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Entangled networks of stiff biopolymers exhibit complex dynamic response, emerging from the topological
constraints that neighboring filaments impose upon each other. We propose a class of reference models for
entanglement dynamics of stiff polymers and provide a quantitative foundation of the tube concept for stiff
polymers. For an infinitely thin needle exploring a planar course of point obstacles, we have performed
large-scale computer simulations proving the conjectured scaling relations from the fast transverse equilibra-
tion to the slowest process of orientational relaxation. We determine the rotational diffusion coefficient of the
tracer, its angular confinement, the tube diameter, and the orientational correlation functions.
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Semidilute solutions of stiff biopolymers form entangled
networks with remarkable mechanical properties and com-
plex dynamic response �1�; examples include F-actin �2–7�,
microtubules �8�, the fd virus �9�, and xanthan �10�. Such a
behavior originates from topological constraints imposed by
the impenetrable neighboring filaments. A key to the dynam-
ics of the individual filaments is the reptation concept pio-
neered by Edwards �11� and de Gennes �12�, and later ex-
tended to rods �13�: it summarizes the complex interaction of
a single polymer with its surroundings to an effective con-
fining tube. Then, transport is restricted to sliding back and
forth in the tube, which entails a continual remodeling of the
tube ends; the resulting snakelike motion was coined “repta-
tion,” from the Latin repere �to creep�. Compared to the dy-
namics in dilute solutions, the relaxation of the polymer from
its initial position and configuration becomes extremely slow.

As a consequence, the dynamic processes of entangled
solutions of, e.g., biopolymers cover many decades in time,
posing a tremendous challenge both to experiments and
simulations. For flexible polymers, the reptation concept is
well established �14� and fairly predictive �15�; in the case of
biopolymers, only the confining tube has been observed ex-
perimentally �16�. Computer simulations of entangled poly-
mer solutions encounter major difficulties to follow the rep-
tation motion; yet they give insight into the relaxation within
the tube �17�. Progress beyond simple scaling arguments de-
pends crucially on the design of generic models, which are as
simple as possible to follow the dynamics for sufficiently
long times, yet complex enough to display key aspects of the
underlying microscopic processes.

In this Rapid Communication, we propose the following
class of models to explore single-filament transport in poly-
mer networks: consider the motion of a tagged polymer in a
plane, entangled in a course of immobilized obstacles; the
latter represent the topological constraints due to the neigh-
boring filaments. The reduction of dimensionality still cap-
tures the physics of entanglement since the reptation motion
is essentially one dimensional �11,12�. Stiff polymers are
rather straight and therefore can be embedded in a plane,
neglecting the torsion of their space curve. The orientation of
the confining tube is persistent on the longest time scale of
interest; thus in video microscopy experiments, the nontrivial

reptation motion of a labeled polymer found initially in the
focal plane takes place in this plane. As a benefit of the
simplification, the computational complexity is lowered sub-
stantially, permitting a thorough investigation of slow dy-
namic processes.

This class of entanglement models sets a framework for
the plethora of polymer aspects: depending on the specific
problem at hand, various polymer models may be employed
ranging from a flexible chain of beads and springs to a rigid
rod. It is essential to characterize and understand several lim-
iting cases. The physics of entanglement is singled out in the
limit of hard-core interaction, vanishing width of the poly-
mers, and zero extension of the obstacles. Then, all ramifi-
cations of excluded volume are eliminated, all configurations
are permitted and equally likely, and all nontrivial dynamic
correlations are due to entanglement. In particular, the limit
circumvents the nematic phase transition.

In de Gennes’s seminal paper on reptation �12�, a specific
realization of this fundamental limit has been considered: an
infinitely thin flexible polymer moving between fixed point
obstacles. Research in the last decades rendered this model a
hallmark in reptation theory. Complementary to a flexible
polymer with respect to the bending stiffness is a needle, i.e.,
a straight, rigid object of negligible width, characterized
solely by its length L. In the remaining part, we focus on this
important reference system. In particular, we validate in de-
tail the tube concept for rods �13� and extend it towards a
complete theoretical description of the rotational dynamics.

For a three-dimensional suspension of needles of number
density n, Doi and Edwards �13� conjectured an asymptotic
suppression of the rotational diffusion coefficient, Drot�n−2

as n→�. The slow dynamics at long times is expected to be
universal irrespective of the microscopic motion; so far, re-
search focused on ballistic needles, i.e., without solvent.
Early molecular dynamics simulations of such needle liquids
�18,19� show substantial deviations from Enskog theory. It
was pointed out that the Doi-Edwards �DE� scaling of Drot is
approached only very slowly and difficult to observe. Semi-
quantitative agreement was found using a pseudodynamics
�20�; yet, the DE scaling has not been validated by a simu-
lation of the dynamics. Within an elaborate Boltzmann-
Enskog theory �21�, the onset of anisotropic diffusion from
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the dilute regime has been explained recently. For fixed po-
sitions of the needles, the orientational degrees of freedom
exhibit glassy dynamics �22,23�.

We have simulated the motion of a needle in a two-
dimensional array of frozen, pointlike, and hard obstacles;
see Fig. 1. The latter are distributed randomly, independently,
and uniformly in the plane with an average number density
n. Then, the topology of the network of obstacles is charac-
terized by the mesh size �¬n−1/2, i.e., the typical distance
between obstacles. The degrees of freedom of the needle
encompass the center-of-mass position R and the unit vector
of orientation û, the latter being parametrized by a single
angle �. We compare ballistic and overdamped microdynam-
ics of the needle. In the ballistic case, the total kinetic energy
is conserved, and its value sets the overall time scale
�0¬L /v of the problem; v denotes the root-mean-square ve-
locity. For overdamped dynamics, the time scale �0 is defined
via the coefficient of unhindered diffusion along the axis of
the needle, �0=L2 /D�

0; the free orientational diffusion is cho-
sen in accord with hydrodynamics, Drot

0 =6D�
0 /L2. In both

cases, the model is specified by one single dimensionless
control parameter, n*¬nL2. Equivalently, the entanglement
index pE¬−log10�� /L� quantifies the relative importance of
entanglement.

Our simulations of the molecular dynamics are based on
an event-driven algorithm using a novel approach to colli-
sion detection �24,25�. Diffusion coefficients of the rotational
motion have been extracted from the long-time behavior
of the mean-square angular displacement �MSAD�
��2�t�¬ ����t�2�	2Drott and are shown on a double-
logarithmic plot in Fig. 2�a�. In the investigated density
range, the diffusion coefficient Drot varies over seven non-
trivial decades. For dilute systems, n*�1, it depends on the
microdynamics: In the ballistic case, the diffusion coefficient
is suppressed in quantitative agreement with a Boltzmann
theory �24�, Drot=10.5 /n*�0. For overdamped motion, the
needle is unaffected by the obstacles, and the diffusion coef-
ficient is just given by Drot

0 . Once the mesh size becomes
comparable to the length of the needle, �
L, the isotropy of

rotational dynamics breaks down and a different transport
mechanism develops �26�. With growing entanglement, the
needle is increasingly caged by the obstacle array, and even-
tually, its rotational motion is strongly hindered. Figure 3
illustrates the emergence of reptationlike dynamics, accom-
panied by a drastic suppression of the diffusion coefficient
Drot. For nL2�102, the data follow an asymptotic power law,
Drot��n*�−2, over more than four decades in the diffusion
coefficient. As a most sensitive test, Fig. 2�b� compares Drot

L
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FIG. 1. �Color online� Illustration of an entangled needle in a
plane. The relevant length scales are the length of the needle L and
the mesh size of the network �. The surrounding point obstacles
confine the needle to a tube �shaded areas� of width d, a renewed
tube �green online� is tilted against the old one �red online� by an
angle 	=d /L.
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FIG. 2. �Color online� Simulation results for the rotational dif-
fusion coefficient. �a� Dashed lines are asymptotic fits to the pre-
dicted Doi-Edwards scaling, Drot

� =A�n*�−2; the top �red� solid line
shows the result from a Boltzmann theory for ballistic dynamics,
Drot=10.5 /n*�0 �24�. �b� Deviation from the asymptotic behavior;
note the different prefactors A in Drot

� for ballistic and overdamped
dynamics.

pE = 0.30 pE = 0.80 pE = 1.30

FIG. 3. �Color online� Typical trajectories of the center of the
needle for overdamped dynamics. With increasing entanglement,
the needle is confined to a narrowing tube, and reptation dynamics
emerges; see also the supplementary movie �25�.
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to its asymptotic behavior for increasing entanglement. Our
results show that the mechanism of reptation is universal for
ballistic and overdamped motion of the needle, which will be
substantiated further in the subsequent analysis.

The asymptotic suppression of Drot is rationalized by em-
ploying the concept of a confining tube �13�. In this picture,
the surrounding obstacles reduce the accessible volume of
the needle to a tube of diameter d and length L. The diameter
is estimated from the requirement to encounter no obstacles
in the tube, d
1 /nL=�2 /L. The constrained motion is illus-
trated in Fig. 3 and in a supplementary movie �25�: the trans-
versal and rotational degrees of freedom are essentially fro-
zen, permitting only displacements along the axis of the tube.
After traveling half its length, the needle is confined to a new
tube tilted against the previous one on average by an angle
	
d /L. The time �d to disengage from a current tube is
estimated from the free longitudinal motion inside the tube,
�d
�0, independent of the density. Eventually, the orienta-
tion performs a random walk with step size 	 and constant
rate 1 /�d; hence, the diffusion coefficient scales as

Drot 	 Drot
�
¬

	2

2�d
�

1

n2L4�0
for n* → � . �1�

The given arguments apply likewise to ballistic and over-
damped dynamics of the needle. In both cases, our data in
Fig. 2 provide ample evidence for such a behavior, unprec-
edented in the literature.

The quality of our data allows us to verify and quantify
the assumptions of the tube model in detail on the basis of
the MSAD and correlation functions; we will restrict the dis-
cussion to ballistic dynamics. The behavior of �
2�t� is ex-
hibited in Fig. 4�a� from the very dilute up to the highly
entangled regime with pE�2. At short time scales, the mo-
tion is ballistic, �
2�t�= �
̇2�t2 for t��coll, with the mean
collision rate �coll

−1 =0.845n* /�0. In the dilute regime, the
MSAD directly crosses over to diffusion. Entanglement ef-
fects emerge already at n*=12 �pE=0.54�: when t
�coll, the
MSAD hits an intermediate plateau, reflecting the angular
confinement within the tube. Beyond this time scale, the
transverse degrees of freedom are equilibrated. The MSAD
increases further only after the tube is renewed at the time
scale �d, and not until then, diffusion is observed. We use the
square root of the measured plateau value as definition of 	;
it follows the expected scaling law over two decades, fixing
also the prefactor, 	=1.3 /n�L /2�2; see supplementary Fig. 1
�25�. Nice data collapse is achieved for t�coll by rescaling
the MSAD, �n*�2�
2�t�; see inset of Fig. 4�a�. The disen-
gagement time may quantitatively be defined via extrapola-
tion of the diffusive asymptote to the plateau, 	2=2Drot

� �d;
our data yield Drot

� =3.2 /n2�L /2�4�0, implying �d=0.3�0 inde-
pendent of the degree of entanglement. Supplementary Fig. 1
�25� also shows the tube diameter, inferred directly from an
analogous plateau in the transverse mean-square displace-
ment; we find d=1.3�2 /L and thus 	=4.0d /L.

More generally, the rotational motion in a plane is char-
acterized in terms of orientational correlation functions
C��t�ª �cos�����t��� for integer �. The caging inside the
tube, ��2�t�=	2, should be reflected in a plateau close to

unity, C��t�	1−�2	2 /2 for intermediate times �coll� t��d,
which follows by a Taylor expansion of the cosine. For larger
times, t�d, one expects simple rotational diffusion; solving
the diffusion equation on a circle yields C��t�
	exp�−�2Drott�. Thus, the initial orientation relaxes in two
steps: fast equilibration to the plateau for t��coll, and slow
relaxation from the plateau. We have checked that the mea-
sured C��t� indeed exhibit a plateau with the predicted value,
followed by an exponential relaxation with growing decay
times ��=1 /�2Drot��n*�2. Figure 4�b� displays C1�t�, the
relaxation of the orientational persistence; this is the slowest
process in the system corresponding to an equilibration time
�rotª�1=1 /Drot.

Our results unambiguously prove the conjectured scaling
relations for Drot, 	, and d. Thus, the model reflects the ge-
neric DE scenario, demonstrating that the essential physics
due to entanglement is captured. The predicted scaling be-
havior is, however, only observed in highly entangled sys-
tems with large entanglement index, pE1. In this regime,
the trajectories indeed exhibit pronounced reptation with the
typical sliding motion, see Fig. 3.

For weaker entanglement, 0� pE�1, the rotational dy-
namics is still suppressed due to topological constraints, but
the DE scaling is obscured by crossover phenomena. The
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FIG. 4. �Color online� Time dependence of the rotational mo-
tion. �a� The mean-square angular displacement of the needle de-
velops a plateau at high densities, which scales as 	2��n*�−2 �cf.
inset�. The arrow indicates the disengagement time �d. �b� The ex-
ponential relaxation of the orientation correlation C1�t� is preceded
by a plateau very close to unity �see inset for a logarithmic scale�.
Symbols indicate simulation results and solid lines fits to
f exp�−t /�rot�; the fitted plateau value is consistent with the mea-
sured angular confinement, f =1−	2 /2.
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deviations from the predicted behavior are highlighted in
Fig. 2�b� by extracting the apparent amplitude of the power
law. At pE=1, where the filament length already exceeds the
mesh size by a factor 10, the amplitude is still 15% below its
true asymptotic value. One concludes that in order to observe
the scaling with an accuracy of 1%, even stronger entangle-
ment is required, pE1.6.

In real polymer solutions, the entanglement constraints
are dynamically released and generated on a time scale com-
parable to �d. Within an extended model accounting for this
renewal process of the obstacles, we have checked that the
observed DE scaling is robust �27�.

For highly entangled networks, the finite filament width in
experimental situations may become relevant. Eventually, a
phase transition to a nematic order occurs for long rods at
n3dbL2	1 as has been estimated by Onsager, where n3d de-
notes the three-dimensional number density of rods of diam-
eter b. The density of obstacles of our two-dimensional rep-
resentation is then calculated to n
n3dL, hence the nematic
regime is expected for n*b /L=nbL1. For reconstituted

F-actin solutions with filaments of L
50 �m �16� and b
=7 nm, we estimate that nematic effects are relevant only for
n*7000 or pE1.9, provided one can neglect the small
bending flexibility.

A finite stiffness for the polymer introduces another
length scale, the persistence length, quantifying the distance
over which the polymer appears as a straight rod. Due to
thermal noise, there are transverse undulations which effec-
tively blow up the width of the polymer. It is an open ques-
tion if the finite flexibility assists for the tube remodeling
resulting in an enhanced rotational diffusion, or if the addi-
tional effective volume leads to further slowing down.
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