S�� tr
�SLS � S�� �

tr
S�
�
� � E����v�
�� ������ � S� �

� �� tr
S
�
� 
E ���

v���������
���S

�
� � � ��

according to 
���
 The consideration of the determinants relies similarly on 
��� and
Lemma �
 Theorem � is proved


Relation 
��� shows that the second strong moment of the limit distribution for the

normalized estimator
p
n �S �

� 
 ��SLS ��� is less then the respective one for the normalized

estimator
p
n � S �

� 
 ��ALS ���
 In this sense ��SLS is more concentrated near � than ��ALS�
for large n


And relation 
��� shows that the volume of the asymptotic con�dence ellipsoid for the
SLS estimator is less than the respective volume for the ALS estimator


Theorem � means that for small errors� when both errors in the model 
��� 
�� have
the same order and under normality assumptions� the SLS estimator is asymptotically
more e�cient than the other one 
with respect to both the trace and the determinant
criteria�


��� Case of large errors

In the present subsection we deal with a series of models 
���
�� and suppose that the
parameters ��� � � � � �k��� do not change� while all the variances in the model may change

Consider the following assumptions


��




viii� 	� ��


ix� 	� � const � �� and 	� � o
	��



x� For positive constants c� and c��

c� 	 � �
	�

	k��� � 	�
	 c��

Remark that � in 
x� has another meaning than in 
iv�
 Under 
viii� to 
x�� 	� and 	�
tend to in�nity� while the measurement errors do not vanish� and 	� increases quicker
than 	� 


����� Asymptotics for the ALS method

We analyze the asymptotic covariance matrix 
�� under the assumptions 
viii� to 
x�
 We
use the same denotations �� �� �� �� x� y as in subsection �
�
�
 Denote also

� � 
�� N� � � � � Nk��� 
���

where N is a standard normal variable
 From 
��� we obtain

det
EH�� �
Qk

i��
	
�
� �

idet
E����� 
���

Now� we consider E
H�� � h��
H�� � h��
�
 The random vector H�� � h� has the same

distribution as a vector with j � th component given in 
���
 The leading term in L�
!�
of that expression is�

�k
tj�k
x�� �ktj
x�� � �tj
x� � xj�k

� � ��k � �k�� �xj � rest�
� �j
k�k�

k��� � �� � rest��

���

Here rest� and rest� have smaller order under 
viii� to 
x� than the other summands� and
we used here that tr
x� � xr�ar��xr��� � � �� see Cheng and Schneeweiss 
������ Lemma
�
 By condition 
x�� � has the same order as �k���
 Therefore the leading term in 
��� is

vj � N j	j�k��� � 	�
k�kNk��n� � �n���

Here N �
����
��

� n� �
�
��
and n� �

�
��
are independent standardized random variables


Note that
E
vjvsjN� � N jNs	j�k��� 	s�k��� 	�� 
k

���kN
�k�� � ����

Therefore for v � 
v�� � � � � vk�
�

det
E
H�� � h��
H�� � h��
�� � detEvv� �


	�� �
k�� �Qk

j��
	
�
� �

j�k�� � detE����v�
N� ���� 
���

where

v�
N� �� � �� � k���kN
�k��� 
���

From 
���� 
��� and 
�� we get �nally that under 
viii� to 
x��

det�ALS � 
	�� �k�� �
kY
i��


	�� �
i�� detE���

�v�
N� ���
det�
E����

� 
���

��



����� Asymptotics for the SLS method

Under the conditions 
viii� to 
x� we analyze

�SLS � "
� �

�
�� �Ik�� �"

� �
�

�� 
	
�
xF�F

�
� �

�

		x
F�F

�
��"

� �
�

�� �"
� �

�
�� � 
���

see 
���
 Expand �rstly det"��
 Consider the conditional variance v
x� �� given in 
��

We have

v
x� �� � 	�� � ��k
��k
x� � ��k
x�� � rest
� 
���

where rest
 has smaller order
 Write down the leading term of ��k � ��k�

��k � ��k � ��k� � ��k���



�k
�

�

� � 
�k� � �k���



k
�

�

��� � rest	 �

� ��k��� 
��


�k
�

�� �
k��� � rest��

��k
x� � ��k
x� � ��k��� 
x�
�k� � rest��

Here the terms in rest
� rest	 and rest� have smaller order than
��
x�

�k�� � 
�
 Note that by 
x� 	�� is of the same order as ��
x��k�� � 
�
 Now�

v
x� �� � 	�k��� 	�� 
�
� � k���kN

�k�� � rest��� 
���

where N �
����
��

� N
�� ��� and � is �ven in 
x�
 Our matrix

"�� � E

�
x�p
v
x� ��

� ��
x�p
v
x� ��

�

is a Gramm matrix of random values zi �
�i�x�p
v�x���

� i � �� � � � � k� in the space L�
!�� and

�i
x� has a leading term xi � �i � rest� � 	i�N
i � rest�
 From 
��� we get

zi �
	i�

	k��� 	�



N ip
v�
N� ��

� rest��� 
���

with jjrest�jjL� � �� where v�
N� �� � x� � k��kN
�k��
 Therefore for z � 
z�� � � � zk��

det"�� � detE
zz��
� �

���
�
�k��

Q
k

i��
���
�
�i��

� detE� 

�

v��N��� ��

���

We show now that under 
viii� to 
x��

"
� �

�
�� 
	

�
xF�F

�
� �

�

		x
F�F

�
��"

� �
�

�� � �� 
���

We use 
���
 Denote

W � "
� �

�
�� 


�p
v
��with � � 
��
x�� � � � � �k
x��

�� v � v
x� ���

and

�p �
���

��p
�� p � �� ��

Then the rs	element of the matrix 
��� equals to�

ars � 	�xE�

��wrp

v
�E�


��wsp
v
� � �

��x
E�


��wrp
v
�E�


��wsp
v
�� 
���

��



Now� v � 	�� and Ew
�
r � �
 Therefore� by the Cauchy	Schwarz inequality�

jarsj 	 	�x
	��
E��

�
� �

�

		x	
�
�

E��
�
� � 
���

We use �rstly 
��� to bound E��
�
� 
 The leading term of �� is �k�

k��
�

���
��x
� and the expec	

tation of the leading term of ��
� has the order 
	

�
x�

k�� ���
��x

 Therefore� using 
x��

��x
���
E��

�
� 	 const�

���x�
k�����
���

	 const�
���x�

k�����
���x�

k����
�

� const� � ���
��x
� ��


���

Now� we use 
��� to bound E��
�
� 
 The leading term of �� is �k�

k��
�

	��

	����
x �

� ��k�k��� 
x�
�x�	

�
� � and the expectation of the leading term of �

�
� has the order 
	

�
x�

k		� 
 Therefore

�

		x	
�
�

E��
�
� 	 const



	�x�
k��		�
	��

� �� 
���

see 
���
 Relations 
��� to 
��� show that ars � �
 Thus 
��� holds
 By 
��� and 
���
we get �nally

det�SLS � 
det"���
�� � 
	

�
� �

k��
Qk

i��
	
�
� �

i��

detE� 

�

v��N��� �
� 
���

����� Comparison of �SLS and �ALS

Now� we compare the expansions 
��� and 
���


Theorem �� Let the conditions 
i� to 
iii�� and 
viii� to 
x� hold
 Then�

a� lim inf
���������o�����c����c��

det�ALS
det�SLS

� �� 
���

b� if additionally k � � and �k 
� � then strict inequality in 
��� holds�
c� in the particular case of b� when � � ��

�
k��
�

��
� �� the following inequality holds�

lim
���������o�����������������

det�ALS
det�SLS

� ��

Proof� Due to 
��� and 
���� under 
i� to 
iii� and 
viii� to 
x� we have�

det�ALS
det�SLS

�
detE� 

�

v��N��� � � detE����v�
N� ���
det�
E����

�

By the Corollary of Lemma � from the Appendix� the last ratio is greater or equal to ��
which proves 
���
 Moreover for any �� � �c�� c��

lim inf���������o�����c����c��
det�ALS
det�SLS

�
detE
 ���

v��N���x�	

detE


�v��N���x���

det��E

�� �

���

and by the Corollary of Lemma � the last ratio is greater than � in case b�� because then
v�
N� �� has a nonatomic distribution� see 
���
 This proves b�
 In case c� we observe
simply that the underlying limit exists and equals the right hand side of 
���
 Theorem
� is proved


��



� Conclusion

We derived an asymptotic covariance matrix of a structural least squares estimator in a
structural polynomial errors	in	variables model
 In doing this� we used a general method�
which may be helpful in situations when the estimates of the parameters of interest depend
on nuisance parameters which have to be estimated aforehand

Under normal assumptions� we compared the asymptotic covariance matrices of the SLS
and ALS estimators in border cases of small and large errors

If the error in the response variable is �xed and the measurement error decreases� the
covariance matrices coincide asymptotically
 The simulations of Schneeweiss and Nittner

����� corroborate this theoretical �nding

If both errors tend to � then the SLS method is strictly more e�cient with respect to
two criteria
 The �rst one involves the trace of the normalized covariance matrix� and
the second one is based on the determinants
 Actually� the �rst criterion compares the
asymptotic MSE of the normalized estimators� while the second one compares the volumes
of the asymptotic con�dence ellipsoids

If the error in the response variable is large� and the variance of the latent variable is also
large� while the measurement error is �xed� the SLS method is strictly more e�cient as
well� with respect to the second criterion

Simulations made by Schneeweiss and Nittner 
����� show that under normal assumptions
and nonvanishing measurement errors� SLS is more e�cient than ALS
 It is an open
problem to prove this theoretically
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� Appendix

��� Asymptotic normality of an estimator in the presence of nui�

sance parameters

Consider a sequence of random �elds Sn
�� ��� n � �� �� � � � with values in IRd� � � G
 and
� � G� � where G
 and G� are open sets in IRd and IRk� respectively
 We suppose that
Sn
�� �� are score functions constructed by an observed sample

Let �� � G
 and �� � G� be the true values of the parameters
 Suppose that a consistent

estimator ��n of �� is given
 We de�ne an estimator ��n of �� as measurable solution of the
equation

Sn
�� ��n� � �� � � G
�

More precisely� we suppose that the equality Sn
��n� ��n� � � holds with probability tend	
ing to � as n��


Lemma �� Let the following conditions hold


a� ��n is consistent� i
e
 ��n � �� in probability P
��� 


b� Sn
�� �� � C�
G
 �G��� a
s


c�

pnSn�
�����p

n���n����
� d� N
����� where � is a positive semide�nite matrix


d� 	Sn�
�����
	
�

� V� in P
��� � where V� is a non	random nonsingular matrix


e� 	Sn�
�����
	��

� V� in P
��� � where V� is a non	random matrix


��



f� For each � � ��
lim��� lim supn�� P
��� � ��

where

A
df
� f
 � sup

�jj
�
�jj���jj����jj���
jj�Sn
�� ��
�
�� ���

� �Sn
��� ���
�
�� ���

jj � �g�

Then
p
n
��n � ���

d� N
����� with

�
 � V ��� 
Id� V���
Id� V��
�V ���� �

Proof� Let Sin be the i	th component of the column vector Sn and
B
��� r��� B
��� r�� be open balls in IR

d and IRk with centers at �� and ��� respectively


Consistency of ��n and ��n implies that ��n � B
��� r�� � G
 and ��n � B
��� r�� � G� with

large probability� i
e
 with probability tending to �� as n��
 From the de�nition of ��n
we obtain that with large probability

Sin
��� ��� �
�Sin


#�i� #�i�

���

��n � ��� �

�Sin

#�i� #�i�

���

��n � ��� � ��

Here 
#�i� #�i� are intermediate points on the line connecting 
�o� �o� and 
��n� ��n�
 Then

p
nSn
��� �o� �

�Sn
��� ���

���
p
n
��n � �o� �

�Sn
��� ���

���
p
n
��n � ��� �Rn � ��

Here
Rn � %n

p
n
��n � ��� �Mn

p
n
��n � ����

%ijn �
�Sin


#�i� #�i�

��j
� �Sin
��� ���

��j
� i� j � �� �� � � � � d�

M ij
n �

�Sin

#�i� #�i�

��j
� �Sin
��� ���

��j
� i � �� � � � � d� j � �� � � � � k�

Then for �n �
p
n
��n � ��� we obtain	

	Sn�
�����
	
�

�%n



�n � �pnSn
�o� ����

	
	Sn�
�����

	��
�Mn



�p

n
��n � ����

���

Now� %n � � on probability
 Indeed

P
���
jj%njj � �� 	 P
���
jj��n � ��jj � � or jj��n � ��jj � ��
�P
���
sup�jj�
i�
�jj���jj��i���jj���i�������d� jj%njj � ���

and
lim supn�� P
���
jj%njj � �� 	
lim supn�� P
���
supjj�
i�
ojj���jj��i���jj��� jj%njj � ��� �� �� ��

by condition f�
 Thus %n � � in probability
 SimilarlyMn � � in probability
 Then 
���
implies the desired convergence of L
�n�
 Indeed� using c�� d�� and e� we get

�n
d� V ��� 
Id� V�� �N
�����

which implies the statement of Lemma �


��



��� Matrix inequalities

Lemma �� Suppose that x�y are r
v
 with x � � and y � � a
s
� Ex � �� E
xy� � ��
and for each d � �� P 
y 
� d� x 
� �� � �
 Then for each � � 
��� �� and � � 
������

fE
xy��g �
	 � E
xy� � fE
xy��g �

� � 
���

where by de�nition

fE
xy��g �
	

��
���

�� eE�x ln y��

Proof� Let F 
x� y� be the joint d
f
 of x and y
 Then for each c 
� �

E
xyc� �

Z
IR

ycdG
y�� 
���

with

G
y� �

Z
IR

xdF 
x� y�� y � IR�

The funcion G
y� is a probability d
f
 as

G
��� � Ex � ��
Denote the integral on the right hand side of 
��� by Exy

c
 Note that G
y� is not
concentrated in a single point y � d because P 
y 
� d� x 
� �� � �
 For � 
� � the
inequality 
��� can be written in the form


Exy
��

�
	 � Exy � 
Exy

��
�
�

and follows from Jensens�s inequality� because Exy � E
xy� � �
 For � � � we have to
show that

eEx ln y � Exy� 
���

where

Ex ln y ��

Z
IR

ln ydG
y��

But 
��� also follows from Jensen�s inequality
 This completes the proof


Lemma �� Let v be a positive r
v
 with distribution which has no atoms� i
e
 for each
c � �� P 
v

� 
� c� � �
 Let w be a random 
column� vector in IRm� with Eww� � Im

Then for each � � 
��� �� � 
�� ���

trfE
ww�v��g �
	 � trE
ww�v�� 
���

if
E
jjwjj�v�� ��� E
jjwjj�v� ���

Proof� Let 
�� �� be a pair of eigenvalue and normalized eigenvector of E
ww�v��
 Then

��fE
ww�v��g �
	� � �

�
	 � f��E
ww�v���g �

	

� fE
��w��v�g �
	 � fE
xv��g �

	 �

where x � 
��w��� and Ex � ��
Eww��� � ��� � �
 The distribution of v� has no atoms�
therefore for each d � �� P 
v 
� d� ��w 
� �� � �
 From Lemma � we have as � � �

fE
xv��g �
	 � E
xv� � ��E
ww�v���

Thus
��fE
ww�v��g �

	� � ��E
ww�v���

��



Now� summing up � belonging to an eigenbasis of E
ww�v��� we obtain 
��� and the
Lemma is proved

Remark �� If the distribution of v has atoms then 
��� holds with nonstrict inequality

Remark �� For � � � we will have similarly

trE
ww�v� � trfE
ww�v��g �
� �

It is possible to extend 
��� also to � � �
 In this case

fE
ww�v��g �
	

��
���

�� eE�ww
� ln v�

and to prove 
��� with � � � we need additionally that v � �


Consider an application of Lemma �


Lemma �� Let v and w satisfy the condition of Lemma �� � � IR� and v � �� and
E
jjwjj�v�� ���E
jjwjj�v� ln� v� ��
 Let

A �� E
ww�v���
B �� E
ww�v� ln v��
C �� E
ww�v� ln� v��

Then

tr
A��BA��B� � tr
A��C�� 
���

Proof� We set $w �� 
A�
�
�w�v

	
� and $v �� ln� v
 Then E $w $w� � Im� $v � �
 We have

tr
A��BA��B� � tr
A�
�
�BA�

�
� �� � trfE
 $w $w�$v �

� �g��
tr
A��C� � tr
A�

�
�CA�

�
� � � trE
 $w $w�$v��

Now� 
��� follows from 
���� with the exponent �
� � �


Lemma 	� Let v and w satisfy the conditions of Lemma �� and v � �� and E
jjwjj�v� �
��E
jjwjj�v��� ��
 Then

detE

ww�

v
�detE
ww�v� � �� 
���

Proof� Consider a matrix valued function

A � A
�� �� E
ww�v����� 	 � 	 ��

A
�� is positive de�nite for each � � ���� �� and continuous in �
 The inequality 
��� is
equivalent to

ln detA
�� � ln detA
���
�

� ln detA
��� 
���

We prove that the continuous function

h
�� �� ln detA
��� � � ���� ���

is strictly convex
 For � � 
��� �� we have h�
�� � tr
A�� dA
d�
�� where dA

d�
� E
ww�v� ln v�


The last matrix is positive de�nite because ln v � �
 Then

h��
�� � �tr
A�� dA
d�

A��
dA

d�
� � tr
A��

d�A

d��
��

��



where d�A
d��

� E
ww�v� ln� v�
 Now h��
�� � ���� � � � �� by Lemma �

Thus h
�� is strictly convex
 Therefore

h
�� � h
���
�

� h
���

We showed 
���� and the Lemma is proved


Corollary� Suppose that all the conditions of Lemma � hold� but w � 
w�� � � � � wm�
� is

an arbitrary 
not necessarily orthonormal� system of linearly independent in L�
!� r
v

Then

det�E
ww�� � detE

ww�

v
�detE
ww�v� 
���

Proof� Denote S �� Eww�� S is positive de�nite
 Let z �� S�
�
�w
 Then 
��� is equivalent

to

� � detE

zz�

v
�detE
zz�v�

Now� Ezz� � Im� and the inequality follows from Lemma �
 The Corollary is proved


��
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