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We study the interplay of population growth and evolutionary dynamics using a stochastic model based on
birth and death events. In contrast to the common assumption of an independent population size, evolution can be
strongly affected by population dynamics in general. Especially for fast reproducing microbes which are subject
to selection, both types of dynamics are often closely intertwined. We illustrate this by considering different
growth scenarios. Depending on whether microbes die or stop to reproduce (dormancy), qualitatively different
behaviors emerge. For cooperating bacteria, a permanent increase of costly cooperation can occur. Even if not
permanent, cooperation can still increase transiently due to demographic fluctuations. We validate our analysis
via stochastic simulations and analytic calculations. In particular, we derive a condition for an increase in the

level of cooperation.

DOI: 10.1103/PhysRevE.84.051921

I. INTRODUCTION

The time evolution of size and internal composition of
a population are both driven by discrete birth and death
events. As a consequence, population dynamics and internal
evolutionary dynamics are intricately linked. The biological
significance of this coupling has previously been emphasized
[1-9]. Those studies mostly employ density-dependent fitness
functions to phenomenologically derive sets of coupled deter-
ministic equations for the size and composition of populations
in various ecological contexts. While those studies correctly
describe the evolutionary dynamics of large population sizes,
they do not account for stochastic effects arising at low
population sizes. These demographic fluctuations are naturally
described in the theoretical framework of stochastic processes
based on elementary birth and death events as recently
introduced [10]. In particular, this approach allows one to
explore the role of fluctuations in populations with a time-
varying population size.

To understand such interdependence of population and
evolutionary dynamics, it is instructive to first review the
decoupled and deterministic formulations of both. Evolution-
ary game theory is a well-defined framework to describe
the temporal development of different interacting traits or
strategies [11,12]. It has been established as a standard
approach to describe evolutionary dynamics if the fitness is
frequency-dependent (i.e., if the fitness of a certain strategy
depends on the abundance of other strategies within the
population). Within the most basic setup, well-mixed popu-
lations are assumed and the evolution of strategies is solely
determined by fitness advantages. The temporal development
of the abundance xg of a trait S follows a replicator dynamics
[11-13],

dxs = (s — P)xs. (D

A trait’s abundance increases if its fitness ¢g exceeds the av-
erage fitness ¢ of the population. The frequency-dependence,
with ¢ a function of the abundances ¥ of all strategies, provoke
nonlinearities in Eq. (1). Starting from this standard approach,
many specific examples and extensions thereof have been
studied [12—14]. This comprises, for example, the prisoner’s
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dilemma, the snowdrift game and other games in well-mixed
populations [11-13,15]. It further ranges from the role of
spatial arrangements and network interactions [16-25] via
cyclic dominance [7,26-33], structured populations [34,35],
modified update rules [36,37], multiplayer games [38], and
evolutionary algorithms [39] to the influence of internal and
external fluctuations [40-45]. While these models consider a
wide range of evolutionary aspects, they mostly rely on one
key assumption, a decoupled, constant population size.

In contrast, population dynamics focuses on the time
evolution of the population size and how it is determined
by environmental impacts like limited resources or seasonal
variations. The dynamics is typically described by differential
equations of the form [46—48],

N =F(N;1), 2

where F (N;t) may explicitly depend on time [46]. The most
prominent example is logistic growth [49]. While a small
population grows exponentially, the growth rate decreases with
increasing population size due to limitations of resources and
the population size is bounded below a maximum carrying
capacity.

Illustrative examples of dynamical changes in the popula-
tion size comprise bacterial and other microbial populations
[50-52]: A surplus in nutrients or other metabolism-related
factors, can lead to an immediate and strong growth of the
population while resource limitations or antibiotics and other
detrimental factors can imply a stop in growth or even an abrupt
death of single individuals. Even for only slightly varying
environmental conditions, a fixed population size is thus rather
the exception than the rule.

But microbes not only show rich population dynamics,
they are also subject to diverse evolutionary forces [53-57].
Microbes live in interacting collectives of different traits.
Evolution is ubiquitous and strong forms of frequency de-
pendence can be observed. Public good scenarios where a
metabolically costly biochemical product is shared among
individuals are of particular interest from an evolutionary per-
spective (see, e.g., [51,55,58-60]). This includes, for example,
nutrient uptake, like disaccharides in yeast [61-63], collective
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fruiting body formation [64,65], or the active formation of
biofilms [52,57,66,67]. An example regarding iron uptake
is considered below in more detail [68—70]. Furthermore,
synthetical microbial systems have been considered [71,72].

Motivated by these recent studies of microbial systems, we
here investigate the consequences of such an interdependence
between evolutionary and population dynamics. Employing a
previously introduced theoretical approach [10], we study the
influence of different growth scenarios in combination with
demographic fluctuations.

The outline of this article is the following. In Sec. II
we discuss the stochastic dynamics and its deterministic
approximation. Furthermore, we consider the limits in which
the model maps to standard (deterministic and stochastic)
formulations of evolutionary dynamics. In Sec. III we consider
the dilemma of cooperation in growing populations. Here, an
increase of cooperation can be observed which is analyzed in
detail. In particular, we discuss the outcomes for two different
growth scenarios (i.e., a reproduction dynamics which either
is balanced by death events or simply arrests in the stationary
case). Finally, we close with a short conclusion in Sec. IV.

II. COUPLING OF EVOLUTIONARY AND
POPULATION DYNAMICS

A. Microscopic model

We consider a population of M different traits. Each trait
S is represented by Ny individuals, such that the state of
the population is given by N = (N, Na, ..., Ny). VYe further
denote the frequencies of all different traits by X = N /N with
N =) ¢ Ny being the total population size. The stochastic
evolutionary dynamics is formulated in terms of per capita
birth and death rates, G and Dyg, respectively. The total rate
for the abundance of trait S to increase or decrease by one
individual is given by

525 = GsNs, T'sopy = DsNs. 3)

The various biological factors determining each rate can be
split up into two parts, a global and a relative contribution.
While the global term is trait-independent and affects all traits
in the same manner the relative term is trait-dependent and
sets the differences between traits. We write

Gs = g(X,N) fs(xX), Ds=d(x Nyws(x), “4)

and refer to g(xX,N) and d(X,N) as global birth-fitness and
global weakness, respectively. The trait-dependent terms are
the relative birth-fitness fs(X) and the relative weakness
wg(X).! While birth-fitness terms affect the birth rates, weak-
ness terms determine the expected survival times of individuals
and hence their viability. A short illustration of the stochastic
processes is given in Fig. 1 for the case of two different traits.
To specify the relative fitness terms, we follow the standard
approach of evolutionary game theory [11], and assume them
to depend linearly on the frequencies X. Let P be the payoff

'In this work, we assume the relative parts to be independent of the
system size. However, including a density-dependent part also in the
relative terms is straightforward.
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FIG. 1. (Color online) The per capita birth and death rates for two
different traits, A [light gray (red)] and B [dark gray (blue)]. Each rate
depends on a global, trait-independent and a relative, trait-dependent
part. While the global and relative fitness terms g and f,,p affect
the birth rates, the global and relative weakness terms d and wy,
determine the death rates.

matrix for birth events. Then, the corresponding fitness vector
for all traits is defined as

é=1+sPx. 5)

Following standard formulations, the selection strength s
defines the relative weight of a frequency-dependent part
with respect to a background-fitness set to 1 [40,43]. As will
become clear in the following, it is convenient to make use of
normalized fitness values,

=9/, (6)
where ¢ = Y o psxs such that f =D ¢ fsxs = 1. Without
loss of generality, this choice separates global and relative parts
in such a way that the dynamics of the population size depends
only on the global functions g and d; see also the following
Eq. (8a). An analogous approach with a payoff matrix V for
death events can be used to obtain the frequency-dependent
weakness functions wg, which are also taken as normalized,
> s wsxs = 1. Of course, a more general, nonlinear frequency
dependance for both relative functions can readily be taken
into account. For example, in microbial systems the fitness
of an individual or the whole community depends in an
intricate way on a plethora of factors (e.g., the abundance of
individuals, secretion, and detection of signaling molecules,
toxin secretion leading to interstrain competition, and changes
in environmental conditions). Nonlinear frequency-dependent
fitness functions might help to account for such factors
(see, e.g., [58,62]).

In general, the global terms g(X,N) and d(X,N) depend
on the population size and are frequency dependent. Limited
growth is one example of size dependence. In such a setting,
small populations start to grow exponentially but growth is
bounded due to limited resources [e.g., d(X,N) increases with
N]. Frequency-dependent terms can, for example, occur in
public good situations, as discussed in Sec. III.

B. Dynamics
The per-capita birth and death rates Eq. (4) define a
continuous-time Markov process [73,74]. It is described by
a master equation for the probability density P(N;¢) to find
the population in state N at time ¢:

dP(N;1)

v > WE5 — DGsNs + (B} — 1)DsNs]P(N:1).

S

(N
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Here, IE§E are step operators increasing or decreasing the
number of individuals of trait S by one [74], for example,

EEP(N;t)= P(Ny,....,Ns+1,....Ny1).

For a reference it is instructive to first consider a deter-
ministic limit where both fluctuations and correlations can
be neglected. Then, upon factorizing higher moments of the
probability density [73,74], one finds a closed set of equations
for the expected frequencies xsg and the total population
size N:

&N = [g(Z,N)f — dE N)DIN, (8a)
dxs = g N fs(X) — flxs — dF N)[ws(¥) — wlxs,
(8b)

where f = W = 1 according to Eq. (6). To unclutter notation,
we have not explicitly marked the expectation values in Eq. (8)
but use the same notation as for the stochastic variables.

This set of coupled nonlinear equations resembles other
deterministic approaches [1-4,6—8] and has a simple interpre-
tation. Equation (8a) describes the population dynamics. As
is typical for a deterministic approach, the dynamics does not
depend on the global birth-fitness g and the global weakness d
separately, but only on their difference. Equation (8b) describes
the internal evolution of the population: The time evolution of
the frequency of a strategy S is given by the interplay between
a growth and a death term. Each of them consists of a relative
term measuring the surplus of the fitness or weakness relative
to the corresponding population average. The weight of these
terms are given by the respective global fitness functions g
and d. During phases of population growth, where g > d
holds [see Eq. (8a)], the growth term and hence differences
in relative birth-fitness dominate the internal evolution of
the population. Similarly, weakness differences are the main
evolutionary driving forces during population decline.

From these considerations it follows that both the time
scale of population and evolutionary dynamics have a crucial
impact on the dynamics. This is obvious if the time scales are
similar. Such biological situations have been observed in many
examples (see, e.g., [75-78]). But also if evolution happens on
longer time scales than ecology this coupling can affect the
evolutionary outcome as we show in the following.

Importantly, fluctuation cannot be ignored in general but
can change evolutionary dynamics dramatically. Then, the
deterministic approach given by Eq. (8) is not adequate. This
regards, for example, fixation and extinction events but also the
evolution of first and higher moments of a trait’s abundance.
For a proper description, one has to take the full stochastic
dynamics and master equation Eq. (7) into account. One
example where fluctuations drastically change the outcome
is given in the following Sec. III.

C. Mapping to standard approaches: replicator dynamics
and the Moran process

We now consider in which limits and to what extent
our stochastic approach resembles the standard approaches
of evolutionary dynamics. Let us first consider the special
case where the global rates g(X,N) = g(N) and d(¥,N) =
d(N) are frequency-independent and the ensuing deterministic
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dynamics exhibits a stable fixed point N* in the population
size. Then, birth and death events exactly balance each other,
g(N*) = d(N*), such that N* is fixed, ; N* = 0. This is, for
example, the case if the population size evolves according to a
logistic growth law and the carrying capacity has been reached.
In the deterministic limit, the internal dynamics, Eq. (8b),
simplifies to

dxs = g(INH[ fs(X) — f — ws(X) + wlxs. &)

The fraction xg evolves like in a standard replicator equation,
similar to Eq. (1). It is the difference of both relative terms, the
effective fitness fs — wg, which determines internal evolution.
Compared to Eq. (1), the additional constant prefactor g(N*) in
Eq. (9) just rescales the time scale on which internal evolution
occurs [41].

Furthermore, also the full stochastic formulations of our
model and the standard stochastic approaches with a fixed
population size resemble each other. In those standard ap-
proaches, the birth of one individual is directly coupled to the
death of another one. The dynamics is described by update
rules. For example, for the time-continuous formulation used
here, the stochastic dynamics can be described by the Moran
process [40,41,43,44,79-81].% In our formulation, this process
holds in the limit where the fixed point of the population size
N* is linearly stable with a large stability coefficient.> Then,
a birth event is directly followed by a death event and vice
versa. The effective rate for such a combined birth-death event
is given by

[sos = TymosTsmp + Dsmplymag. (10

The strength of fluctuations in the fraction of a certain species
is of the order 1/ /N* and the transition rate [* s— s follows by
the logic of an urn model, where fitness-dependent individuals
reproduce to substitute other, randomly chosen, individuals
[40,41,43,79,80].

Beyond the Moran process, however, if N* is not linearly
stable with sufficiently high stability coefficients, then birth
and death events do not strictly follow each other. Depending
on the stability of the fixed point, evolutionary paths deviating
from N* by more than one individual have to be taken into
account to derive an effective rate for a combined birth-death
event.

In general, the population size changes with time, N =
N(2). For frequency-independent global rates, the determinis-
tic limit of the internal evolutionary dynamics resembles the
form of a replicator equation,

N = [g(N) —d(N)IN, (11a)
dxs = {g(N)[fs(¥) — f] (11b)
—d(N)[ws(X) — w]}xs. (11c)

2Similarly, the stochastic dynamics is described by a Fisher-Wright
process for discrete time steps. Other update rules are based on other
fitness functions or the way one individual replaces another one.

3To strictly ensure N to vary around N* with %1, the fixed point
has to be linear stable with additional higher orders supporting the
stability.
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However, in contrast to Eq. (1), both relative fitness terms
f and w are now weighted by the global rates. This has
important implications. While in growth phases with g > d
the relative birth-fitness fs dominates the dynamics, the
relative weakness functions wg dominate during population
decline, g < d. Moreover, the time-varying population size
also leads to a changing strength of fluctuations ~1/4/N(t). In
particular, when fitness differences are weak and the dynamics
is close to neutral evolution, such a change might have strong
consequences [41,43,45,82,83].

III. THE DILEMMA OF COOPERATION
IN GROWING POPULATIONS

To exemplify the importance of coupling and fluctuations
offered by our approach, we here study the dilemma of
cooperation in growing populations. This is motivated by the
dynamics observed in microbial biofilms where strong forms
of cooperation can be observed [51,55,57,59,60,67]. Single
individuals produce metabolically costly products which they
release into the environment to support, for example, biofilm
formation or nutrient depletion. As these products are available
for other bacteria in the colony, the cooperating individuals are
producers of a public good, and, by having the extra load
of production, permanently run the risk to be undermined
by nonproducing free-riding strains. An example is provided
by the proteobacterium Pseudomonas aeruginosa [68-70].
To facilitate the metabolically important iron uptake, these
microbes produce siderophores which they release into the
environment. Given the high binding affinity to iron, these
proteins are capable of scavenging single iron atoms from
larger iron clusters. The iron-siderophore complex can then be
taken up by the bacteria, ensuring their iron supply. However,
as every bacterium, not only the producing ones, can take
advantage of the released siderophores there is a dilemma
of cooperation: While it would be optimal for the whole
population to cooperate, cooperators are endangered due to
their reproduction disadvantage.

In addition to the evolutionary dynamics, microbial
colonies are also subject to strong changes in population size
[50-52,84]. While in the presence of nutrients, small colonies
grow exponentially, growth is bounded due to limitations
in resources or deteriorating environmental conditions. This
includes insufficient amounts of nutrients, a lack of oxygen
or a poisoning by metabolites. Eventually the colony size
remains constant or even declines again [50]. Given the
exact interplay of these detrimental and other environmental
factors, and differing from species to species, growth dynamics
varies between two scenarios [85,86]. First, bacteria can
switch into a dormant state where individuals stay alive but
regulate reproduction rates and metabolic activity toward zero
(dormancy scenario). Depending on environmental conditions
dormancy can increase survival chances. For example, in the
presence of antibiotics, this downgraded metabolism can make
bacteria less vulnerable leading to persistence [8§7-90], or dor-
mancy might hedge a population against strongly fluctuating
environments [86,90,91]. Second, environmental conditions
can lead to death rates increasing with the population size
N while birth rates are only slightly affected [92]. The
population, therefore, reaches a state of dynamical maintained
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population size with the death rates exactly balancing the birth
rates (scenario of balanced growth). In many populations, a
situation in between both scenarios is observed. In pathogenes
like P. aeruginosa, the fraction of individuals transferring to
the dormancy state varies between 20% and 80% [93]. In
the following we consider both scenarios and their impact on
internal evolution separately.

A. The balanced growth scenario

Let us first study the balanced growth dynamics where, in
the stationary state, birth and death events are both present,
but exactly balance each other such that the population size
is about constant. We consider a population which consists
of two traits, cooperators (C) and free-riders (F'). The total
number of individuals in the population is givenby N = N¢ +
Np and the fraction of cooperators by x = x¢ = N¢/N. The
relative birth-fitness fs (¢s, if not normalized) accounts for
the reproduction disadvantage of cooperating individuals. We
study the well-known prisoner’s dilemma [11]: *

¢ =1+s(b—d)x.
(12)

dc=1+sbx —0¢), ¢p= 1+sbx,

As introduced in Sec. II, the frequency-dependent part is
weighted with the strength of selection s. Individuals obtain a
benefit b from direct interaction with cooperators, while only
cooperating individuals have to pay the cost ¢ for producing
the public good. For the resulting normalized fitness functions,
fs = ¢s/¢, the inequality fe < fr always holds; within the
same population, the reproduction rate of cooperators is always
smaller than the one of free-riders.

In the following, we take the payoff parameters to be
constant, & = 1 and b = 3. Then, s directly sets the time scale
of the internal evolution. The relative weakness is assumed to
be trait-independent and constant, we = wr = 1; free-riders
and cooperators have equal survival chances.

Furthermore, because cooperators are the producers of a
public good, the overall growth condition of a population
improves with a higher level of cooperation. We here choose
the global birth-fitness to increase linearly with the level of
cooperation,

g(x) =1+ px. (13)

The parameter p scales the positive impact of the presence
of public good on the population. In the scenario of balanced
growth, we consider death rates increasing with the population
size. For specificity, we assume logistic growth [49] and set

d(N)=N/K. (14)

K scales the maximal size a population can reach (carrying
capacity) as discussed in detail below.

“More generally we could also study other types of interactions like
the snowdrift game. However, as we want to show the importance
of population dynamics for supporting cooperation we chose the
worst-case scenario for cooperation, the prisoner’s dilemma.
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The master equation (7) describing the full stochastic
dynamics then takes the form,

dP(N¢c,N _ _
% = [(Eg—1)gfeNe + (Er—1)gfrNp

+(EE—1Dd Ne + (Ef—1)d Nc]P(Nc,Nr).
(15)

To explore the dynamics, we performed extensive stochastic
simulations. They were obtained by simulating i = 1,...,R
different realizations with the Gillespie algorithm [94], ac-
cording to the master equation (15). In Fig. 2, we show the
ensemble averages of the population size (N) and the fraction
of cooperators (x) given by

(N) =Y Ni(t)/R, (16a)

(x) =Y Nc.i(t) / > O Nio).

(16b)

This choice for the average naturally accounts for the fact
that realizations with a larger population size have a larger
weight. It is especially important for biological situations
where several realizations exist at the same time (e.g., [72]).
In such an ensemble cooperation can increase in principle
if there is a positive correlation between population size
and the fraction of cooperators. The existence of this effect,
also known as Simpson’s paradox, has been shown recently
by Chuang et al. for microbial populations [72]. Here we
want to understand the dynamics underlying this correlation
underlying cooperation.

Starting with a small population, the system size grows
exponentially (exponential phase), reaches a maximum size,
and then declines again. Furthermore, and more strikingly,
the disadvantage of cooperators can be overcome and a
transient increase of cooperation can emerge. Even though
the transient increase is caused by demographic fluctuations,
it is instructive to examine the deterministic equations first.
They not only describe the overshoot in the population size
well, but also give insights into the relevant time scales of the
dynamics:

dx = —s(1 + px)x(1 — x),

N
8,N=<1+px—E>N.

(17a)

(17b)

The first equation describes the change in the average
fraction of cooperators. The dynamics occurs on the time scale
7, ~ 1/s (i.e., the strength of selection sets the time scale
of internal evolution). Note that 9,x < 0 always holds and
therefore the deterministic approximation cannot give rise to
any transient increase of cooperation. In contrast, the dynamics
of the total population size is well described deterministically
[see Fig. 2(a)]. It resembles the well-known equation of logistic
growth [49] with a frequency-dependent maximal population
size K(1 4+ px) (carrying capacity). During growth, changes
in the population size occur on a time scale 7y ~ 1 + px
[cf. Eq. (17b)]. In the limit of weak selection, Ty is comparably
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FIG. 2. (Color online) Cooperation in growing populations.
Temporal development of ensemble averages. (a) The population
size. Starting with Ny = 4, the system grows exponentially until the
carrying capacity is reached. It then falls again due to selection and
a decreasing carrying capacity; see text. The full stochastic solution,
gray (red) line, is described well by the deterministic approximation,
black line. (b) The fraction of cooperators. It initially increases due to
asymmetric amplification of fluctuations, and then falls again due
to selection; see text. The level of cooperation x falls below its
initial value x, at the cooperation time fc. The transient increase
is stronger for larger fluctuations and thus is stronger with a smaller
initial population size Ny; see gray (colored) lines. The deterministic
approximations do not account for this behavior (cf. black line).
Parameters are s = 0.1 and p = 10.

smaller than the time scale t, on which selection occurs. This
and the frequency-dependent carrying capacity are the reason
for the overshoot: At the beginning the maximal population
size is given by K (1 4+ pxp). Because cooperators go extinct,
the size decreases with time. As this reduction is happening on
a faster time scale than selection, Ty < 7., the population size
grows toward a larger carrying capacity, and then subsequently
drops with decreasing carrying capacity due to a decline in
cooperation.

B. A transient increase of cooperation

The stochastic dynamics of the average fraction of cooper-
ators (x) is qualitatively different from its deterministic limit.
We observe a transient increase in the level of cooperation
during a time window (0,z¢). The magnitude of the coopera-
tion time t¢ strongly depends on the initial population size Ny
(cf. Fig. 2). The origin of this transient increase in cooperation
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is a genuine stochastic effect: Demographic fluctuations
during the initial phase are subsequently asymmetrically
amplified by the population dynamics. Heuristically, this
can be understood as follows; for a detailed mathematical
analysis employing a van Kampen expansion see the next
section.

For a small initial population size Ny demographic fluc-
tuations are effectively symmetric (i.e., the occurrence of an
additional cooperator or an additional free-rider are equally
likely). However, the consequences of these two directions of
demographic fluctuations differ strongly: In the exponential
phase, an additional cooperator amplifies the growth of the
population, while an additional free-rider hampers it. In other
words, fluctuations toward more cooperators imply a larger
growth rate and hence a larger population size. Therefore, those
realizations of the stochastic dynamics have a larger weight in
the ensemble average Eq. (16b) and enable an increase in
the overall fraction of cooperators. With these considerations,
a criterion for the transient increase of cooperation can be
obtained: Demographic fluctuations, which are of size VN
[41], have to be large enough to overcome the selection
pressure toward free-riders. This can already be inferred from
Fig. 2(b), where curves for three different values of the initial
population size are shown. For the smallest Ny the effect is
the strongest because fluctuations are large at the beginning.
In summary, a population bottleneck which corresponds to a
small initial population size can favor cooperation transiently.
Furthermore, if populations repeatedly undergo population
bottlenecks, the increase in cooperation can be manifested
also permanently.

C. Van Kampen expansion

As discussed above the transient increase of cooperation
is caused by fluctuations which are asymmetrically amplified.
In order to quantify these findings analytically, we employ an
Omega expansion in the system size according to van Kampen
[74] of the master equation (15). For generality, we perform
these calculations for arbitrary global growth function g(x).
The deterministic solutions are separated from fluctuations by
the following ansatz:

Ne = Qe(t) +VQE, Np=Qf()+vVQu. (18)

c(t) and f(¢) correspond to the deterministic solutions, as
shown below. & and p are fluctuations in the number of co-
operators and free-riders. The relative strength of fluctuations
and the deterministic parts are weighted by powers of 2 which
scales with the current system size. For instance, to describe
the transient increase which is generated by fluctuations at the
beginning, 2 is given by Ny. Hence, this ansatz accounts for
the fact that fluctuations scale as 1/ VN [73]. Equation (15) is
expanded in orders of 1/+/€2. With Eq. (18), the step operators
E{Eg are given by

1 1
Ef=1+—0 +-—032+ 0>,
c S e+ 0 : + OQ77)
: (19)
Ef=1+——9, 32 O(Q3*?
F g 29 L+ O( ).

PHYSICAL REVIEW E 84, 051921 (2011)

Employing these and Eq. (18) in Eq. (15) leads to
8 P(§. 1) — VU + f3,)
[ \/_g<—cag + q{ fa,,)

0.y — (... —3/2

+ Q)+ m( )+ O(Q )]P(E,M), (20)
where terms of the order /K and higher are neglected.
Initially, starting with a small population, these higher orders
are very small because Q &~ Ny and Ny < K holds. The
orders Q° and 1/+/Q depend on c, f,s,b,¢,g,d,9,,£, 1t and
are not written out in this equation for clarity. By collecting
terms of order /€ and using the identities n = c(t) + f(¢)
and x = c(t)/ [c(t) + f(¢)] the deterministic equations (17)
are obtained (for K — o0). Higher orders of Eq. (20) lead
to a Fokker-Planck equation for P(&,u). From this Fokker-
Planck equation, differential equations for the first and second
moments of the fluctuations can be obtained. The first moments
are given by

<é>=[%+ (1= x)d, g¢c]<s>
_ zaxg(x_)(ﬁc 1— 1)
x 5+ 2f[< —x)%(£%)
C2x(l— D) Em >]azg";fx
gor gor gor
=(1— 0y —— 1—x)o,
(1) = (1 —x)? 5 <s>+[¢ x(1 —x) ¢}<m
+ f[<1 —x)*(ED) = 2x(1—x){Ep)+x* ()]
xazw 1)
X ¢ N

Note that the second moments only couple at order 1/+/Q.
Neglecting these higher orders, Eq. (21) is linear and has an
unstable fixed point at (§,u)* = (0,0).

Next, we analyze the impact of the second moments on
the dynamics. Their coupling into Eq. (21) is only important
for small times, when the first moments are still at the initial
condition, the unstable fixed point (§,1)* = (0,0). Therefore,
it is appropriate to examine the second moments for small
times, t — 0. They then have the asymptotic form,

3 (€%) 9 (Epm) =0, 9 (n

=2ng%x, 2y =2ng(%v(l —X).

(22)

Due to the inhomogeneity of the differential equations, the
second moments (£2) and (u?) immediately start to grow.
These nonzero second moments now couple back into the
first moments Eq. (21), and push them out of the unstable
fixed point. To quantify this, the solution of Eq. (22) is
employed in Eq. (21). The resulting equations are solved
for small but finite times. As the increase of cooperation is
caused by fluctuations, fluctuations have to establish first.
As fixed time we here consider the doubling time of the
initial population t; = 1/g(x). Within the time window [0,7,]
evolution is neutral (s < g(x)) and thus x = x¢ holds. The
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approximation leads to a lower bound for the strength of
fluctuations. Furthermore, the initial conditions are given by
(§0) = (o) = (£3) = (u3) = 0. If the initially generated and
asymmetrically enhanced fluctuations are large enough to
overcome the selection disadvantage, the transient increase
of cooperation arises. To quantify this, the total fraction of
cooperators in the system has to be examined:

i<x)= (Ne) &+ 1/VaE)

di (Ne +Ne)  n+1/V/QE) + (1)
_ G+ V) + () 23)
(/@ + 1/ QUE) + (u)?

For %(x) > (0 the transient increase of cooperation is

present. The condition %(x) = 0 leads, to first order in s,
to the transition line,

C_ gl [ dig(o)
n(1/gnR|,, — n(1/g)Re0)l,,

Here, 2 is given by the initial population size Ny. For
smaller s there is a transient increase in cooperation, while for
larger s the level of cooperation decreases immediately. This
resembles the condition for neutral evolution (e.g., [45,82]);
evolution is only neutral for sN < const. Thus, only if
fluctuations are strong during the initial phase of the dynamics,
such that the system behaves neutrally, are they sufficient
to overcome the selection pressure toward free-riders. The
phase boundary and thereby the strength of the transient
increase depends on 0,g(x)|y, and g(xo). Both terms have
antagonistic impacts on the transition line. The reason for
this behavior is that the initial doubling time (i.e., the time
during which fluctuations are the most pronounced) decreases
with increasing g(xo). The positive enhancement relies on
the growth advantage of more cooperative realizations, which
depends on 0, g(x)|y, at the beginning. Note that for nonlinear
growth functions, where 9, g(x)|,, also depends on x, the
transient increase can even be reduced by accounting for higher
orders. This behavior was also experimentally observed in
recent studies with microbes, where the growth advantage of
cooperators was tuned [72]. In the next paragraph, we show
that the calculated phase boundaries match our simulation
results very well for several distinct global growth functions.

(24)

D. Phase diagrams

In the following we consider how the duration 7 of
the transient increase in cooperation depends on the system
parameters for the specific global growth function g(x) =
1 4+ px (cf. Fig. 3). Then, the transition line between a transient
increase f¢ > 0, and an immediate decrease tc = 0, given by
Eq. (24), now reads

s=—> (25)

n(1 + pxo)
where n€2 = 2Ny. For smaller selection strength, s <
m, the asymmetric amplification of fluctuations is suf-
ficient to overcome the selection disadvantage of cooperators
while for larger selection strength, s > free-riders

prevail.

P
nQ(1+pxg)°
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FIG. 3. (Color online) The transient increase of cooperation and
its dependence on parameters. Encoded in gray (colored) scale, the
cooperation time #¢ is plotted for three different pairs of parameters:
{No,s}, {No,p}, and {xg,s} in (a), (b), and (c), respectively. The
boundary between the regimes of transient increase and immediate
decrease are in good agreement given by Eq. (24), plotted as
black lines. In the inset of (a), the cooperation time is shown for
varying selection strength s: 7 sharply drops at the boundary. Not
varied parameters are given by p = 10,xo = 0.5 1in (a); s = 0.05 and
xo =0.51n (b); p = 10,Ny = 6 in (c).

In Fig. 3, we compare this result of the analytical cal-
culations with the stochastic simulations. We observe that
upon increasing the strength of selection s, which sets the
advantage of free-riders, the cooperation time ¢ decreases.
In contrast, stronger demographic fluctuations, their strength
scales as 1/+/Ny, prolong the duration of the transient increase
[i.e., t¢ increases with decreasing Ny; cf. Fig. 3(a)]. These two
antagonistic effects lead to a sharp phase boundary between the
regimes of transient increase (fc > 0) and immediate decrease
(tc = 0); see inset of Fig. 3(a). Here, the cooperation time
steeply drops to zero if the strength of selection exceeds a
critical value. The boundary line is in good agreement with
Eq. (25); cf. black line in Fig. 3(a).

InFig. 3(b), the cooperation time is shown for varying initial
population size Ny and strength of the global fitness advantage
due to cooperators p. Now, the phase boundary is determined
by the interplay between the size of demographic fluctuations
and its amplification due to the global fitness advantage of more
cooperative populations. Ny has to be small enough for the
asymmetric amplification mechanism to be effective. Again,
the phase boundary is in good agreement with Eq. (24); see
solid black line in Fig. 3(b).

In Fig. 3(c), the cooperation time is plotted for varying
initial cooperator fraction xo and selection strength s. We
find that the cooperation time decreases with increasing xg.
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Remarkably, for small xy, the amplification mechanism is
especially pronounced and therefore able to compensate com-
parably large selection strengths s. This is again well described
by Eq. (25) [see Fig. 3(c), solid black line]. The observation is
of possible relevance for the evolution of cooperation since it
allows a small initial fraction of cooperators to proliferate in
the population.

Taken together, our analytical calculations provide a mech-
anistic understanding for the transient increase of cooperation
and its dependence on the system parameters s, p, xo, and
No. We have quantitatively calculated the phase boundary
and gained insights into the basic nature of the transient
increase: First, the probability distribution in the cooperator
fraction (x) is broadened due to neutral evolution; note
that Eq. (25) resembles the condition for neutral evolution
[45,82]. Second, these initially generated fluctuations are
asymmetrically amplified and can, therefore, cause an increase
in the level of cooperation.

E. The dormancy scenario

Let us now consider the dormancy scenario where the
ability to reproduce decreases with increasing population size.
For specificity, we assume the global birth and death functions
to be given by

N
g(x,N) = 1+px—E, and d=0. (26)
In this scenario individuals do not die but the birth rates
decrease toward zero as the population size reaches its carrying
capacity. The relative functions, fs and wg, are the same as
before; the weakness terms are constant and the fitness terms
given by Eq. (12).

To understand the differences in the evolutionary outcome,
we again study the deterministic rate equations first. They are
given by

N
N = <1 + px — ?) N, (27a)

0 x = —s§ <1 + px — %) x(1 —x). (27b)

The equation describing population growth is formally
identical to the corresponding equation in the balanced
growth scenario Eq. (17b). Differences arise because in the
present case there is mutual feedback between internal and
population dynamics. This coupling implies that both arrest
once the population size reaches its carrying capacity. In the
arrested state there is a relation between population size N*
and composition x*: 1+ px* = N*/K. Thus, the reached
stationary state (x*, N*) depends on the initial values xy and
Ny. The precise mapping depends on the selection strength s.
For weak selection (small s), the population dynamics is much
faster than the internal dynamics and hence the population size
reaches a stationary state while the composition is still at its
initial value xq [i.e., N* = K(1 + pxo)]. In contrast, for strong
selection, cooperators go extinct quickly with x* = 0 such that
the stationary population size becomes N* = K. An example
for the deterministic dynamics is shown as a solid black line in
Fig. 4. As for balanced growth, the deterministic dynamics
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FIG. 4. (Color online) The dilemma of cooperation in the
dormancy scenario. (a) The growth dynamics. Initially, the small
population grows exponentially until growth is stopped [cf. light
gray (red) line]. This behavior is well described by the deterministic
equation (27a); see black line. In contrast, for the balanced growth
scenario, the dynamics continue and, due to selection, the population
size falls again; see dark gray (blue) line. (b) The fraction of
cooperators. Equal to the balanced growth scenario, dark gray (blue)
line, there is an initial increase of cooperation due to asymmetric
amplification within the dormancy scenario. Again, this is not
described by the deterministic approximation Eq. (27b). However, in
contrast to the balanced growth scenario, the higher level of selection
is later fixed due to the stop in growth dynamics. Parameters are given
by s = 0.05, p = 10, and N, = 4.

exhibits a strictly monotonous decrease in the cooperator
fraction, with the difference that now the asymptotic value
is arrested at some finite value. These differences are also
reflected in the stochastic dynamics, where the asymmetric
amplification mechanism is acting (cf. Fig. 4). In the initial
phase of the dynamics, this mechanism affects the time
evolution of the cooperator fraction in the same way as for
balanced growth, namely it leads to an initial increase of
cooperation. Differences in birth and death rates Egs. (13)
and (26) are negligible for small population size. The arrest
of the dynamics only becomes effective at later times where
an increase in population size implies a significantly declining
birth rate. As a consequence even the stochastic dynamics
becomes arrested such that the initial rise in the cooperator
fraction may become manifested as a permanent increase. This
will be the case if the dynamics becomes arrested during the
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FIG. 5. (Color online) The transient increase of cooperation for
the dormancy scenario. The cooperation time #c depending on the
initial population size Ny and the strength of selection s. The condition
for a transient increase of cooperation to occur is still given by Eq. (24)
(black line). In addition, due to the stop in growth dynamics, there is
an additional regime, where the increase becomes permanent [dark
gray (dark blue) area]. The permanent increase is also shown in
the inset, where the cooperation time is shown for varying strength
of selection. If, for a given initial population size, selection is
sufficiently slow compared to fixation of the growth dynamics, the
increase of cooperation becomes permanent. Parameters are given by
p =10,x9 = 0.5.

time window where the asymmetric amplification mechanism
acts; see red line in Fig. 4(b).

In summary, there are now three scenarios for the dynamics
(cf. Fig. 5). In addition to the immediate decline and transient
increase there is now also a permanent increase in the
cooperator fraction. The analytical expression separating the
regimes of transient increase and immediate decline still
holds Eq. (25) because it is due to the same mechanism as
before. We did not manage to derive an explicit expression for
the transition line to permanently increase. However, as the
existence of a permanent increase in the cooperator fraction
depends on the asymmetric amplification mechanism, the
regime of permanent increase is bounded by a hyperbolic line
beneath the one given by Eq. (24). The latter is a necessary
but not a sufficient condition for the permanent increase to
occur.

IV. CONCLUSION

In this article, we have given a synthesis of evolutionary
and population dynamics. This is based on the understanding
that birth and death events are the driving forces underlying
changes in the size as well as the composition of a population
[10]. Both processes are inherently stochastic and inevitably
lead to demographic fluctuations whose magnitude depends
on the population size. The ensuing stochastic formulation
thereby naturally accounts for the coupling between inter-
nal evolutionary dynamics and population dynamics. The
evolutionary outcome of the dynamics is determined by the
interplay between selection pressure and random drift caused
by demographic fluctuations. Since our approach allows
one to study evolutionary dynamics with varying population
size we can explore ecological situations where the relative
impact of deterministic and stochastic evolutionary forces
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change with time. Thereby demographic fluctuations may
lead to a dynamics which is qualitatively different from
the corresponding deterministic dynamics: Beyond creating
a broad distribution in size and composition, the coupling can
strongly distort the distribution and thus strongly influence
average values. For the public good scenario, discussed in
this paper, this corresponds to an asymmetric amplification
mechanism which yields a transient increase in the level of
cooperation.

In the absence of a coupling between internal evolution
and population dynamics, the impact of population size on
the internal evolutionary dynamics reduces to a modulation
in the strength of demographic fluctuations. If, in addition,
the deterministic population dynamics exhibits a strongly
attractive fixed point at a finite population size, our model
maps to a standard description of evolutionary dynamics (i.e.,
the Moran process).

The general observations made for the coupled stochastic
dynamics are exemplified by the dilemma of cooperation in
growing populations. Here, fluctuations in combination with
growth lead to a transient increase of cooperation. The origin of
this increase is the asymmetric amplification of fluctuations.
As the presence of cooperators increases the growth rates,
fluctuations toward those are enhanced. Therefore growth
dynamics cannot be ignored but can be an essential part in
evolution. Furthermore, the details of the growth dynamics
can be crucial in determining the evolutionary outcome. As
we have considered for the dilemma of cooperation and
two extremes of microbial growth dynamics, cooperation
can either increase only transiently or the higher level can
even fixate due to dormancy. Our analytical derived transition
line provides the same sufficient condition for the transient
increase in both scenarios. Furthermore, the same line is
also a necessary condition for the permanent increase for
the dormancy scenario. In actual populations, both scenarios
are present with a fraction of 20%—80% dormant bacteria
[93]. While the transient increase does not depend on this
fraction, the permanent increase is smaller than for purely
dormant bacteria. The discussed scenarios for the increase
of cooperation, rely on demographic fluctuations which are
especially pronounced during population bottlenecks. Such
bottlenecks may be caused by seasonal changes of the
environment, migration into new habitats, and range expansion
(e.g., [46,95-99]). In addition, if the permanent increase is
not present, repeated bottlenecks provoking regular occurring
growth phases can favor cooperative behavior by stabilizing a
former transient increase. This becomes especially important
in the context of biofilms where population structure and
involved restructuring mechanisms can drastically change
evolutionary outcome [66,71,72].
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