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Mobility, fitness collection, and the breakdown of cooperation
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The spatial arrangement of individuals is thought to overcome the dilemma of cooperation: When cooperators
engage in clusters, they might share the benefit of cooperation while being more protected against noncooperating
individuals, who benefit from cooperation but save the cost of cooperation. This is paradigmatically shown by the
spatial prisoner’s dilemma model. Here, we study this model in one and two spatial dimensions, but explicitly take
into account that in biological setups, fitness collection and selection are separated processes occurring mostly
on vastly different time scales. This separation is particularly important to understand the impact of mobility
on the evolution of cooperation. We find that even small diffusive mobility strongly restricts cooperation since
it enables noncooperative individuals to invade cooperative clusters. Thus, in most biological scenarios, where
the mobility of competing individuals is an irrefutable fact, the spatial prisoner’s dilemma alone cannot explain
stable cooperation, but additional mechanisms are necessary for spatial structure to promote the evolution of
cooperation. The breakdown of cooperation is analyzed in detail. We confirm the existence of a phase transition,
here controlled by mobility and costs, which distinguishes between purely cooperative and noncooperative
absorbing states. While in one dimension the model is in the class of the voter model, it belongs to the directed
percolation universality class in two dimensions.
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I. INTRODUCTION

While cooperative behavior is ubiquitous in nature, it is
puzzling to understand from an evolutionary perspective: free
riders benefit from cooperation but save the costs to provide a
public good and hence have a fitness advantage compared to
cooperators [1,2]. To overcome this dilemma of cooperation,
additional mechanisms must be effective which select for
cooperators. One important mechanism is the spatial clustering
of cooperators, where cooperators preferentially interact with
other cooperators [3–6]. This is illustrated by the spatial
prisoner’s dilemma [4,7] where, in contrast to its famous
well-mixed variant [1,2], individuals are arranged on a lattice
and only interact with their nearest neighbors. Hence, fitness
explicitly depends on the composition of the neighborhood.
Many different studies, employing a variety of deterministic
and stochastic interaction rules, have confirmed that the
formation of cooperative clusters can promote cooperation
in such setups; see, e.g., Refs. [8–17]. This was also found
for complex spatial structures such as networks [18–25].
Spatial clustering has also been studied experimentally. For
example, Le Gac et al. [26] have found in experiments
with toxin-producing E. coli that cooperation can also be
maintained through cluster formation in a viscous environment
and the degree of diffusion of the public good can be crucial for
the evolutionary outcome. Theoretical studies also show that
there can be a critical phase transition into a purely cooperative
state if costs fall below a certain threshold value [27–29].

Importantly, however, in spatial setups, mobility can
strongly challenge the evolution of cooperation [3]. This
is in agreement with recent studies by Chiong and Kirley
[30], who found a statistically insignificant enhancement of
cooperation for small mobility, and a strong reduction for
intermediate mobility. For the spatial prisoner’s dilemma,

complex forms of mobility relying on more sophisticated
abilities, such as success driven mobility, have been shown to
promote cooperation [31–34]. However, undirected mobility
(i.e., diffusion), ubiquitous in biological situations, fosters the
invasion of free riders into cooperative clusters and thereby
strongly counteracts the evolution of cooperation. Thus if
undirected mobility threatens cooperation and mobility is
undeniably a part of biological reality, this raises the question
of how fundamental spatial clustering really is as a mechanism
to explain cooperation.

In this paper, we investigate the impact of diffusive
mobility on the level of cooperation and analyze the critical
mobility where cooperation breaks down. To study this
question, an understanding of the biological origin of fitness is
crucial. While fitter individuals are selected for over many
generations, fitness itself is the result of a multitude of
different, more microscopic processes such as nutrient uptake
or metabolic processes, which occur on much shorter time
scales than reproduction. For example, when iron is lacking
in the environment, cooperative strains of the proteobacteria
Pseudomonas aeruginosa produce iron-scavenging molecules
(siderophores) [35]. Released into the environment, these
molecules can efficiently bind single iron atoms and form
complexes that can then be taken up by surrounding bacteria.
Associated with the metabolic costs and benefits, the fitness
of an individual changes with every siderophore production
and iron-uptake process. However, reproduction and selection
of fitter individuals only occurs after many such processes,
on a longer time scale. This biologically more realistic origin
of fitness has been mostly neglected in previous models by
regarding fitness collection and reproduction as simultaneous
events. In a population where building up fitness is a lifelong
dynamic process (fitness collection), the individuals’ mobility
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plays a particularly crucial role, as the individuals’ fitness
strongly depends on the neighborhoods which they inhabit
during their lifespan.

Here we study a spatial prisoner’s dilemma game and
explicitly take fitness collection dynamics into account. With
this formulation, we are able to reproduce the expected limits.
For vanishing mobility, we observe clustering and the typical
spatial prisoner’s dilemma dynamics. In contrast, for high
mobility, we recover the dynamics of the replicator equation
for the well-mixed prisoner’s dilemma. The transition between
these scenarios is not smooth, but separated by a critical
nonequilibrium phase transition: Below critical costs and
mobility values, only cooperators remain in the long run, while
above, only free riders persist.

II. MODEL DEFINITION

Consider Nd individuals occupying the sites of a regular
d-dimensional square lattice with a linear extension N and
periodic boundary conditions. Each individual is either a
cooperator (C) or free rider (F ), and individuals only interact
with their nearest neighbors.1 In contrast to common dynam-
ical formulations of the spatial prisoner’s dilemma [4,5,7,8],
we drop the assumption of a coupled payoff collection and
selection step and thereby take into account that both processes
in general occur on vastly different time scales. Taken together,
our model considers three different reaction steps, which can
occur at distinct rates. We chose our time unit τ = 1 as the
average lifetime of an individual when the selection is neutral
(i.e., when the fitness of all individuals is 1); see below.2 The
rates are then defined as the average number of steps occurring
per unit time τ .

Payoff collection occurs at a per capita rate r . An individual
engages in a pairwise interaction with one of its randomly
chosen nearest neighbors. When the chosen neighbors are
distinct, the cooperator C collects a payoff −c due to the costs
of cooperation, while the free rider F receives the benefit
b > c > 0. When the neighbors are both cooperators or both
free riders, they receive a payoff b − c and 0, respectively. The
payoff collection process of each individual continues during
the whole course of its life, and the collected fitness fj of an
individual j at a certain time is given by the collected payoff
the individual has received up to that time,

fj = 1 + 1

n

n∑
l=1

p
(l)
j . (1)

Here, n denotes the number of interactions individual j

encountered. p(l)
j denotes the payoff that individual j received

during the lth interaction with another individual. In addition, a
background fitness of 1 describes impacts on the fitness, which

1Here we implemented interactions with ν = 2 nearest neighbors
in 1d and with ν = 4 nearest neighbors in 2d .

2As will be pointed out later, selection can only happen in the model
if the other species is present in the neighborhood. Precisely, τ = 1
corresponds to the average lifetime if an individual is completely
surrounded by neighbors with the opposing strategy and if the
selection is neutral.

are the same for each individual. We also implemented an
alternative model, in which only the last nmax interaction steps
contribute to the fitness. This is a possible implementation for
a biological situation in which interactions from the distant
past do not contribute to the present fitness; nmax can be seen
as a memory range. A short memory range can significantly
change the outcome; but if nmax � 1, the results are equivalent
to the model without memory limitation. The impact of this
alternative model of fitness collection will be further discussed
below.

For the rest of the paper, we take a fixed collection rate
r ≡ 5, i.e., the collection rate is chosen significantly larger
than the reproduction time scale. Actually, for many biological
situations, r � 1 is expected [35]. However, our qualitative
findings are robust under the choice of r .

Reproduction and selection are given by the replacement
of one individual j by a new individual belonging to the other
type. Importantly, the rate for such a replacement event to occur
depends on the type of the individual j , and the fitness of its
nearest neighbors. For specificity, we take the corresponding
transition rate for an individual j at a site xj as the fitness of its
neighbors i ∈ {1, . . . ,ν} with the opposite strategy times the
probability 1/ν of an interaction with them:

aC→F (j ) = sj

1

ν

ν∑
i=1

fi(1 − si), (2a)

aF→C(j ) = (1 − sj )
1

ν

ν∑
i=1

fisi . (2b)

Here, sl = 0 if individual l is a free rider and sl = 1 if
individual l is a cooperator. If the neighbor at site xi belongs
to the same type as the individual at site xj , then this
neighbor does not contribute to the replacement rate a�→�(j ).
Conversely, if it belongs to the other type, it increases the
replacement rate of j by its fitness fi . If a selection event has
taken place, we assume that the new individual starts with zero
fitness.3

Mobility is taken to be independent of fitness collection and
selection dynamics. An individual interchanges its position
with one of its randomly chosen nearest neighbors with a
per capita hopping rate M . If � is the lattice spacing, this
corresponds to a macroscopic diffusion constant of D = �2M

in one dimension, and D = 1
2�2M in two dimensions. While

payoff collection and mobility events per individual occur with
constant rates r and M , respectively, the rate for a selection
event, aC→F (j ) + aF→C(j ), depends both on the life history
of the interacting individuals and the composition of the local
neighborhood. The time evolution of the system is determined
by a Markov process ensuing from the rates for the various
processes introduced above. To investigate the dynamics, we
performed extensive stochastic simulations of the underlying
time-continuous stochastic process employing the Gillespie
algorithm [36].

3Alternatively, a new individual could start with the neutral fitness
of 1. However, the model was robust under this change.
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III. SIMULATION DYNAMICS AND QUALITATIVE
BEHAVIOR

In the following, we first consider the evolutionary dy-
namics for the limits of vanishing and large mobility before
considering intermediate mobilities and the ensuing absorbing
state phase transition.

In the limit of large mobility, M → ∞, the population is
well mixed and spatial degrees of freedom can be neglected.
In particular, an individual interacts with all other individuals
with equal probability and thus samples payoff values from
interactions with the whole population. Hence, for a given
overall fraction x of cooperators in the population, the expected
fitness value fj of an individual j is site independent, and for
cooperators and free riders is given, respectively, by

fC = 1 + x(b − c) + (1 − x)(−c), (3a)

fF = 1 + xb. (3b)

Replacement of individuals occurs according to the expected
replacement rates. With Eqs. (2), they are given by 〈aC→F 〉 =
x(1 − x)fF and 〈aF→C〉 = x(1 − x)fC . The expected change
of the global fraction of cooperators is thus given by

∂tx = 〈aF→C〉 − 〈aC→F 〉 = −cx(1 − x). (4)

This is the common replicator dynamics of the prisoner’s
dilemma in a well-mixed population [2]; due to the costs
c of cooperation, only free riders survive in the long run.
For a more complete description of the well-mixed system,
fluctuations due to the finite size of the system (finite N ) and
an effectively limited payoff collection step (finite n) can be
taken into account [37–41].

Here we consider the fully stochastic dynamics of the
spatially extended system. Figure 1 shows typical time
evolution scenarios of the one-dimensional game for the limit
of vanishing mobility, M = 0, and Fig. 2 depicts different

snapshots of the two-dimensional dynamics in the same limit.
When starting with a random initial configuration of the
lattice with an average cooperator fraction of x0 = 0.5, first
compact clusters of cooperators and free riders are formed
after few generations. As implied by the definition of the
selection rates, given by Eq. (2), there are no transitions
between different types within clusters, but only at the domain
boundaries between cooperator and free-rider clusters. There,
the dynamics is determined by two antagonistic effects. On
the one hand, cooperators at the boundary benefit from
the neighboring cooperators within their cluster, and from
their previous interactions. On the other hand, a free-riding
individual still has a fitness advantage by saving the costs for
providing cooperation. From our numerical simulations, we
observe that for a benefit b = 1, the costs of cooperation have
to be lower than a critical value, c0 = 0.3471 ± 0.0008 in one
dimension and c0 = 0.163 ± 0.0005 in two dimensions, for
cooperators to persist; see Figs. 3(a) and 3(b). Throughout the
rest of this paper, we take the benefit b = 1 as fixed. Other
values for b do not lead to qualitative changes of the model.

For the alternative implementation of the payoff collection,
where only the last nmax payoff collection steps contribute to
the fitness, the qualitative dynamics remained unchanged as
long as nmax was greater than 1. But importantly, cooperators
always died out in one dimension if only the last payoff
collection step was remembered (nmax = 1). Therefore, in a
one-dimensional system, the memory of past interactions is
an essential mechanism for the support of cooperation, and
spatial structure alone cannot promote cooperation: in one
dimension, both a cooperator and a free rider at a domain
wall always interact with exactly one cooperator and one
free rider. If just the payoff from such a configuration is
remembered, then the free rider at the domain wall will, on
average, always be fitter than the cooperator (if the cooperation
costs c are greater than zero). However, if past interactions are

FIG. 1. (Color online) Lattice occupation (vertical axis) vs time (horizontal axis) of the one-dimensional dynamics for vanishing mobility,
M = 0. The lattice size is N = 500. Starting with a random distribution of 50% cooperators [dark gray (blue)] and 50% free riders [light gray
(red)] on the lattice, clusters are formed. Preferentially, the clusters of one type grow, such that only cooperators or only free riders remain in
the end. (a) The cooperation costs c are 0.1. For these low costs, cooperators take over the population. (b) c = 0.347; the cooperation costs are
very close to the critical value c0. The cluster extension and the cluster lifetime both show a power-law divergence as c → c0 for increasing N .
(c) c = 0.5; for high costs, cooperators die out and only free riders survive.
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FIG. 2. (Color online) Snapshots of the two-dimensional lattice and cluster formation for vanishing mobility, M = 0, at different times t .
Starting with a random distribution of half cooperators [dark gray (blue)] and half free riders [light gray (red)] on the lattice (a), clusters are
formed (b). Preferentially, the clusters of one type grow (c), such that only cooperators or only free riders remain in the end. This simulation
was performed on a 100 × 100 lattice; the cooperation costs were c = 0.1.

remembered, then a cooperator that has been inside of its
cluster for a long time has acquired a high average payoff
from these past interactions. Such a cooperator will not suffer
too much from few interactions with a free rider when it
comes to a domain wall. In turn, a free rider that has been
within its cluster very long also has a very low fitness.
Memory effects can therefore strengthen cooperation and are

FIG. 3. (Color online) Stationary fraction x of cooperators as a
function of the costs of cooperation c and the mobility M for (a)
the one-dimensional and (b) the two-dimensional model. There is
a phase transition between stationary states where only cooperation
[dark gray (blue)] or only noncooperation [light gray (red)] prevails.
(a) N = 500; (b) N = 100.

crucial for the cooperator survival in one dimension. In two
dimensions, on the other hand, spatial structure alone can
maintain cooperation, even without memory effects (i.e., even
if nmax = 1). A cooperator at a domain wall can get a benefit
from up to three cooperating neighbors from its cluster if the
domain wall is linear. An advantageous domain wall can make
mutual cooperation beneficial and protect cooperators if the
costs c are not too high.

However, cooperation is unstable under the influence of
mobility, both in one and two dimensions. The interchange in
the position of neighboring individuals disturbs the formation
of sharply separated clusters. With increasing mobility M ,
cluster boundaries become more and more blurred. As a
consequence, cooperators are surrounded by fewer and fewer
peers and thereby lose their advantage of interacting in a highly
cooperative neighborhood. Cooperativity, therefore, strongly
decays when M is increased. Remarkably, we find that there
is a critical phase transition separating phases where only
cooperators or only free riders are expected to persist in the
long run. While for sufficiently high mobility and costs only
free riders remain, cooperation is the only surviving strategy
when mobility and costs fall below critical values. Thus, in
either case, the stationary state of the dynamics is an absorbing
state. The phase diagrams for the one- and two-dimensional
models are shown in Figs. 3(a) and 3(b), respectively. Other
than in previous prisoner’s dilemma models [27–29], no
fluctuating active phase with the coexistence of cooperators
and free riders has been observed to our knowledge. The decay
of the critical costs cM with M is found to be very strong
for unbiased mobility [cf. Figs. 3(a) and 3(b)], threatening
cooperation even if each individual performs only a couple
of diffusion steps per lifetime [i.e., if M is only O(1) and
comparable in size with the reproduction rate].

IV. CLUSTER APPROXIMATION FOR CRITICAL COSTS

The population dynamics is mainly governed by processes
occurring at the boundaries between domains dominated by
cooperators and free riders, respectively. In this section, we
give a simplified analysis for the dynamics of these domain
walls and thereby approximately calculate the critical costs c0
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FIG. 4. (Color online) Illustration of a simplified domain wall
picture for the (a) one-dimensional and (b) two-dimensional lattice.
The domain wall dynamics is constrained to the white area where
transitions between all possible arrangements of cooperators [dark
gray (blue)] and free riders [light gray (red)] are possible, as indicated
in the graphs. The configuration of cooperators and free riders outside
of the white area is considered to remain static. The one-dimensional
domain wall has moved forward or backward if the dynamic sites
in the white area are in the all-cooperator state a3 or the all-free-
rider state a4, respectively. Similarly, the section considered for the
two-dimensional domain wall has moved forward or backward if the
dynamic sites are in states b9 or b10, respectively.

below which cooperators can survive. The schematics of the
simplified domain wall picture is shown in Figs. 4(a) and 4(b)
for the one- and two-dimensional case, respectively. For the
one-dimensional case, we consider an isolated domain wall,
and reduce the dynamics to the two boundary sites between a
cooperator and a free-rider domain, and consider the remainder
of both domains to be static. The possible configurations of the
domain wall boundary are illustrated by Fig. 4, a1–a4. Among
others, this scheme neglects events where domain walls are
created or annihilated. Similarly, for the two-dimensional
lattice, we constrain the dynamics to the immediate vicinity of
the domain wall and consider a 2 × 2 section at the domain wall
boundary whose possible configurations are shown in Fig. 4,
b1–b10. The remainder of the domain wall is considered as
a static horizontal front. Again, these assumptions leave out
many other possible processes that could change the domain
wall boundaries. Nevertheless, such a strongly simplified
model seems to retain the most essential features of the domain
wall dynamics, since the estimates for the critical costs c0 are
in good agreement with the simulation results (see below).

We start our analysis with the one-dimensional model. The
dynamics of the domain wall is then governed by transitions
between the four states a1, . . . ,a4, which occur at rates
determined by Eqs. (2a) and (2b) and the history of each
individual. We resort to a mean-field picture and aim to derive a
rate equation, 	̇v = T · 	v, which determines the time evolution
of the probabilities 	v := [a1(t), . . . ,a4(t)] to find one of these

four configurations. Let us first assume that each individual
collects the payoff from all of its neighbors, such that the
fitness of each individual can be approximated by the mean
payoff received from its neighborhood. The transition rates
between different configurations can then be calculated from
Eq. (2). For example, the transition from a2 to a3 occurs
if the free rider in configuration a2 turns into a cooperator.
According to Eq. (2), the rate for this to happen is the fitness
of the cooperating left and right neighbors, fleft/right, times the
probability 1

2 that a particular neighbor is chosen:

T32 = 1
2 (fleft + fright) = 5

4 − c. (5)

Under the assumption that these neighbors have previously
collected equal amounts of fitness from both of its neighbors
(1 is the neutral fitness, 1 − c is the payoff from a cooperating
neighbor, and −c is the payoff from a free-riding neighbor),
the fitness for the right and left neighbor can be calculated.
Since the left neighbor is surrounded by a cooperator and a
free rider, its collected fitness is fleft = 1 + 1

2 [(1 − c) + (−c)].
Similarly, since the right neighbor is surrounded by two free
riders, it gets a payoff of −c from both of them such that
fright = 1 + 1

2 [(−c) + (−c)]. Analogous calculations for the
remaining transitions rates lead to the following transition
matrix T :

T =

⎛
⎜⎜⎜⎝

− 3
2 + c

2 0 3
4

3
4 − c

2

0 −3 + c 0 0
3
4 − c

2
5
4 − c − 3

4 0
3
4

7
4 0 − 3

4 + c
2

⎞
⎟⎟⎟⎠ . (6)

The stationary probability vector is given by T · 	v∗ = 0.
Whether the domain wall mainly moves forward or backward
is determined by the difference between the stationary values
of the all-cooperator state a3 and the all-free-rider state a4. The
sign determines whether cooperators or free riders finally take
over the whole population. Calculating the null vector 	v∗, we
find that a3 − a4 = 1

9 (4c2 − 12c), which is strictly negative
unless c = 0. Therefore, if we can assume that the fitness of
each individual is given by the mean payoff, then the critical
costs for cooperation is c0 = 0. This result reemphasizes
that spatial structure alone cannot promote cooperation in
one dimension. However, as we know from our numerical
analysis in the previous section, memory effects—not taken
into account so far—can actually promote cooperation.

Within the framework of the simple model, depicted in
Fig. 4, infinite memory can be incorporated by assigning to
the individuals in the static clusters a fixed fitness of 2 − c and
1 for cooperators and free riders, respectively. The underlying
assumption is that these static players have been inside of
their respective cluster for a long time and have not interacted
much with the opposing strategy. For example, consider a
static cooperator that has been inside of its cluster during the
last n − 1 (n � 1) interaction steps, and finally ends up at
the domain wall, where it interacts with a free rider once.
The fitness of such a cooperator would then, according to
Eq. (1), be given by fC = 1 + 1

n
[(n − 1)(1 − c) − c]. If the

number of previous interactions within a cluster is assumed to
be very large for individuals in static clusters, then their fitness
can be approximated as 2 − c and 1 for cooperators and free
riders, respectively. With this assumption for static players, the
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transition rate from a2 to a3 now reads 1
2 (2 − c) + 1

2 (1 + −c
2 +

−c
2 ) = 3

2 − c. This is similar to the above calculation, but the
static cooperator left of the free rider in a2 is now assumed to
have a fitness of 2 − c. With this modification, the transition
matrix becomes

T =

⎛
⎜⎜⎜⎜⎝

− 3
2 + c

2 0 1
2 1 − c

0 −3 + c 0 0
3
4 − c

2
3
2 − c − 1

2 0
3
4

3
2 0 −1 + c

⎞
⎟⎟⎟⎟⎠

. (7)

Now we find that in the stationary state, a3 − a4 = 1 − 10
3 c +

4
3c2, which implies a critical cost of c0 = 5−√

13
4 ≈ 0.3486.

This value is in good agreement both with the phase diagram
shown in Fig. 3(a) and with the numerical value for the critical
costs determined by finite-size scaling (see Table I).

In two dimensions, spatial structure alone can provide a
mechanism for the survival of cooperation and, therefore,
memory effects do not need to be taken into account. The
calculation of the transition rates between the ten different

configurations illustrated in Fig. 4(b) is analogous to the one-
dimensional case. For example, a transition between b1 and
b5 occurs if either one of the two cooperators in configuration
b1 turns into a free rider. In each of these two cases, there is
a probability of 1

4 that for the given cooperator, a free rider is
chosen as an interaction partner, the fitness of which is 1 + 1

4 ,
since it has one cooperator but three free riders as its neighbors.
Taken together, the transition rate reads T51 = 2 1

4 (1 + 1
4 ) = 5

8 .
Transitions between the various configurations bi may also
occur due to hopping events. These were disregarded in our
discussion of the one-dimensional case. Here, we take those
events into account in the limit of small mobility rates; for
large mobilities, clusters become more and more blurred and
the cluster approximation is not applicable. As an example,
consider the transition from b7 to b8, which is a purely diffusive
transition. The transition rate is 2

4M , where 2M is the rate
at which either the free rider in b7 or its lower cooperating
neighbor are chosen for a mobility step, and 1

4 is the probability
that the other neighbor (the free rider, if the cooperator was
previously chosen, and vice versa) is picked for swapping
places,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 + c

2 − M 0 M
2 0 19

16 − 3c
4 0 17

16 0 0 0

0 −3 + c − M M
2 0 3

8 − c
4

17
16 − 3c

4
3
8

19
16 0 0

M M − 41
8 + 3c

2 − 3M
2 M 0 13

16 − c
2 0 13

16 0 0

0 0 M
2 − 9

2 + 3c
2 − M 0 1

4 − c
4 0 1

2 0 0
5
8 1 25

16 0 − 37
16 + c − M

2
M
2 0 0 0 13

8 − c

0 7
16

7
8

9
4

M
2 − 57

16 + 3c
2 − M

2 0 0 0 0
7
8 − c

2
5
4 − 3c

4
23
16 − c 0 0 0 − 35

16 + c
2 − M

2
M
2

11
8 0

0 5
16 − c

4
5
4 − c

2
9
4 − 3c

2 0 0 M
2 − 65

16 + c − M
2 0 0

0 0 0 0 0 0 3
4 − c

2
25
16 − c − 11

8 0

0 0 0 0 3
4

23
16 0 0 0 − 13

8 + c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The condition that no movement of the front occurs in the
stationary state, i.e., that b9 − b10 = 0, leads to an approximate
numerical solution for the critical costs cM , which is shown as
a green line in Fig. 2(b).

TABLE I. Summary of the measured critical exponents in one
and two dimensions, and for two different mobility rates, M = 0 and
M = 0.5.

d = 1 d = 2

M = 0 M = 0.5 M = 0 M = 0.5

cM 0.347 ± 0.001 0.362 ± 0.001 0.163 ± 0.001 0.161 ± 0.001
ν−

‖ 2.01 ± 0.02 2.00 ± 0.02 1.23 ± 0.08 1.27 ± 0.05
ν+

‖ 1.99 ± 0.03 1.99 ± 0.02 1.26 ± 0.05 1.25 ± 0.1
ν−

⊥ 0.996 ± 0.007 0.999 ± 0.002 0.733 ± 0.004 0.74 ± 0.01
ν+

⊥ 0.998 ± 0.008 1.001 ± 0.002 0.739 ± 0.008 0.74 ± 0.01
β 0.02 ± 0.02 0.04 ± 0.04 0.56 ± 0.03 0.56 ± 0.09
β ′ 1.01 ± 0.02 0.92 ± 0.2 0.57 ± 0.08 0.6 ± 0.1

V. CRITICAL BEHAVIOR AT THE ABSORBING STATE
PHASE TRANSITION

In the following, we investigate the critical behavior at the
absorbing state phase transition. To this end, we analyze the
formation, dynamics, and annihilation of clusters. We recorded
the lifetime Tα of each cluster α, as well as the maximum linear
extension (arbitrary direction) Lα during its lifetime. These
measured lengths and lifetimes are expected to scale the same
way as the characteristic lengths and times of the system [42].
We further logged the cumulative mass mα of each cluster
during its lifetime, i.e., the number of individuals belonging to
the cluster at focus, integrated over its whole lifetime. Initial
conditions were such that each site was randomly occupied by
either a cooperator or a free rider with the same probability of
0.5. All measurements were performed for clusters doomed to
extinction: For the phase where only cooperators prevail, we
regarded only free-riding clusters, and vice versa.

In order to obtain the typical temporal extension ξ‖ and
the typical linear extension ξ⊥, we weighted the measured
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maximal extensions of all clusters α with their respective
cluster masses [43],

ξ‖ ∼
∑

α mαTα∑
α mα

and ξ⊥ ∼
∑

α mαLα∑
α mα

. (8)

Close to the phase transition, the typical time and length scales
are expected to behave like power laws with certain exponents
ν‖ and ν⊥ [42], respectively. However, due to the finite system
size, these typical scales do not diverge at the critical point
but, close to the critical point, are cut off by finite-size effects.
Close to the critical point and for large enough system sizes,
one expects the following finite-size scaling behavior for ξ‖
and ξ⊥ [44]:

ξ‖ ∼ 	−ν‖F±(
	N

1
ν⊥

)
, (9a)

ξ⊥ ∼ 	−ν⊥G±(
	N

1
ν⊥

)
. (9b)

Here, 	 := |c − cM | denotes the distance from the mobility-
dependent critical costs cM , and F± and G± signify the scaling
functions below (−) and above (+) the critical point.

As discussed before, the costs c and the mobility M

control the phase transition; cf. Fig. 3. We analyzed the
phase transition for fixed mobilities M under variation of
the costs c. We measured ξ‖ and ξ⊥ for different lattice
sizes and used the results to estimate the critical exponents
ν‖ and ν⊥. We achieved this by using finite-size scaling,
given by Eqs. (9), i.e., by adjusting the exponents ν‖, ν⊥
and the critical point cM to optimize data collapse. In one
dimension, we performed simulations for linear lattice sizes
N = {800, 1600, 3200, 6400}, and in two dimensions for N =
{100, 150, 200, 300}: the ensuing scaling functions are shown
in Figs. 5 and 6 for the one-dimensional and two-dimensional
model, respectively. We then determined the critical exponents

β and β ′ by fitting the cooperator fraction x(t) to the relation

x(t) ∼ t−β/ν‖ , (10)

and the survival probability P (t) to the relation

P (t) ∼ t−β ′/ν‖ , (11)

which are valid at the critical point cM [44].
We roughly estimated the error of the exponents by varying

the exponents in the fitting procedure, considering the scaling
functions for small and large arguments: For the optimal
fitting, all data points lie within certain intervals around
the (approximately) linear scaling functions, whereas for the
estimated errors, only 60% of the points lie within at least one
of those intervals. Our numerical results are summarized in
Table I.

The measured exponents indicate that the phase transition
belongs to the voter model universality class in one dimension,
where the scaling exponents corresponding to the population
fraction, the survival probability, the cluster size, and the
temporal correlations are given by β = 0, β ′ = 1, ν‖ = 2,
and ν⊥ = 1 in one dimension [45–47]. In fact, there are
many similarities to the voter model, such as two absorbing
phases, compact clusters, and the absence of an active
phase. The two-dimensional system apparently belongs to the
universality class of directed percolation (DP). For this class,
β = β ′ = 0.584(4), ν‖ = 1.295(6), and ν⊥ = 0.734(4) [44].
Interestingly, in contrast to DP, the dynamics violates the
condition of a unique absorbing state. Moreover, in contrast to
other known DP class models [48,49], the model does not show
a fluctuating active phase. The existence of an active phase
seems not to be a necessary condition for the DP universality
class.

FIG. 5. One-dimensional model: Finite-size scaling for varied costs c at (a) M = 0, (b) M = 0.5. 	 = |c − cM |. With the determined
exponents ν±

‖ and ν±
⊥ , and the critical costs [cM = 0.347 ± 0.0008 in case (a) and cM = 0.3620 ± 0.0004 in case (b)], the data for ξ‖ and ξ⊥ at

different system sizes collapsed onto the master curves F± and G±; see main text.
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FIG. 6. Two-dimensional model: Finite-size scaling for varied costs c at (a) M = 0, (b) M = 0.5. 	 = |c − cM |. With the determined
exponents ν±

‖ and ν±
⊥ , and the critical costs [cM = 0.163 ± 0.0005 in case (a) and cM = 0.1605 ± 0.0007 in case (b)], the data for ξ‖ and ξ⊥ at

different system sizes collapsed onto the master curves F± and G±; see main text.

VI. SUMMARY AND OUTLOOK

In summary, we have investigated the impact of mobility
on the evolution of cooperation. Importantly, by introducing
a separated fitness collection dynamics, we accounted for the
biological fact that fitness is the result of many underlying
processes. Only by this fitness collection dynamics, i.e., the
correct asymptotic limits for vanishing and large mobility,
are the spatial and the well-mixed variants of the prisoner’s
dilemma obtained. While in two dimensions spatial structure
alone is sufficient to promote cooperation, the memory of past
interactions is a necessary condition for cooperation in one
dimension. In fact, memory effects can be seen as an additional
mechanism favoring cooperation—and they are expected to
occur even in simple organisms, since their fitness depends
on several interactions with their environment. Memory
effects have already been found to promote cooperation in
a deterministic game [16,50]. The present study confirms
this finding for a stochastic setup and shows that they are
of essential importance in one dimension.

For a certain intermediate mobility (depending on benefit
and costs), there is a critical phase transition without stable
coexistence, both in one and two dimensions. Below critical
mobilities and costs, only cooperators remain, while above,
only free riders remain in the long run. This phase transition is
robust against changes of dynamical details, such as a limited
payoff collection capability.

More importantly, for cooperation to prevail in the spatial
prisoner’s dilemma, the time scale of mobility must always
be of the same order or lower as the selection time scale.
If one considers, for example, microbial populations, the
spatial prisoner’s dilemma can only explain cooperation if
the reproduction time of the microbes under consideration
is of the same order as the time they need to move to a
neighboring bacterium. This condition is probably not fulfilled
in most ecological situations. Thus, at least in its standard
formulation, the spatial prisoner’s dilemma might serve as
a placative example to explain how spatial clustering can
promote cooperation in principle. But it cannot serve as a
substantive explanation for cooperative behavior in natural
populations. In microbial populations, more complex cluster-
ing of microbes into different colonies, the coupling to growth
dynamics, and the dynamical restructuring of the population
on larger length scales are probably more important for the
evolution and sustainment of cooperative strains [3,26,51–60].
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