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Nucleation-induced transition to collective motion in active systems
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While the existence of polar ordered states in active systems is well established, the dynamics of the self-
assembly processes are still elusive. We study a lattice gas model of self-propelled elongated particles interacting
through excluded volume and alignment interactions, which shows a phase transition from an isotropic to a polar
ordered state. By analyzing the ordering process we find that the transition is driven by the formation of a critical
nucleation cluster and a subsequent coarsening process. Moreover, the time to establish a polar ordered state

shows a power-law divergence.
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Understanding collective motion in driven or self-propelled
particle systems is a topic of recent interdisciplinary interest
[1-3]. Coherently moving groups have been observed over
a broad range of scales, spanning from micrometer-sized
systems [4—10] over millimeter-large granules [11-13] to
large cooperative animal groups [14]. The ubiquity of this
phenomenon raises the questions of how these coherently
moving and ordered clusters arise. Coarse-grained particle-
based models [15-22] have shown that interactions favoring
the alignment of the particles’ direction of motion is sufficient
for the emergence of large scale order. As possible origins
for the alignment, excluded volume interactions [23], dissi-
pative collisions [24], and hydrodynamic interactions [25,26]
have been discussed. Complementary to these coarse-grained
agent-based models, hydrodynamic models have been derived
from mesoscopic collision rules [27-31], or by means of
microscopic interactions [32-36]. These approaches allow to
determine the kinetic coefficients, and thereby to ana-
lyze pattern-forming instabilities. Furthermore, hydrodynamic
equations based on symmetry arguments [37-42] were de-
rived, enabling to show that collections of self-propelled parti-
cles exhibit a true, long-range ordered, spontaneously broken
symmetry state. In addition, scaling exponents have been cal-
culated analytically [37,38], and validated by agent-based sim-
ulations [39]. Moreover, these studies revealed the existence of
giant number fluctuations and long-lived density correlations,
which have also been found experimentally [10,11,43].

While previous approaches on propelled particle systems
focused on the long-time dynamics, the assembly processes
leading to collective motion remain elusive. To close this gap,
we present an agent-based model of (self-)propelled particles
interacting via an effective excluded volume interaction and
a local polar alignment field. In the absence of excluded
volume interactions, we find a phase transition to collective
motion above a critical packing fraction. Strong excluded
volume interactions increase this critical packing fraction or
even inhibit the development of collective motion. Analyzing
the dynamics of the pattern-forming processes we find that
collective motion is accompanied by a gain in free volume.
Close to the critical packing fraction, the onset of collective
motion requires the spontaneous formation of a cluster of
sufficiently large mass that acts as a nucleus and triggers the
transition to collective motion. The corresponding lag time
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FIG. 1. (Color online) Illustration of the lattice gas model.

Filaments of length L move on a hexagonal lattice with constant
speed performing a persistent random walk.

shows a power-law divergence upon approaching the critical
packing fraction.

To follow the self-assembly processes over long-time
periods and for a large number of particles we consider a lattice
gas automaton; cf. Fig. 1. Each of the N particles is taken as
a filament of length L moving at constant speed v, and with
a direction performing a persistent random walk. To emulate
a spatially isotropic system as close as possible we choose a
hexagonal lattice, and use a simulation box of hexagonal shape
to avoid possible artifacts due to symmetry breaking with the
local hexagonal lattice structure; all lengths are measured in
units of the lattice constant. The time scale is fixed by allowing
each filament’s head to move one lattice unit per time step.
The particles’ dynamics is assumed to be fully determined
by its head, while the tail strictly follows the head’s trail.
The persistent random walk is implemented by a stochastic
process, where each filament’s head xy moves to one of its five
neighboring sites x, according to a fixed set of conditional
probabilities Py (X4 |Xo). For a fixed filament length L = 10
we choose the conditional probabilities such that each filament
performs a persistent random walk with constant unit speed
and a kinetic persistence length Zg = 8.7 comparable to L; for
more details see the Supplemental Material [44].

Our model includes an effective excluded volume interac-
tion and a local alignment field. Both enter into the model by
supplementing the probabilities for the unperturbed persistent
random walk by appropriate factors. In contrast to recent
off-lattice simulations of overdamped rods, solely interacting
by means of excluded volume [23], this allows us to separately
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tune excluded volume and alignment interactions and thereby
study their interplay. For a lattice site that is already k-times
occupied, the probability for further occupation is reduced by
a Boltzmann factor e ¢, where € characterizes the penalty for
multiple occupations. Formally, for € — o0, the limit of strict
excluded volume is obtained [34]. The limit of weak penalties
for multiple occupations (low €) is appropriate for motility
assay experiments, where filament crossings occur frequently
[5,6,8,9]. Moreover, these experiments also indicate that there
is a local alignment interaction between filaments [5,6,8,9].
To emulate such an interaction, each particle is assigned an
alignment field u(x,t) at its occupied and neighboring lattice
sites (see the arrows in Fig. 1); it is directed along the particles’
contour, and is of unit length. Overlapping alignment fields
of different particles are averaged. In a collision event the
alignment field modifies the transition probability to move
from Xx( to x by the Boltzmann factor «®*¥, where ¢ is the
relative angle between the alignment field and the direction
of motion of the respective collision partner, ¢ = Z[u(x),x —
Xo]. The parameter o > 1 characterizes the strength of the
polar alignment, where stronger interactions correspond to
increasing values of «. Assuming that all these contributions
to the filament’s dynamics are statistically independent, we
arrive at the following update rule: Given a configuration of
N filaments, we use random sequential updating and move
a chosen head from position X to a target position x with
probability P(X|Xp; u,k) o¢ Ppry(X[Xp) - e ke . qoose)

We have performed extensive numerical simulations for a
broad range of reduced densities p = NL/A, where A is the
area of the simulation hexagon. For low densities an initial
statistically homogeneous distribution of filaments remains
isotropic both in filament position and orientation. However,
for densities above some threshold, an initially disordered state
evolves into a state with small coherently moving clusters that
spread perpendicular to their direction of motion and form
bands [see Figs. 2(a)-2(c), and videos in the Supplemental
Material [44]]. The clusters move coherently embedded in an
isotropic background of randomly oriented particles. These
observations resemble similar results found previously in
Vicsek-like models [17] and other agent-based lattice gas
models [16,21].

The pattern formation process can readily be quantified by
introducing the time-dependent mean polarity P(t), i.e., the
magnitude of the polarization averaged over all single-particle
polarizations n; (¢) contained in a region of interest (ROI) or the
entire simulation box (SIM), respectively. The polarization of
the ith filament is defined as the difference vector of the posi-
tion of the filament’s head between two successive time steps,
n; () := x;(t) — x;(t — 1). These two measures of polarity
provide complementary information about the pattern-forming
process; cf. Fig. 2(d). Pror illustrates the formation of small
polarized clusters that develop into bands: The sequence of
spikes in the time traces indicate polar-moving clusters passing
through the ROL. In contrast, Psyy characterizes the evolution
of global order in the system: The mean value slowly grows in
time and fluctuations are much less pronounced. These latter
fluctuations originate from changes in relative polarization of
just a few large polar-moving structures with time.

The temporal evolution of coherent motion can be accessed
by quantifying the directional correlations in the filament’s
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FIG. 2. (Color online) (a) The boundary for our lattice gas model
is a reflecting hexagon with a side length L,,x = 1000. The circle
indicates the ROI with a radius of Ly /10. Starting from a disordered
state, first small clusters emerge (b) which subsequently evolve into
bands (c) (see also the videos in the Supplemental Material [44]).
The directions of cluster movement are indicated by the arrows.
(d) The polarization Pgre; (orange, light gray) is calculated over all
particles in the ROI, while the polarization Psv (blue, dark gray)
is determined over all particles in the entire simulation box. The
bold and dashed arrows correspond to (b) and (c), respectively. (e)
Orientational correlation function C(t;¢) as a function of time t for
a series of initial times ¢ as indicated in the graph. Simulation results
refer to the parameters « = 5, € = 0.5, and p = 0.6. All simulations
were typically run for ~2 x 10* time steps.

comoving frame by means of the Lagrangian orientational
correlation function

2
Cleapy e 2O MG+ D - [FmO] )

P HOE DY “i(t)]z

The sum extends over all particles in the system, and ¢ denotes
the waiting time passed since the preparation of the system
in a state with a uniform distribution in both position and
orientation. Starting from a disordered state at t = 0, the
directional correlation function decays exponentially in time
T with a decay length corresponding to the persistence length
of the undisturbed persistent random walk Eg. As we increase
the waiting time ¢ a clear shoulder in C(t;¢) builds up until it
finally becomes stationary; for the parameters used in Fig. 2(e)
this occurs at r &~ 5000. Then, in the stationary regime, there
are clearly two decay processes with well-separated time
scales: an initial fast decay and an extended time window with a
significantly slower but again exponential decay. This indicates
a phase separation where a fraction of the filaments is in a
low-density isotropic phase and the remainder is organized in
coherently moving polar clusters. Filaments in the low-density
phase are responsible for the fast initial decay which has the
same slope as the initial decay starting from an initially fully
disordered filament configuration. In contrast, orientational
correlations of filaments in clusters are significantly enhanced
since they preferentially move into the same direction as
their neighbors due to the impact of the alignment field.
This results in an increased decorrelation time of C. Since
filaments are moving at unit velocity this time scale can also be
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FIG. 3. (Color online) (a) Time traces of I" for p = 0.6, and a set of values: € = 0,0.5,1 with«@ = 5, and € = 1 with @ = 1, from bottom to
top. Close to the phase boundary from the isotropic (ISO) to the polar ordered state (PO) [e = 1; (red)], a lag phase exists, where the systems
wait for the nucleation of a cluster that triggers the emergence of polar order; Ty, and T, are indicated by vertical dotted or dashed lines. Inset:
For o = 1, no order develops, irrespective of the value of € (¢ = 0,5,100 from bottom to top). (b) Free volume gain & = p — I' (triangles)
for « =5 and € = 0.5 exhibits a “jump” at p. ~ 0.4 (dashed line) and then is significantly above the reference curve p-I'hom(p) (black +’s
are simulation results). Ty, diverges for densities slightly above p. (squares). (c) Phase diagram as a function of p and € for ¢ = 5 (solid) and

o = 10 (dashed).

interpreted as a persistence length of the trajectories traced out
by the filaments, Z;"“. We attribute the loss of correlations for
filaments in clusters mainly to reorientations of the clusters as a
whole and to a lesser extent to collisions between clusters. The
latter and collisions of clusters with the confining boundary
of the simulation box are responsible for the steep drop in
the correlation function at very large times. The collective
persistence length of the clusters KCP"“ depends on the density
o as well as the strength of excluded volume interaction €; see
the Supplemental Material [44].

To further analyze the self-assembly process and to char-
acterize the ensuing stationary state we consider the fraction
of occupied lattice sites I', or equivalently the free volume
fraction @ := p —I'. In the absence of polar alignment
processes between the filaments, we find that I" fluctuates
around a constant value depending on the strength of the
excluded volume interaction € [see Fig. 3(a), inset]. For a
noninteracting system (¢ = 0, « = 1), the stationary value of
" as a function of reduced density p is given by ['hom(p) =
1 — e~ ?;see Fig. 3(b). This result has previously been obtained
in continuum percolation theory for the fraction of lattice
sites occupied by a statistically homogeneous distribution of
overlapping rods [45]. In the presence of excluded volume
interaction, the actual value of I' is only slightly smaller
than I'yom and shows the same functional form. Adding polar
alignment interactions leads to qualitatively different behavior.
As can be inferred from Fig. 3(b), there is now a threshold
density p., where the free volume gain @ jumps to a value
much larger than the corresponding value for a noninteracting
system. Moreover, measuring the polar order parameters it
turns out that this jump actually coincides with the onset of
polar order; cf. Fig. 2(e). The jump in & may, therefore, be
taken as a signature to map out the phase diagram as shown in
Fig. 3(c); for a more detailed discussion see the Supplemental
Material [44]. It also clearly indicates that filaments must have
formed some clusters much denser than expected for a purely
statistical overlap of filaments. Figure 3(a) shows that clusters
form by a nucleation process: There is a lag phase during
which T stays high close to a value obtained in the absence
of polar alignment processes. Subsequently, there is a time

window [Ty, Tstat], Where the available free volume fraction
p-T" increases towards a higher stationary value; cf. Fig. 3(b).
The time to reach the final polar steady state diverges as a
power law Ty o (0 — p.) ¢ with ¢ ~ 1.

To further scrutinize the nucleation processes, we analyzed
the cluster mass distribution P(m) and the size of the critical
nucleation cluster as a function of density; cf. Figs. 4(b)
and 4(c). Here clusters are defined as connected areas on
the lattice with local occupation numbers k > k. = 5; see
the Supplemental Material [44]. For an illustration, Fig. 4(a)
shows time traces for the maximum of the cluster mass
distribution mp,,, the mean (m), and standard deviation
dm = /{(m?) — (m)? close to the phase transition from an
isotropic to an ordered state. We observe that during the
lag phase clusters are continually created and destroyed such
that all cluster characteristics remain constant on average and
there is no gain in available free volume. The corresponding
distribution of cluster sizes P(m) shows power-law tails with
an exponent close to § = 5; cf. Fig. 4(b). For the representative
trace shown in Fig. 4(a), there is a spontaneous nucleation of a
large cluster at r &~ 2800 that, albeit it partially disassembles,
still seems to trigger the transition to cluster formation. It
defines the onset of a steady increase in (m) and also a change
in the power law of the cluster size distribution; cf. Fig. 4(b).
In conclusion, close to the critical point the system is waiting
for a large enough density fluctuation that acts as a nucleus for
cluster formation, which in turn triggers the transition to the
polar ordered state; as shown above, the waiting time diverges
upon approaching the transition; cf. Fig. 3(b).

To quantify the size of the critical nucleation cluster
and further substantiate that the nucleation phenomenon is
the mechanism driving the transition, we have performed
a detailed analysis of the largest cluster formed during the
nucleation process and thereby quantified the heuristic obser-
vations made in Fig. 4(a). In the isotropic phase, one expects
that the largest clusters formed over the whole observation
window M« := max; mmax(t) are typically too small to act as
anucleus for the emergence of polar order. However, in a finite
system, there will still be rare occasions where fluctuations
are strong enough to form a critical nucleus. The fraction S
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FIG. 4. (Color online) (a) Time traces of my,y (red solid), (m) (green dashed), and 6m (blue dotted) of the P(m) for p = 0.6. (b) Cluster
mass distribution P(m) for p = 0.6 during the lag phase and in the stationary regime of the polar ordered state sampled over more than 10*
realizations. For reference, power-law distributions P(m) oc m~ with § = 4,5 are indicated by dashed lines. (c) Mean values of the largest
cluster, (M) (red squares) and (My,.) (blue dots), serve as lower and upper bounds for critical nucleation cluster mass. In the transition
window (shaded gray area) from the ISO to the PO phase, the fraction of realizations S which develop polar order (solid line) increases from 0

to 1. Parameters for all graphs are « = 5 and € = 0.5.

of realizations which develop polar order sharply increases
as the density is raised throughout the transition window
[see Fig. 4(c)], with the critical density p. ~ 0.4. Below the
critical density, the values of M« for those realizations which
did not lead to polar order are a measure of cluster sizes
which are too small to trigger the pattern-forming process,
and can thereby be used as lower bounds for the size of
the critical nucleus. Figure 4(c) shows the average value of
M ax for those realizations which did not lead to polar order.
We observe that this quantity increases upon approaching the
critical density from below. Above the critical density, most
realizations will develop polar order and one may estimate the
critical nucleus size as the mean size of the largest cluster at the
nucleation time My, := Mmax(f = Thue). The corresponding
average value (M) gives the typical cluster mass that has
been large enough to trigger a transition to polar order, and
hence serves as an upper bound for the critical nucleus.
While previous numerical studies on propelled particle
systems focused on the long-time dynamics, we investigated

the dynamics of the self-assembly process leading to the
emergence of polar ordered states. We find that the ordering
process is driven by the formation of a critical nucleation
cluster: Once a cluster of sufficiently large mass has assembled,
the entire system builds up collective motion. This is reflected
in the existence of a lag time, where the system does not
succeed to assemble a cluster of sufficient mass. The signatures
of the ensuing phase transitions are a jump in the free volume
and a power-law divergence in the characteristic time for
the formation of the polar ordered state. We suggest that
exploring the principles underlying the self-assembly process
of polar clusters is a promising route to understand ordering
phenomena in a broader class of active systems.
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