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Two-dimensional colloidal suspensions exposed to periodic external fields exhibit a variety of molecular
crystalline phases. There two or more colloids assemble at lattice sites of potential minima to build new
structural entities, referred to as molecules. Using the strength of the potential and the filling fraction as control
parameters, a phase transition to unconventional orientationally ordered states can be induced. We introduce an
approach that focuses at the discrete set of orientational states relevant for the phase ordering. The orienta-
tionally ordered states are mapped to classical spin systems. We construct effective Hamiltonians for dimeric
and trimeric molecules on triangular lattices suitable for a statistical mechanics discussion. A mean-field
analysis produces a rich phase behavior which is substantiated by Monte Carlo simulations.
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I. INTRODUCTION

Soft materials comprised of colloidal particles undergo
phase transitions from fluid to crystalline order just as their
atomic counterparts �1–4�. The intrinsic time and length
scales of such suspensions offer the advantage to monitor the
ordering phenomena by video microscopy on a single par-
ticle level. Furthermore, the interactions can be tailored to a
certain degree by controlling the surface charge of the col-
loids or changing the refractive index of the particles and the
solvent or by screening electrostatic interaction by the addi-
tion of salt, etc. �4–6�. Colloids thus constitute fascinating
model systems to study material properties. For example,
new crystalline structures without known atomic analog have
been found �7� for mixtures of charged colloids.

In particular, confining geometries allow us to study phase
transitions in two-dimensional systems where strong thermal
fluctuations often become the relevant mechanism for the
melting of order. For example, close to melting a universal
relation between the elastic constants is predicted in the
framework of the Kosterlitz-Thouless-Halperin-Nelson-
Young theory �8–10� as has been recently observed experi-
mentally �11�. Even richer phase behavior is expected if
quasi-two-dimensional colloidal systems are exposed to ex-
ternal potentials as can be realized by interfering laser beams
�12–14�, periodic pinning arrays �15�, imprint or stamping
techniques �16�. For example, in the case of one-dimensional
troughs exotic phases such as the locked smectic phase or a
floating solid have been predicted �17,18� and partially ob-
served in simulations �19,20� and experiments �21�.

For three or more laser beams periodic patterns with two
modulation directions can be achieved �22�, in particular,
square and triangular lattices have been studied �22–25�. The
colloidal particles then accumulate in the potential minima
thus imposing a modulation of the colloid density. The com-
petition between the attraction to the potential minima and
the mutual repulsion of the particles can be conveniently
controlled by adjusting the filling factor, i.e., the number of
colloidal particles per potential minimum. For instance, by
changing the angles of incidence the lattice constant of the

periodic modulation can be varied continuously. Since the
electrostatic interaction is usually screened by counterions in
the solvent, the lattice spacing also sensitively determines
how strongly particles interact. A second route to affect the
balance between external compression and internal repulsion
is by changing the intensities of the laser beams. Third, the
salt concentration of the solvent is a suitable control param-
eter to tune the range of the repulsive interaction, i.e., the
Debye screening length.

This paper is motivated by recent experimental studies on
two-dimensional colloidal system exposed to a potential of a
triangular lattice symmetry with a filling factor 3 �22�. The
density of the colloids has been selected in a regime below
the spontaneous freezing transition. A continuous increase of
the strength of the laser field has induced a sequence of
qualitative changes of order. At low intensities of the lasers,
corresponding to a potential depth of say V0�kBT, the col-
loids exhibit the typical response of a fluid to an external
modulation, i.e., a small periodic component is superimposed
to the homogeneous background density. Enhancing the
strength of the laser potential by an order of magnitude the
response becomes highly nonlinear; groups of three colloidal
particles cluster in the close vicinity of each potential mini-
mum. However, a significant number of defects—groups of
two or four colloidal particles—is still present in the system.
Since the filling factor has been adjusted to 3, the number of
four-groups equals the one of two-groups. In this regime the
barriers separating minima become high and correspondingly
single-particle diffusion is strongly suppressed �23�, similar
to a solid. Although no thermodynamic phase transition has
occurred the system is referred to as a molecular crystal. A
further increase of the external potential results in a freezeout
of the defects, i.e., each lattice site is occupied by precisely
three colloids. The confinement is rather strong, balanced
only by the mutual electrostatic repulsion, leading to trian-
gular arrangements of the three-groups aligned with the lat-
tice. Interestingly, the majority of three-groups is oriented in
the same way with a small number of groups adopting a
mirrored configuration, see Fig. 1. Using a suitable order
parameter, orientational correlations demonstrate the long-
range orientational order. At still higher laser potentials the
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orientation of the triangles is uncorrelated at large distances,
indicating a phase transition to an orientationally disordered
phase. In Ref. �22� this subsequent melting has been referred
to as reentrant transition, see Fig. 1.

The possibility to induce phase transitions by periodic la-
ser patterns has stimulated theoretical studies in two-
dimensional colloidal systems. Reichhardt and Olson have
performed extensive Langevin simulations and have identi-
fied ground states for a series of filling factors on square and
triangular lattices �23�. In particular, they have also observed
the orientational ordered state corresponding to the experi-
ment discussed above. For noninteger filling factors the mo-
lecular crystals are composed of supercells, i.e., several types
of groups of colloids are distributed periodically on the op-
tical lattice �20�. By lumping particles to rigid molecules,
explicit minimizations of intermolecular interactions in the
presence of the optical potential have revealed several or-
dered ground states �24�. Furthermore, an energy functional
for dimeric molecules on a square lattice has been introduced
and an analogy to Ising behavior has been identified �24�.

The goal of the present paper is to elaborate a theoretical
framework for colloidal molecular crystals in external fields
built from a statistical mechanics perspective, as outlined in
�26�. First, to deal with the complexity of the system we
focus on the essential low-energy degrees of freedom of col-
loidal suspension. From the experimental observation one
infers that the groups of colloids are to be considered as
rather rigid entities as soon as the laser potential exceeds

several tens of kBT. The entities are referred to as molecules
or dimers, trimers, etc. The key idea is to keep only discrete
orientational states of the molecule as fluctuating variables,
i.e., relevant for a statistical mechanics model. The separa-
tion of energy scales, e.g., the condensation or binding en-
ergy to build such molecules is much larger than the thermal
scale, suggests to ignore processes connected with the break-
ing apart of the structure. The theoretical description we wish
to develop is of phenomenological nature, since it does not
explain the formation of molecules. In particular, the regime
of low laser intensities where the molecular crystal exhibits a
significant fraction of defects is not within the scope of our
approach. The benefit of focusing on effective low-energy
excitations is that one can derive simple models that are
amenable to powerful methods of the statistical mechanics
toolbox. In particular, it allows us to identify the appropriate
broken symmetry phases and to map the problem to related
magnetic transitions for which a great wealth of knowledge
has been developed.

Specifically, in Sec. II we develop a theory for the experi-
ment performed by Brunner and Bechinger �22�. We identify
the relevant excitations of the system at the thermal scale as
single trimer flips. A Hamiltonian is constructed that couples
nearest neighboring trimers via their respective orientations.
The microscopic interactions, that are, for example, also re-
sponsible for the formation of the molecules, enter the theory
only implicitly through three energy scales. The explicit link
to the experimental parameters, e.g., salt concentration, ef-

FIG. 1. �Color online� Contour
plots of the lateral density distri-
bution �a� and �c� and the aver-
aged local particle density �b�
and �d� for different light poten-
tials: �a�, �b� V0=60kBT and �c�,
�d� V0=110kBT. In the first case
the majority of three-groups of
colloids is oriented in the same
way, whereas in the latter case
the orientation of the triangles is
uncorrelated at large distances.
At some intermediate V0 a phase
transition occurs. The horizon-
tal and vertical axes are x and
y, respectively. All units are in
�m. Figure is reproduced from a
part of Fig. 2 of Brunner and
Bechinger �22�.
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fective surface charge, etc., is deferred to the Appendix. It
turns out that the statistical mechanics of trimers on a trian-
gular lattice maps to an Ising model once the spectrum of
single trimer excitations are evaluated. A comparison to ex-
perimental results corroborates our approach.

In Sec. III we propose an experimental setup using a tri-
angular lattice with a filling factor 2. Then dimers are the
composite objects and three orientational states per lattice
site emerge. The corresponding Hamiltonian can be under-
stood as a natural extension of a three-states Potts model
with the peculiarity that orientational pair interactions de-
pend on the lattice orientation. We find a rich scenario of
four broken symmetry phases occupying different regions in
the phase diagram. In addition to “ferro-” and “antiferromag-
netic” structures a herringbone structure appears and an ex-
otic phase referred to as Japanese 6 in 1 �J6/1� is discovered.
An analytical approach based on a variational mean-field cal-
culation is presented to explore the phase boundaries. Exten-
sive Monte Carlo simulations are employed to corroborate
our findings and we present a careful discussion of the dif-
ferent phases.

In the Conclusion, we summarize our main results and put
them in a broader perspective of experimental and theoretical
solid state physics.

II. TRIMERS

For densities of the colloidal particles adjusted such that
there are three particles per potential minimum, trimers will
form spontaneously at sufficiently strong laser intensity.
Then the low-energy effective degrees of freedom are given
by the discrete orientational states of the composite object.
Due to the symmetry of the optical lattice the trimers consti-
tute equilateral triangles which are aligned with the triangu-
lar lattice. From Fig. 2 one infers two energetically equiva-
lent orientational states of the trimer corresponding to the
optimal balance between the compression of the constituent
colloids due to the laser potential and their mutual screened
Coulomb repulsion. The residual interaction between trimers
depends on their relative orientation as well as on their rela-
tive lattice position. Since the residual interaction is solely
due to a screened Coulomb interaction the magnitude of this
energy decreases rapidly with increasing distance. For typi-
cal experimental setups the screening length is an order of
magnitude smaller than the lattice constant �22�, which al-
lows us to restrict the residual interaction to nearest neigh-

bors. For each neighboring pair of trimers there are four
possible geometrical configurations, two of which are mirror
images of each other, see Fig. 2. These configurations intro-
duce three energy scales, with generic ordering E1�E2
�E3. These scales are functions of the screening length, the
strength of the laser potential, as well as the effective charges
of the constituent colloids. The Appendix provides a deriva-
tion of the explicit relation and supplements a careful discus-
sion of the concept of composite objects.

The considerations of the previous paragraphs allow us to
define the model in terms of a statistical mechanics problem.
Each trimer i is attributed a “spin state” Si= ±1, the total
number of orientational configurations being given by 2N for
a triangular lattice of N sites. The phase behavior of the
trimer system is encoded in a “spin Hamiltonian,” which
reduces to a sum over local interaction energies. The trimer
system exhibits a peculiarity in the sense that these energies
are dependent on the bond vector, i.e., the direction of the
connecting lattice vector, in addition to the two spin orienta-
tions of the neighboring spins. Explicitly, a simultaneous flip
of both spin is not a symmetry operation of the Hamiltonian,
however, an additional rotation of the corresponding bond
vector by 60° restores the original configuration. Conse-
quently, a rotation of the bond vector by 120° with identical
spin states results in the same interaction energy. Therefore,
similar to the two orientational states of a trimer, there are
only two inequivalent bond vectors, see Fig. 3. The Hamil-
tonian can be expressed in the following form:

H = �
�

�
�ij��

h�Si,Sj;�� , �1�

where �= ±1 denotes the orientation of the bond vector, and
the symbol �ij�� indicates the neighboring pair of spins with
directed bond vector �. Hence each bond appears precisely
once in the entire sum. Reversing the order of the lattice sites
implies an inversion of the bond vector �ij��= �ji�−�. Explic-
itly, the local energy functionals read

�2�

FIG. 2. �Color online� The model system. �a� The triangular
lattice of the external field and the two discrete orientational states
of the trimers. �b� Three interaction energies for the orientational
configurations of neighboring trimers.

FIG. 3. The two classes of equivalent bond vectors in the trimer
system. Note that the classes have the same symmetry as the cor-
responding trimer state, i.e., for Si=�.
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Note that due to the above explained dependence on the
orientation of the bond vector, the corresponding energy
“matrices” are not symmetric.

A global shift of the energy scale does not affect the phase
diagram, leaving two independent energy differences. Intro-
ducing the thermal scale kBT allows us to construct two di-
mensionless parameters, and naïvely one would expect a
two-dimensional phase diagram. However, we shall show
now that due to geometrical constraints there is a one-to-one
correspondence of the excitation spectrum of the colloidal
trimers and an Ising model on a triangular lattice. Since the
interaction energy is additive, it is sufficient to consider the
case of three collinear trimers—i.e., considering the smallest
neighborhood of trimers with representatives of both in-
equivalent bond orientations. If we fix the central trimer
there are 22 possible configurations of the two neighbors, all
of them are depicted in Fig. 4�a�. Then, flipping the central
trimer yields the energy changes ±�E ,0 where we have de-
fined �E	E1+E3−2E2. Although unexpected due to the
bond-oriented local interaction energies, the trimer system
reduces to an Ising model, i.e., with spins allowing for two
distinct orientations and a single energy scale �E for excita-
tions, see Fig. 4�b�. As a result of these considerations, the
Hamiltonian of Eq. �1� is equivalent to

H = − J�
�ij�

SiSj + H0, �3�

where ��ij� indicates the sum over all pairs of neighboring
spins, irrespective of the orientation of the pair with respect
to the lattice. The exchange energy J sets the scale for local
excitations and is related to the three interaction energies by

J =
1

4
�E =

1

4
�E1 − 2E2 + E3� . �4�

The additive constant can be evaluated to H0=− 3
4N�E1

+2E2+E3�. Although the energy scales possess the generic
ordering E1�E2�E3, the sign of the exchange coupling J
can attain in principle both negative and positive values. For
two-dimensional colloidal systems interacting via strongly
screened Coulomb interaction explicit evaluation yields posi-
tive values, i.e., ‘‘ferromagnetic’’ coupling. For systems with
different microscopic interactions, e.g., with paramagnetic

particles, an ‘‘antiferromagnetic’’ phase could possibly be
realized.

Let us emphasize that the mapping of the trimer Hamil-
tonian to an Ising model is different from the 1:1 correspon-
dence of a lattice gas model for a binary alloy to an Ising
system. There the nearest-neighbor interaction energy is pa-
rametrized also by three energy scales �AA ,�AB ,�BB corre-
sponding to a pair of two neighboring A atoms, a mixed pair
of an A and a B atom, and two B atoms. For the mixed pair
it is irrelevant whether atom A or B is left and right or up and
down. For the trimer problem the configurations where trim-
ers face each other or are back-to-back are energetically
rather different, see Fig. 2�b�.

For a two-dimensional Ising model an exact solution is
available for various lattice symmetries �27�. On a triangular
lattice the transition between the “ferromagnetic” and “para-
magnetic” phase occurs at kBTc=4J / ln 3. In the experiments
of Ref. �22�, the temperature is kept fixed and the intensity of
the external potential is varied. This variation is accompa-
nied by the change of the linear extensions of trimers, see the
Appendix, which further affects the strength of the exchange
energy J. Above some critical laser intensity the exchange
energy becomes smaller than the critical one,

J � Jc = kBT
ln 3

4
, �5�

and the orientational order of the trimer system is lost.
The mechanism of the order-disorder transition may be

paraphrased as follows: The increase of the laser potential
does not affect the colloid-colloid interaction, however, it
affects the effective trimer-trimer interaction. The size of the
composite objects is namely determined by the balance be-
tween the colloid-colloid screened Coulomb interaction and
the external laser potential. An increase of the laser potential
yields a stronger confinement of the colloids to the corre-
sponding laser spot �lattice site� and thus decreases the size
of the composite objects. Since the interaction of neighbor-
ing composites depends exponentially on the distance of
their respective constituents, the effective interaction be-
tween trimers weakens as the laser field is increased. At suf-
ficiently large intensity a thermodynamic phase transition to
an orientationally disordered phase occurs.

Employing experimental parameters from Ref. �22�, 1 /�
=570 nm for the inverse screening length, E0=3.4�104kBT
for the strength of the screened Coulomb interaction, and T
=295 K as room temperature �see also the Appendix� we
have determined the phase diagram in the (V0 /kBT , ��a�−1)
plane and compared it to the experimental results. Brunner
and Bechinger report that for V0=60kBT the trimer system
�realized for a lattice constant a=11.5 �m� is orientationally
ordered, whereas it is disordered for V0=110kBT. The critical
strength of the laser potential found in our calculations is in
striking agreement with these observations, i.e., V0c
=78.6kBT, see also Fig. 5. This agreement may appear a little
fortunate due to various experimental uncertainties. Further-
more, since the sample is confined by a boundary, one would
expect a rapid crossover rather than a sharp transition. The
presence of grain boundaries in some experimental systems

FIG. 4. �Color online� �a� Schematic representation of all pos-
sible situations for a trimer flip with the corresponding energy
changes; �E=E1+E3−2E2. �b� The same as in �a� but for spins of
the spin-1 /2 Ising Hamiltonian H=−J��ij�SiSj.
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has been interpreted as a signature of a first order transition.
It is reasonable to assume that the critical fluctuations are
observable only in a small region of the parameter space. A
more systematic study, similar to what has been performed in
the case of 1D periodic laser potentials �28�, would be highly
desirable, in particular, in the regime of larger lattice con-
stants and smaller screening lengths where the shape of the
phase boundary is more sensitive to control parameters.

We have also compared our theory to Langevin dynamics
simulation results of Reichhardt and Olson �23�. The phase
diagram is exhibited in Fig. 6 in the �V0 /E0 ,T /Tm

0 � plane.
Although the simulation has been performed for dimers on a
square lattice, the basic mechanism of the orientational
melting—and thus the corresponding behavior of the phase
boundaries—is robust with respect to the symmetry of the
composite objects and the underlying lattice. Note that the
parameter V0 /E0 is by two orders of magnitude smaller than
in the corresponding experimental setup; nevertheless, our
analytical solution captures the main features of the phase
boundary, i.e., shape and parameter range. The remaining
phase boundaries presented in the paper of Reichhardt and

Olson are connected to the fission of the composite objects
and are beyond the scope of our model.

Let us comment on the possibility to impose a small
uniaxial strain on the triangular lattice by varying the angles
of the incident laser beams. For small deformations the tri-
mers will merely stretch leaving the system still with two
orientational states per lattice site, see Fig. 7. Since the dis-
tances between pairs of trimers are now different in different
directions, the pair interactions become direction dependent.
The analysis for the excitations energies is now valid sepa-
rately for each direction of the three collinear trimers. For the
direction perpendicular to the uniaxial deformation the ex-
change energy differs from the remaining two, Ja and Jb,
respectively. The system is still represented by a two-
dimensional Ising Hamiltonian, however, with anisotropic
exchange energies. This system again allows for an exact
solution, in particular, the critical temperature is now deter-
mined by the equation �27�

e−4Ja/kBT + 2e−4Jb/kBT = 1. �6�

In conclusion, a small uniaxial strain leads only to a small
shift of the critical temperature but does not lead to any
qualitatively new phase behavior.

III. DIMERS

In this section we generalize the concepts introduced for
trimers and discuss the possibility of dimeric molecular crys-
tals and their corresponding phase diagram. Inclining the in-
cident laser beams with respect to the plane of the two-
dimensional colloidal system one can adjust the lattice
constant of the laser potential. Then, by appropriate matching
of the lattice constant to the colloidal particle density, one
can achieve an average of two particles per potential mini-
mum. For sufficiently large laser intensity, one expects that a
defect-free structure is formed, i.e., the composite objects of
the system are dimers. The symmetry of the lattice allows
now for three different orientational states per lattice site
denoted by �i=1,2 ,3, see Fig. 8�a�.

A. Dimer Hamiltonian

As in the case of trimers, the interaction of neighboring
dimers is the origin of orientational ordering, whereas the
balance of the internal repulsion and the laser pressure

FIG. 5. �Color online� Phase diagram of the colloidal trimer
system as a function of the strength of the external potential �in
units of kBT where T=295 K� and colloid-colloid interaction char-
acterized by a product of the inverse Debye length and the lattice
constant �solid line�. The two crosses correspond to the experimen-
tal observations reported in Ref. �22�. Insets: averaged local particle
densities as represented in Figs. 2�f� and 2�h� of Ref. �22�.

FIG. 6. �Color online� Phase diagram of the colloidal trimer
system as a function of the reduced strength of the external poten-
tial and temperature. Our model describes part of the phase diagram
corresponding to the orientational melting—solid line. Symbols
correspond to the results from the simulation of Reichhardt and
Olson, see Ref. �23�, Fig. 4.

FIG. 7. Schematic representation of the lattice with one trimer
and his neighbors for isotropic triangular lattice �middle� and
uniaxially deformed ones; below the angle between the horizontal
bond and the nonhorizontal one. Due to the symmetry, the exchange
coupling in the horizontal direction differs from the one in the re-
maining directions.
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merely yields the binding energy of the dimers. From Fig.
8�b� one infers that there are four interaction energies for the
32 configurations of neighboring dimers with generic order-
ing E1�E2�E3�E4. Explicit formulas for the relation to
experimental parameters are presented in the Appendix. The
dependence of the interaction of dimers on the orientation of
the bond vector follows from the symmetry of the composite
objects, i.e., there are three inequivalent pairs of lattice ori-
entations �=1, 2, 3, depicted in Fig. 8�c�. Since each pair of
equivalent lattice orientations is now collinear, reversing the
order of sites in a directed bond �ij�� yields a directed bond
within the same equivalence class. This implies that the local
interaction energy is symmetric with respect to exchange of
the dimers.

The total Hamiltonian of the two-dimensional dimer sys-
tem corresponds to a sum over all interactions of neighboring
dimer states. Denoting by �ij�� the pair of nearest neighbors
i , j whose bond vector is parallel to the orientation of the
dimer state �, the colloidal dimer Hamiltonian can be ex-
pressed in the following form:

H = �
�=1

3

�
�ij��

h��i,� j;�� . �7�

The direction-dependent local energy functionals h��i ,� j ;��
are given by

�8�

Note that the h��i ,� j ;�� are symmetric with respect to the
diagonal, and that they are related to each other through cy-
clic permutations, i.e., from �=1 to �=2 and from �=2 to
�=3 dimer states have to be permuted cyclically, 1→2
→3→1.

As noted in �26�, the four interaction energies do not enter
the phase diagram independently, but only two linear combi-
nations of these are relevant for the spectrum of excitations.
Introducing the thermal scale kBT, a two-dimensional phase
diagram characterizes the complete orientational ordering
scenario of the dimer system. Here we provide the full chain
of arguments leading to this reduction of control parameters.
First it is convenient to sum over the three inequivalent lat-
tice orientations separately, i.e., to split the Hamiltonian into
H=��H� with H�=��ij��

h��i ,� j ;��. Then the correspond-
ing Hamiltonian for each direction can be rewritten in a
“spin nomenclature” as a generalized spin-1-Ising or gener-
alized Potts model. Here we present the derivation for �=1,
the results for the remaining directions follow by cyclic per-
mutations. The local energy functional can be represented as
a sum of four simpler functionals,

h��i,� j;1� = �
r=1

4

hr��i,� j;1� , �9�

where the hr��i ,� j ;1�	hr are given in terms of

�10�

and each contribution is parametrized in terms of a single
energy scale,

K = − �E1 − E2� ,

L = E3 − E2,

M = − �E4 − E1 − 2E3 + 2E2� . �11�

Due to the generic ordering of the interaction energies of
colloidal dimers, the parameters K and L are expected to be
positive, while M may attain both signs in general. The func-
tionals allow for a direct interpretation: First, h1 favors
dimers to be in the same state, second, h2 gives an extra

FIG. 8. �Color online� The model system. �a� The triangular
lattice of the external field and the three discrete orientational states
of the dimers. �b� Four interaction energies for the orientational
configurations of neighboring dimers. �c� The three classes of
equivalent bond vectors in the dimer system. The groups have the
same symmetry as the corresponding dimer state, i.e., for �i=�.
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contribution if a dimer is aligned with the bond vector con-
necting the dimers. Third, h3 accounts for the high symmetry
configuration, viz. both dimers aligned with the bond vector.
Fourth, h4 is independent of the configuration and corre-
sponds to global total shift of the energy. The functionals
hr��i ,� j ;�� are easily reexpressed in terms of Kronecker
symbols, and one obtains for the local energy functional

h��i,� j;�� = − K	�i,�j
+ L�	�i,�

+ 	�j,�
� − M	�i,�

	�j,�
+ E2.

�12�

Collecting results the total Hamiltonian reads

H = �
�=1

3

�
�ij��

�− K	�i,�j
− M	�i,�

	�j,�
� + �

�=1

3

�
�ij��

�L�	�i,�

+ 	�j,�
� + E2� . �13�

The second sum evaluates to a constant once the sum over all
pairs and directions is performed, ����ij��

�L�	�i,�
+	�j,�

�
+E2�=N�E2+2E3�. The phase behavior is unaffected by this
global shift of energy, thus we discard the constant, and after
rearranging terms, one arrives at the final expression for col-
loidal dimer Hamiltonian

H = − K�
�ij�

	�i,�j
− M�

�=1

3

�
�ij��

	�i,�
	�j,�

. �14�

The excitation spectrum of orientational flips is governed
solely by the two energy scales K ,M to be compared to the
thermal one kBT, and the phase diagram reduces to a two-
dimensional plane. The K term accounts for the energy
gained if two neighboring dimers are in the same orienta-
tional state, see Fig. 8�b�, E4 or E1. The M term distinguishes
the high symmetry state of alignment of the dimers with the
lattice bond vector, Fig. 8�b�, E4. This coupling between spin
configuration and orientation of the bond vector has a close
analog in the magnetic dipole-dipole interaction of localized
spins on a lattice.

The spin Hamiltonian of Eq. �14� can be interpreted as a
generalization of a q-state Potts model, the natural extension
of the Ising model. In these systems, each “spin” i can be in
one of the �i=1, . . . ,q equivalent states. The only energetic
contribution occurs if two neighboring spins are in the same
state, i.e.,

H = − J�
�ij�

	�i,�j
. �15�

It is obvious that the colloidal dimer Hamiltonian reduces to
a three-state Potts model if M =0.

There have been intensive studies of the critical properties
of ferromagnetic, J
0, as well as antiferromagnetic, J�0,
Potts models for various lattice geometries in two and three
dimensions. In particular, a rigorous solution of the ferro-
magnetic Potts model in two dimensions is available �29,30�
for a square, triangular, and honeycomb lattice for q=2
�Ising� and q�4. The melting of the ferromagnetic phase to
the paramagnetic one occurs via a continuous phase transi-
tion for the case of q=2, 4 and via a discontinuous one for
q
4. For both cases the exact value of the critical tempera-

ture for the triangular lattice is given by �27,30�

exp
J

kBTc
= 2 cos
2

3
cos−1��q

2
� ; q = 2,4,

exp
J

kBTc
= 2 cosh
2

3
cosh−1��q

2
� ; q � 4. �16�

Unfortunately, for the interesting case of q=3 neither the
method of transfer matrices �for the Ising model� nor the
circle theorem �27� for the vertex model �for q�4 Potts
models� is applicable. Nevertheless, since the critical point in
Eq. �16� agrees with the exact Ising result, it is expected that
it holds also for q=3. There is also strong numerical evi-
dence by Monte Carlo simulations �30,31� that the critical
temperature is still given by Eq. �16�. Furthermore, Monte
Carlo simulations as well as renormalization group analysis
corroborate a continuous transition scenario �30� for q=3.

It is interesting to note that a standard mean-field analysis
gives a qualitatively wrong result as far as the nature of the
transition is concerned, i.e., a discontinuous scenario is pre-
dicted for q�3. The value of the critical temperature is over-
estimated,

kBTMF =
3J

2 ln 2
, �17�

with respect to the tentatively exact value kBTc
=J / ln�2 cos�� /9�� by a factor of 1.3654 similar to the case
of the two-dimensional �2D� Ising model. Since we recover
the three-state Potts model as a special case of the colloidal
dimer Hamiltonian, Eq. �14�, one expects that the mean-field
analysis fails to predict the correct nature of the transitions
also in the case of the colloidal dimer Hamiltonian.

For negative exchange coupling J with a low-temperature
antiferromagnetic state there are no exact solutions known.
For triangular lattices renormalization group �RG� studies
�32�, series analysis �33�, and Monte Carlo simulations �34�
give for the critical point a numerical estimate kBTc
�J / ln�0.206�. On the other hand, there is no general con-
sensus on the nature of the transition. Extrapolated series
expansions and Monte Carlo simulations find the transition
to be discontinuous, whereas renormalization group analysis
yields a continuous phase change �30�.

B. Mean-field description

A rigorous solution of the colloidal dimer problem is cer-
tainly desirable, however, it would imply an analytic solution
of the three-state Potts model as a special case, a problem
that remains unsolved despite considerable efforts �27,30�.
Approximate methods are required to gain further insight
into the phase behavior. Mean-field theory has proven a pow-
erful tool that allows us to identify the global topology of the
phase diagram, in particular, the coexistence of phases of
different broken symmetries, as well as to provide approxi-
mate numbers for the location of phase boundaries. The re-
sults of such a mean-field analysis also provide a useful ref-
erence for a numerical simulation by Monte Carlo methods
which will be presented in Sec. III C.
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We use the framework of variational mean-field theory
and determine the optimal distribution of dimer states within
a restricted class of density matrices �1�. The normalized
equilibrium density matrix =Z−1 exp�−�H�, with inverse
temperature �=1/kBT, is difficult to obtain since the parti-
tion sum Z=Tr�exp�−�H�� usually cannot be evaluated ex-
actly. To overcome this problem it is favorable to approxi-
mate  by a product of single-site density matrices i,

���i�� = �
i

i��i� , �18�

i.e., spins at different sites are taken as uncorrelated. The
quantities i��i� represent the probability to find the dimer at
site i in state �i. Normalization implies in particular
��i

i��i�=1. The free energy corresponding to a system rep-
resented by a density matrix as in Eq. �18� results from the
usual balance energy vs entropy F=E−TS, where the
mean energy E and the entropy S are evaluated by the rules
of statistical mechanics,

E = �H�, S = − kB�ln �, �19�

where �¯� denotes averaging with respect to the approxi-
mate distribution of Eq. �18�. One can show in general that
Bogolyubov’s inequality �1� sets a lower bound to F,

F = Tr�H� + kBTTr� ln � � F . �20�

Here F denotes the exact thermodynamic free energy. The
idea of the variational mean-field method is to find the
single-particle i��i� that yields the variational mean-field
free energy F closest to the thermodynamic one, viz. F.

For the colloidal dimer Hamiltonian the variational mean-
field free energy reads

F = − K�
�ij�

�
�

i��� j��� − M�
�

�
�ij��

i��� j���

+ kBT�
i

�
�

i���ln�i���� . �21�

Note that in the M term the spin orientation and the lattice
bond are aligned, �=�. This expression for the free energy is
still subject to the minimization procedure with respect to
appropriate sets of single-site density matrices.

The symmetries of the dimer states in the broken symme-
try phase have to be reflected in the Ansatz for the i��i�. In
general, one introduces a number of sublattices each com-
prising a set of equivalent lattice sites with respect to orien-
tational order.

In the simplest case, all lattice sites are equivalent and the
only phase transition allowed separates a paramagnetic
phase from a ferromagnetic one. The suitable density matrix
is therefore site-independent,

i��i� 	 ��i� � �i
. �22�

Upon substituting this Ansatz in the mean-field free energy,
Eq. �21�, yields the free energy density, i.e., free energy per
lattice site, f =F /N,

f = − �3K + M��
�

�
2 + kBT�

�

� ln �. �23�

Let us note that within the single-site mean-field description,
the parameters K and M appear only in the combination
3K+M. Applying the same procedure for the three-state
Potts model gives an identical expression for the free energy
density provided 3K+M is substituted by J.

A ferromagnetic �FM� phase is characterized by a broken
symmetry, i.e., a particular dimer state is preferred with re-
spect to the remaining ones. The single dimer excitations
with respect to the ferromagnetic ground state are degener-
ate, i.e., the two possible minority orientations are equally
probable. By the symmetry of the FM phase, this property is
preserved in the whole phase region. Selecting the majority
component as the �=1 state, we parametrize 1= �1
+2m� /3 by a generalized magnetization m. The minority
probabilities are determined by the normalization ���=1 to
2=3= �1−m� /3. The magnetization is restricted to −1/2
�m�1, and the fully aligned ferromagnetic state corre-
sponds to m=1, whereas the paramagnetic one is given by
m=0. A negative magnetization would indicate that the dis-
tinguished spin state is less probable than the remaining two.
Hence there is an inherent asymmetry m�−m in the mean-
field description, and, as we shall see later, all transitions
within this mean-field approach are �falsely� predicted to be
discontinuous, similar to the case of a pure Potts model.

Substitution into Eq. �23� yields the excess free energy of
the ferromagnetic phase with respect to paramagnetic one,

fFM−fP

kBT
= −

2�

3
m2 +

1 + 2m

3
ln�1 + 2m� + 2

1 − m

3
ln�1 − m� ,

�24�

which depends on the effective parameter �=��3K+M�. The
corresponding graph is shown in Fig. 9�a�. One infers the
typical characteristics of a first order phase transition, e.g., a
discontinuous change of the order parameter and metastable
states.

FIG. 9. �a� Free energy as a function of the magnetization for
various temperatures above, below, and at the critical point. Local
minima correspond to metastable phases. �b� Mean-field tempera-
ture dependence of the magnetization for the ferromagnetic phase
of the colloidal dimer Hamiltonian. At the critical temperature,
T /Tc=1, the order parameter exhibits a jump.
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The equation of state for the magnetization is obtained by
minimizing fFM with respect to m,

2�m = ln
1 + 2m

1 − m
. �25�

One infers that m=0, corresponding to the paramagnetic
phase, is always a solution to this equation. Depending on
the value of the effective parameter � nontrivial solutions
may occur that exhibit lower mean-field free energies than
the paramagnetic one, fP=−kBT�� /3−ln 3�. For infinite tem-
peratures ��=0� the solution to this equation reduces to the
paramagnet �m=0�, whereas at zero temperature ��→�� full
alignment of the ferromagnet �m=1� occurs. The complete
temperature dependence of the magnetization is depicted in
Fig. 9�b�.

The thermodynamic transition from a paramagnetic phase
�P� occurs at the temperature Tc when the nontrivial mini-
mum of the free energy fFM equals the one of the paramag-
netic state fP. With the help of the equation of state, Eq. �25�,
one finds for the critical effective parameter �c=2 ln 2, which
implies for the critical temperature

FM-P: kBTc =
3K + M

2 ln 2
. �26�

Representing the phase diagram in terms of the dimension-
less parameters kBT / �K� and M / �K�, the FM-P phase bound-
ary yields a straight line, see Fig. 10.

The magnetization at the critical point is finite and attains
the value mc=1/2. The jump in the derivative of free energy
density with respect to temperature at the phase transition
implies a latent heat per dimer which evaluates to ql /kBTc
=ln�2� /3. The heat capacity jumps at Tc by �cN= �8kB /3�
��ln2�2� / �3−4 ln�2���. Note that these quantities are univer-
sal in the sense that they do not depend on the parameters K

and M, i.e., they are constant along the whole phase bound-
ary. The mean-field analysis appears to be qualitatively cor-
rect for K�0, whereas for K
0 the simulation results sug-
gest that fluctuations render the phase transition to a
continuous one, as will be discussed in detail in Sec. III C.

The ferromagnetic phase represents only the simplest bro-
ken symmetry. Spatially varying order parameters give rise
to complex phase behavior, in particular, the sites fall into
different classes of sublattices. Comparing the exact ground
state energies of different ordered structures, one can infer
the possible broken symmetry phase at low temperatures. In
total, we have found four ordered phases of different sym-
metry, see Fig. 11, that are thermodynamically stable in dif-
ferent regions of the phase diagram, depicted in Fig. 10. In
addition to the ferromagnetic one, there appears an antiferro-
magnetic �AM� phase stable for K�0 and not too large M.
Here, in the fully ordered state, neighboring dimers are in
different orientational states. On the triangular lattice this
implies that each dimer is surrounded by three neighbors of a
configuration rotated by 60° and by three neighbors of a
configuration rotated by −60� with respect to the configura-
tion of the central dimer. There are three triangular sublat-
tices with a lattice constant of a�3 and the sublattices are
equivalent in the sense that each of them can be obtained by
a spatial translation with a simultaneous rotation of the
dimers of any other one. For positive K and sufficiently
negative M a herringbone �HB� structure represents the state
of lowest free energy, see Fig. 11. Statistically equivalent
dimers are arranged in two sets of rows, the majority orien-
tational states corresponding to the ones not parallel to the
orientation of the rows. Finally, we have found that interven-
ing in between the FM and AM for K�0 there appears a
phase of four triangular sublattices. Three of them are
equivalent in the sense mentioned above, the fourth one ex-
hibiting no preferred orientation. We refer to it as Japanese 6
in 1 phase �J6/1�, due to its resemblance to a weaving pattern
for chain mails worn by samurais in the 14th century �35�.

FIG. 10. �Color online� Phase diagram for colloidal dimers.
Solid lines represent first order transitions derived from the mean
field �MF� description and the dashed line after the tricritical point
represents a line of second order transitions. Dots and triangles
denote the respective continuous and discontinuous transition points
as obtained by Monte Carlo �MC� simulations �lines connecting the
symbols are guides to the eye�; the two encircled symbols indicate
the pure Potts transitions. Dotted lines represent the extrapolation of
the critical point of the Potts model, see text.

FIG. 11. �Color online� Ground state ordered structures of 2D
colloidal dimers: ferromagnetic �FM�, herringbone �HB�, Potts an-
tiferromagnetic �AM�, and Japanese 6 in 1 �J6/1�, structure. In the
latter, the energy of the system does not depend on the orientation
of dimers on sites denoted by circles.
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To describe these complex phases generalized Ansätze
have to be used for the density matrix. Then the site depen-
dence of the components of i��i� is encoded in the sublat-
tice � the site i belongs to, i.e.,

i��i� = �i

� ; i � sublattice � . �27�

Some of the density matrices �
� are related by permutations

of dimer states. Explicitly, for the AM phase as well as for
the HB the sublattices are equivalent, so that only one den-
sity matrix characterizes the order of the system. For the J6/1
phase the order in the three equivalent sublattices is deter-
mined by one nontrivial density matrix, whereas the fourth
one attributes equal probabilities to all dimer orientations.
Let us mention that an additional symmetry occurs for the
AM and J6/1 phase. Here, the two minority orientations are
equivalent as was the case in the FM phase. The correspond-
ing density matrix is parametrized by a single number, a
generalized magnetization m defined on a sublattice. The
situation is different for the HB phase. An excitation of a
dimer to the majority orientation of the neighboring row is in
general different from aligning the dimer with the orientation
of the row. Correspondingly, the density matrix in the HB
phase requires two parameters.

The three sublattices for the antiferromagnetic phase are
inferred from the ground state represented in Fig. 11. The
single-site density matrices corresponding to the sublattices
A ,B ,C, see Eq. �27�, are parametrized by

1
A = 2

B = 3
C = �1 + 2m�/3,

2,3
A = 1,3

B = 1,2
C = �1 − m�/3. �28�

The excess free energy density of the antiferromagnet is then
obtained by substituting this Ansatz into Eq. �21�,

fAM − fP

kBT
= −

2�

3
m2 +

1 + 2m

3
ln�1 + 2m� + 2

1 − m

3
ln�1 − m� ,

�29�

where the sole parameter entering this expression is given by
�=−��3K+M� /2. The shape of the free energy density fAM

as a function of temperature is identical to the one of the
ferromagnetic phase fFM, see Fig. 9. The equation of state for
the sublattice magnetization m is thus obtained by replacing
� by � in Eq. �25�, i.e., 2�m=ln��1+2m� / �1−m��. The same
substitution for the critical temperature, Eq. �26�, yields

AM-P: kBTc = −
3K + M

4 ln 2
. �30�

The AM-P phase boundary is represented by a straight line
in the T / �K�−M / �K� phase diagram, Fig. 10. The latent heat
and the excess of the heat capacity are again the same as for
the FM phase provided one substitutes � with �.

For the Japanese 6 in 1 phase the appropriate Ansatz for
the three equivalent sublattices �A ,B ,C� is identical to the
antiferromagnetic case, Eq. �28�, whereas the fourth �O� is
degenerate,

1,2,3
O = 1/3. �31�

The excess free energy density for the J6/1 symmetry is
readily obtained,

fJ6/1 − fP

kBT
=

3

4
�−

2�

3
m2 +

1 + 2m

3
ln�1 + 2m�

+ 2
1 − m

3
ln�1 − m� . �32�

Here �=−��3K−M� /3 denotes the sole effective parameter.
Up to the multiplicative constant 3 /4 the excess free energy
density of the J6/1 phase is identical to the excess free en-
ergy densities of the FM and AM phases discussed above,
provided � is substituted by � or �, respectively. The prefac-
tor 3 /4 arises since only three of the four sublattices exhibit
a broken symmetry. The equation of state obtained as the
derivative of the free energy density with respect to the sub-
lattice magnetization m is again formally identical to the
cases discussed above, 2�m=ln��1+2m� / �1−m��. The criti-
cal temperature for the J6/1-P phase transition is readily ob-
tained via the substitution rule, yielding �c=2 ln 2 and

J6/1-P: kBTc = −
3K − M

6 ln 2
. �33�

The J6/1-P phase boundary is indicated in Fig. 10. Since
only three of the four sublattices exhibit a broken symmetry,
the latent heat as well as the jump of the heat capacity at the
phase transition are 3/4 of the universal values of the FM-P
or AM-P transitions.

The herringbone structure �HB� requires two parameters,
one for the majority magnetization m and a second “biaxial-
ity” parameter n for the asymmetry of the minority orienta-
tions. The need for the biaxiality parameter becomes clear if
one considers excitations of HB ground state. A single dimer
flip to the orientation of the neighboring row costs an energy
of �E=−2K−2M, whereas aligning it with the row induces
an energy change of only �E=2K. �Note that the single
dimer excitation energies become degenerate for M =−2K.�
The low temperature excitations of the HB structure are rep-
resented by a dilute gas of defects of the latter kind. Consid-
ering the sign of the single-dimer excitation energies an es-
timate for the stability of the HB structure at low
temperatures is possible, i.e., for positive K and sufficiently
large negative M.

For the parametrization of the sublattice single-site den-
sity matrices we choose

2
A = 3

B = �1 + 2m�/3,

1,3
A = 1,2

B = �1 − m ± n�/3. �34�

Then the free energy density corresponding to the HB sym-
metry reads
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fHB − fP

kBT
=

M

3kBT
m2 −

4K + M

9kBT
n2 +

2�2K + M�
3kBT

mn

+
1 + 2m

3
ln�1 + 2m� +

1 − m + n

3
ln�1 − m + n�

+
1 − m − n

3
ln�1 − m − n� . �35�

The excess free energy is subject to a simultaneous minimi-
zation with respect to both order parameters m ,n. In general,
one cannot find an analytic solution of the equations of state,

kBT ln
1 − m + n

1 − m − n
= − 2�2K + M�m +

2

3
�4K + M�n ,

kBT ln
�1 + 2m�2

�1 − m�2 − n2 = − 2Mm − 2�2K + M�n . �36�

The generic behavior close to the HB-P phase transition is
illustrated in Fig. 12 for a path of constant M / �K� close to the
HB-FM line and one starting deep in the HB phase.

For the case of a continuous transition the transition tem-
perature can be obtained analytically by expanding the ex-
cess free energy density in powers of the small quantities m
and n, which up to quadratic order reads

fHB − fP

kBT
= � M

3kBT
+ 1m2 +

4K + 2M

3kBT
mn + �1 −

4K + M

3kBT
n2

3
.

�37�

The quadratic form ceases to be positive definite and the
paramagnetic phase becomes unstable via a continuous tran-
sition at the critical temperature,

HB-P, M � −
7K

3
: kBTc = −

2�K + M�
3

, �38�

and the critical direction is along the diagonal �m ,n�
��1,1�, i.e., the order parameters become equal close to the
transition, see Fig. 12. In the regime −2K�M �−7K /3 the
melting of the HB structure towards the paramagnetic phase
is discontinuous. The tricritical point, where the order of the
phase transition changes, can be determined again by local
considerations. A suitable nonlinear transformation of vari-
ables �m ,n�, shows that the origin becomes unstable with

respect to higher order terms along the critical direction at
M =−7K /3, kBT3c=8K /9.

For M =−2K the excitation energies of the isolated single-
dimer flips in the HB structure become degenerate. This is
reflected by the fact that the excess free energy, Eq. �35�,
exhibits the additional symmetry n→−n along this line. At
zero temperature the HB phase is perfectly ordered �m=1,
n=0�, i.e., in a n-symmetric phase. Increasing the tempera-
ture does not give rise to a continuous or discontinuous
n-symmetry breaking, so n	0 holds along the M =−2K line
for all temperatures. With this observation in mind, one
checks that the mean-field free energy density of the HB
phase for M =−2K equals the one of the FM phase for all
temperatures. Thus the line M =−2K is a coexistence line of
the two neighboring phases. The special point for the discon-
tinuous transition to the P phase, kBTc=K / �2 ln 2�, consti-
tutes a triple point where FM, HB, and P phases coexist.

The remaining coexistence lines between different or-
dered phases, i.e., for K�0 between FM and J6/1 and be-
tween AM and J6/1, can only be determined numerically and
are included in the phase diagram. Here we present in short
approximate analytical solutions in terms of asymptotic low-
temperature expansions.

At the coexistence line the free energy densities of the
two coexisting phases are equal. In particular, for the FM-
J6/1 line fFM�mFM,T�= fJ6/1�mJ6/1 ,T�, where fFM and fJ6/1 are
defined in Eqs. �24� and �32� and the m’s are solutions of the
corresponding equations of state. For T→0 �M / �K��5�,
mFM, mJ6/1�1 which yields the coexistence line

FM-J6/1,M/�K� � 5: kBTc �
2�5K + M�

ln 3
. �39�

Close to the FM-J6/1-P triple point, M =6�K�, kBT
=3 �K � / �2 ln 2�, the magnetizations approximately take their
critical values, mFM, mJ6/1�mc=1/2, and give rise to

FM-J6/1, M/�K� � 6: kBTc =
3�5K + M�

2 ln 2
. �40�

For the AM-J6/1 line an equivalent procedure with the same
approximate solutions for the magnetizations close to the
ground state or triple point results in

AM-J6/1, M/�K� � 1: kBTc � −
2�K + M�

ln 3
, �41�

M/�K� �
3

5
: kBTc � −

3�K + M�
2 ln 2

. �42�

Analytical expressions for exact or approximate critical lines
are gathered in Table I and the mean-field special lines, i.e.,
tricritical and triple points, in Table II.

C. Results of the Monte Carlo simulations

In this subsection we exemplify the phase behavior of the
colloidal dimer system by numerical exact means, i.e.,
Monte Carlo methods. In particular, we corroborate the ex-
istence of all the phases discussed within the mean-field

FIG. 12. Order parameters m and n as a function of temperature
for a path of constant M /K. �a� A discontinuous phase transition
characterized by a jump of m and n for M /K=−2.1 and �b� a con-
tinuous phase transition for M /K=−5.
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analysis and address the nature of the phase boundaries sepa-
rating the corresponding phases of broken symmetry. The
results obtained within mean field thereby play a crucial role
to identify the relevant order parameters to be monitored.

The standard Metropolis algorithm �36� has been em-
ployed to generate a sequence of configurations representa-
tive for the canonical ensemble to some specified tempera-
ture. The starting configuration for the lowest temperature
has been chosen as the perfectly ordered �exact� ground state
corresponding to the pair of energy scales �K ,M�. The tem-
perature has been increased gradually starting from the rep-
resentative configuration of the previous parameter set. We
have considered systems of different sizes subject to periodic
boundary conditions. Explicitly, the number of rows L, each
consisting of L dimers, has been varied, L=12,32,52,102,
to ensure that the results have approached the infinite system
size limit. Before actual data were collected the system has
been carefully equilibrated by performing up to several thou-
sand Monte Carlo cycles. Each Monte Carlo cycle consists
of N ln N �46� attempted dimer flips, where N=L2 is the total
number of dimers in the system. To ensure that the configu-
rations entering the data analysis are statistically indepen-

dent, we have considered configurations separated by up to
1000 Monte Carlo cycles in the vicinity of a phase transition.

To characterize the broken symmetry phases we have con-
sidered the respective order parameters. For example, in the
ferromagnetic case the fluctuating magnetization reads

M =
N�

N
−

1

2

�
���

N�

N
. �43�

Here, N� is the fluctuating number of dimers in the state �.
In particular, N� corresponds to the majority orientation in
the given configuration, and N=��N� is the total number of
the dimers in the system. The macroscopic magnetization
m= �M� is evaluated by averaging over the statistically in-
dependent configurations obtained as discussed above. We
have also measured the variance, ��	M�2�, 	M=M−m,
which is related to a generalized susceptibility,

� =
1

kBT
��M − m�2� , �44�

by a fluctuation-dissipation theorem. Furthermore, we have
computed the average energy U= �H� �with u=U /N we will
denote the average energy per dimer� as well as the corre-
sponding variance related to the specific heat per dimer,

cN =
1

NkBT2 ��H − U�2� . �45�

For the other broken symmetries the fluctuating sublattice
magnetizations are defined to reproduce the definitions given
in the previous section.

In the following, the phase behavior as well as the phase
transitions for the different cases will be illustrated. Since a
mean-field result does not always predict the correct qualita-
tive behavior, in particular the order of the phase transition,
see Sec. III B, we have put considerable effort to investigate
the nature of the phase boundaries.

1. Ferromagnetic system

By comparison of the free energies of different ordered
configurations we have found that the ground state with the
ferromagnetic broken symmetry is realized for K
0 with
M /K
−2 and for K�0 with M / �K�
5. Due to the different
mechanism of the ferromagnetic ordering in the two cases,
the corresponding phase transitions to the paramagnetic
phase differ in their nature and characteristics. In the follow-
ing we will discuss the two regions separately.

�i� For K
0 the parallel ordering of dimers is favored by
the K term of the colloidal dimer Hamiltonian, Eq. �14�, i.e.,
by its Potts part. In addition, the remaining M term also
favors this preference and effectively rescales the energy
scale K in the same way as it has resulted from the mean-
field description. In essence, in this regime the colloidal
dimer system can be described by an effective Hamiltonian,
Heff=−Keff��ij�	�i,�j

, where Keff=K+M /3. Our Monte Carlo
simulations are in agreement with the known results for such
a Hamiltonian. The FM-P phase transition is clearly continu-
ous as can be inferred from the pronounced fluctuations of

TABLE I. Phase boundaries obtained in mean-field theory. The
approximate results for the J6/1-FM and J6/1-AM transition corre-
spond to the asymptotic low-temperature �high-temperature�
solution.

Transition Critical line

K
0

FM-P kBTc= �3K+M� / �2 ln 2�
HB-P kBTc=−�2/3��K+M�, M �−7K /3

FM-HB M =−2 K

K�0

FM-P kBTc= �3K+M� / �2 ln 2�
J6 /1-P kBTc= �−3K+M� / �6 ln 2�
AM-P kBTc=−�3K+M� / �4 ln 2�
J6/1-FM kBTc�3�5K+M� / �2 ln 2�, M �6 �K�

kBTc�2�5K+M� / ln 3, M �5 �K�
J6/1-AM kBTc�−3�K+M� / �2 ln 2�, M �3 �K � /5

kBTc�−2�K+M� / ln 3, M � �K�

TABLE II. Mean-field special points.

Coexisting phases �kBT / �K� ,M / �K��

K
0

FM-HB-P �1/ �2 ln 2� ,−2�
HB-P tricritical point �8/9 ,−7/3�

K�0

FM-J6/1-P �3/ �2 ln 2� ,6�
AM-J6/1-P �3/ �5 ln 2� ,3 /5�
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the magnetization and energy in the vicinity of the transition,
see Fig. 13. Furthermore, the distribution functions of the
magnetization and energy per dimer exhibit only a single
peak in the whole temperature range under consideration
�not shown�.

The critical temperature of the FM-P transition closely
follows the “exact” value of the Potts Hamiltonian, Eq. �16�,
provided the exchange coupling J is replaced by the above
mentioned effective energy scale Keff. Only close to the co-
existence region with the HB phase, for −1
M / �K�
−2,
the critical temperature deviates from the scaling law in Keff
and the ferromagnetic order melts before the Potts critical
temperature is reached, see Fig. 10. Nevertheless, within the
numerical precision the nature of the transition remains un-
affected.

�ii� For K�0 the Potts term of the colloidal dimer Hamil-
tonian, Eq. �14�, disfavors ferromagnetic order and antiferro-
magnetic order would be expected. However, for high values
of the energy scale M, explicitly for M / �K�
5, the term
favoring the alignment of neighboring dimers along the line
connecting them dominates, and the system exhibits a FM
symmetry at low temperatures.

The critical properties as well as the mechanism of the
transition to the P phase are expected to differ from those of
the Potts Hamiltonian. Indeed, the MC simulations of the full
Hamiltonian reveal that the phase change is discontinuous.
At the critical point the systems “jumps” between the two
degenerate, FM and P, phases, and typical snapshots reveal
phase coexistence regions at the critical point �not shown�.
The discontinuous nature of the transition is also evidenced
by the fluctuations of the order parameter and energy, see
Fig. 14.

The occurrence of metastable phases can be quantified by
determining the distribution functions for the fluctuating val-
ues of the order parameter and energy per dimer �37�. We
have carefully collected their distributions in the vicinity of
the transition and confirm a discontinuous transition.

2. Herringbone phase

The broken symmetry state with a herringbone pattern is
realized for K
0 and M /K�−2. Within mean-field theory

we have shown that its ordering is described by two order
parameters, i.e., the magnetization m and the biaxiality pa-
rameter n. In MC simulations we have monitored them both.

Qualitatively, the MC temperature dependences of m and
n are the same as the ones determined within the mean-field
description. We find a discontinuous phase change for
M /K�−2, identified by jumps of the magnetization and en-
ergy per dimer at the critical temperature. The jump of the
biaxiality parameter is masked by rounding due to the finite
size of the system. However, we find a sharp increase upon
approaching the critical point from below, similar to the one
found within the mean-field description, see Fig. 15. For in-
creasing negative values of M /K the latent heat decreases, so
that below M /K=−4 we cannot distinguish between a

FIG. 15. The herringbone system �K
0, M /K=−2.1�. Tempera-
ture dependence �a� of the order parameter and its variance and �b�
of the energy per dimer and its variance. The distribution functions
�c� of the order parameter and �d� energy per dimer. At the phase
transition, note the bimodal structure characteristic for a discontinu-
ous phase transition.

FIG. 13. The ferromagnetic system �K
0, M /K=1�. Tempera-
ture dependence �a� of the order parameter and its variance and �b�
of the energy per dimer and its variance. Both indicate a continuous
nature of the phase transition.

FIG. 14. The ferromagnetic system �K�0, M / �K�=5.5�. Tem-
perature dependence �a� of the order parameter and its variance and
�b� of the energy per dimer and its variance �right�. Both indicate a
discontinuous nature of the phase transition.
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weakly discontinuous and a continuous transitions. Corre-
spondingly, it is difficult to clearly corroborate the existence
of the tricritical point predicted by mean field at M /K=
−7/3, let alone to determine its position. Monitoring the
probability distribution of the order parameters suggests that
indeed there is a change of the nature of the phase transition
in the vicinity of the mean-field prediction.

It is known that quantitatively, the effect of fluctuations
decreases the critical temperature obtained within mean field.
As it can be clearly seen in Fig. 10, for the HB-P transition
this appears to be not the only effect. If in the interval −2

M /K�−3 there is still some evidence of the scaling law
similar to the one found within the mean-field description,
this practically vanishes for M /K�−3. Finally, for M /K�
−4 the critical temperature “saturates” at a value kBTc /K
�0.6, i.e., it does not depend any more on the energy ratio
M /K.

To rationalize this finding, let us recall the expression for
the colloidal dimer Hamiltonian �14�. The first, K term favors
for K
0 parallel alignment of dimers. On the other hand,
the M-term with a large negative value of M strongly sup-
presses parallel alignment in which the two dimers face each
other—to be referred to as an M pair, Fig. 8�b�. As a conse-
quence, the probability of finding M pairs in either of the two
phases, HB or P, is rapidly decreasing with increasing nega-
tive values of M /K. The number of M pairs as a function of
M /K is shown in Fig. 16 for three paths of a constant tem-
perature, viz. in the HB phase, in the P phase, and at the
intermediate temperature kBT /K=0.58 for which the system
traverses the phase boundary from HB to P at M /K�−3.7.
For large enough negative M the role of the M term is only
to reduce the number of degrees of freedom in the system.
Then the corresponding critical behavior depends solely on
the relative magnitude of the exchange energy K with respect
to the thermal energy kBT. In the �kBT / �K� ,M / �K�� phase
diagram such a phase boundary is represented by a straight
vertical line. Within mean field the reduction of the number

of degrees of freedom for the configurations of dimer pairs is
not properly captured. Thus the role of the M term is as in all
the other cases reduced to effectively rescale the exchange
energy K.

3. Antiferromagnetic phase

The ground state of the antiferromagnetically ordered
phase occurs in colloidal dimer systems with K�0, M / �K�
�1. As discussed in Sec. III B, its order can be described by
a single order parameter—a sublattice magnetization m,
where the system is divided into three triangular sublattices.

The AM-P phase transition is discontinuous �see Fig. 17�
in the whole range of the stable AM phase. In contradiction
to the universal jump of the latent heat and heat capacity
determined by the mean-field approach, the MC results show
slightly decreasing strength of the discontinuity of the tran-
sition when M / �K� is increased towards 1. At the special
point, M =0, where the colloidal dimer Hamiltonian reduces
to the Potts model, our results match the ones known for the
Potts antiferromagnet �30,34�. Applying again the empirical
shift of the mean-field analysis to match the antiferromag-
netic Potts point gives a satisfactory description of the phase
boundary for M / �K��1, see Fig. 10. For highly negative
M / �K� the critical temperature saturates as is the case of the
HB-P transition. The saturation again originates in the sup-
pression of M pairs as already discussed above.

4. Japanese 6 in 1 system

For K�0, squeezed between the FM and AM phases one
observes the new J6/1 phase. Its highly degenerate ground
state is stable for 1�M / �K��5. The degeneracy of the J6/1
phase originates in the disordered nature of one of its sublat-
tices. A typical snapshot of a ground state in the J6/1 phase is
presented in Fig. 18. In addition, a schematic representation
and a picture of a chain mail using the Japanese 6 in 1 weav-
ing pattern �35� from which we have borrowed the name are
plotted.

The MC simulations corroborate the division of the J6/1
system into four triangular sublattices. Three of them are
equivalent and ordered with mutually different preferred
dimer orientations for temperatures below the critical one.

FIG. 16. The probability of finding an M pair �p�M pairs�
=NM-pairs /3N� in a herringbone system in the HB phase �kBT /K
=0.34�, close to the saturated value of the critical temperature �
kBT /K=0.58 and kBTc /K�0.6�, and well in the P phase �kBT /K
=1� as a function of M /K. Note that the equilibrium probability for
M pairs in the normal P phase �where the probabilities of all dimer
orientations are equal, as well as the probabilities of all configura-
tions of dimer pairs� is 1 /9.

FIG. 17. The antiferromagnetic system �K�0, M / �K � =0.4�.
Temperature dependence �a� of the order parameter and its variance
and �b� of the energy per dimer and its variance.
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The remaining sublattice exhibits no preferred orientation for
all temperatures. The magnetization parameter is defined as
the average of the three nonzero sublattice magnetizations,
M=��M� /3. In the simulation we have monitored both,
the magnetization of the ordered as well disordered sublat-
tice. Upon increasing the temperature from the ground state,
the order in the ordered sublattices of the J6/1 phase melts
and the system exhibits a continuous phase transition to the
P phase. The corresponding phase boundary is represented
by a curved, nonmonotonic line, see Fig. 10. Close to the
critical point the fluctuations of the order parameter are
strongly enhanced and the system can “switch” between the
four classes of configurations, i.e., characterized by a trans-
lation of the disordered sublattice. Graphs of the typical tem-
perature dependences of the sublattice magnetization and en-
ergy per dimer are depicted in Fig. 19.

The high residual entropy stabilizes the J6/1 with respect
to the neighboring FM or AM phase upon increasing tem-
perature. Correspondingly, the parameter region where the
J6/1 phase is stable expands upon heating. For parameters
5�M / �K � �5.3 or 0.8�M / �K � �1 the melting of the FM or
AM proceeds in two steps via a discontinuous structural tran-
sition to the J6/1 phase followed by another transition to the
paramagnetic state. A typical temperature variation of the
energy per dimer and the corresponding heat capacity for the
case of a FM-J6/1-P sequence is presented in Fig. 20. The
AM-J6/1-P phase sequence is characterized by similar
graphs.

IV. CONCLUSIONS

We have shown that soft matter colloidal systems exhibit
peculiar phase behavior once exposed to external laser fields.
The laser-colloid interaction favors configurations where the
particles are attracted to the spots of high light intensities. By
a subtle balance of the compression of groups of two or three
particles at such spots and their mutual repulsion composite
objects are formed, such as dimers and trimers. The relevant
low-energy degrees of freedom are then the discrete orienta-
tional configurations with an excitation spectrum at the ther-
mal scale.

The introduction of an effective Hamiltonian allows us to
map the phase behavior to spinlike systems. In particular, we
have rationalized the case of trimers on a triangular lattice
�22�, which has motivated this work, in terms of a two-
dimensional Ising model. A comparison with experimental
data corroborates the approach of using composite objects
and validates our theory. The critical properties accompany-
ing the transition are probably hard to study experimentally
due to the influence of a finite boundary.

We have suggested a new experimental setup where
dimers play the role of the composite objects. It is shown
that a rich phase behavior emerges; in terms of a “spin lan-
guage” a ferromagnetic, an antiferromagnetic, a herringbone,
and an exotic Japanese 6 in 1 phase have been determined.
We have mapped the phase diagram using a variational
mean-field theory and substantiated our findings by Monte
Carlo simulations.

It is interesting to note that these colloidal molecular crys-
tals have a counterpart on the atomic scale, viz. adsorption of
molecules on atomic surfaces. For instance, nitrogen on
graphite �38,39� at suitable densities orders in a herringbone
structure similar to the one of colloidal dimers, which lead
Sluckin �40� to construct a generalized Potts model closely
along the line of reasoning presented here. Allen and Armit-
stead �41� presented Monte Carlo simulations close to the
transition from ferromagnetically ordered nitrogen adsor-
bates to the experimentally observed herringbone structure.
Using solely symmetry arguments, Vollmayr �42� discussed
the possible ground states if the interaction between two

FIG. 19. The Japanese 6 in 1 system �K�0, M / �K�=3.5�. Tem-
perature dependence �a� of the �sublattice� order parameter and its
variance and �b� of the energy per dimer and its variance �right�.
Both indicate a continuous nature of the phase transition.

FIG. 18. �Color online� The Japanese 6 in 1 system. �a� A snap-
shot of one of its ground states. �b� Schematic representation of the
J6/1 configuration. Here the circles indicate the degeneracy of the
dimer orientation on the disordered sublattice. �c� A picture of chain
mail using the Japanese 6 in 1 weaving pattern �35�.

FIG. 20. The system �K�0, M / �K � =5.2� exhibits a sequence of
phase transitions FM-J6/1-P upon increasing the temperature. The
FM-J6/1 structural transition takes place at Tc,1 and is discontinuous
whereas there is no jump in the order parameter and energy per
dimer at the J6/1-P transition, which takes place at Tc,2.
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molecules depends on the bond orientation and explored re-
gions of suppressed relaxations in an a priori unfrustrated
system.

It appears promising to extend the concept of composite
objects to different symmetries of the underlying lattice, e.g.,
square or rectangular unit cells, and to noninteger filling fac-
tors. The corresponding phase diagrams are expected to in-
clude a variety of phases and phase transition.
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APPENDIX: RELATION BETWEEN ENERGY SCALES
AND EXPERIMENTAL CONTROL PARAMETERS

In this Appendix we show how the parameters of the tri-
mer Hamiltonian can be expressed in terms of the laser in-
tensity, the screening length of the colloid-colloid interac-
tion, and the effective charge of the colloids. The case of
dimers is then a straightforward modification and we merely
state the result at the end of this Appendix.

The formation of composite objects, i.e., trimers, as well
as their mutual interaction is due to a subtle interplay of the
external laser potential and the screened Coulomb colloid-
colloid repulsion. The symmetry of the external potential fa-
vors equilateral triangles aligned along one of the two distin-
guished lattice directions. The potential squeezes the
constituents of the trimer closer to each other. The forces of
the external potential on a trimer are balanced by the internal
constituent Coulomb repulsion. To lowest order the effect of
the neighboring trimers can be ignored since in the regime of
interest the trimers are small compared to the lattice con-
stant. Furthermore, the Coulomb interaction is exponentially
suppressed for the case of screening lengths smaller than the
lattice constants. The thermal pressure is negligible com-
pared to the binding energy.

To this order of approximation the ground state of the
system has a twofold degeneracy per lattice site. Introducing
the residual interaction of the trimers, the energy levels are
split on a scale comparable with the thermal one.

Let us discuss the interactions of the trimer constituents in
detail. First the dielectric contrast at optical frequencies of
the colloidal particles with respect to the solvent gives rise to
a coupling to the laser intensity. This interaction can be ex-
pressed in terms of an effective potential. For the experimen-
tal setup under consideration the total electric field consists
of a coherent superposition of three laser beams,

E�r,t� = E0e−i�t�eik1·r + eik2·r + eik3·r� + c.c., �A1�

where the respective in-plane projections of wave vectors k
constitute an equilateral triangle. The total intensity consists
of a rapidly varying component in time, which averages to
zero. The remaining time-independent component gives rise

to a constant, which we also discard, and the interesting part,
characterized by a spatial modulation,

I�r� = 4�E0�2�cos�G1 · r� + cos�G2 · r� + cos�G3 · r�� ,

�A2�

where G1=k2−k3, G2=k3−k1, and G3=k1−k2 again form
an equilateral triangle.

The periodic potential exhibits the symmetry of a triangu-
lar lattice with Gi’s being the wave vectors of the reciprocal
lattice. In the following we choose the coordinate system in
which

G1 = G�0,− 1�, G2 = G��3

2
,
1

2
, G3 = G�−

�3

2
,
1

2
 .

�A3�

It is also convenient to introduce the spacial lattice vectors

a1 = a�1,0�, a2 = a�1

2
,
�3

2
, a3 = a�−

1

2
,
�3

2
 ,

�A4�

where a=4� / �G�3� is the lattice constant of the external
potential. In this parametrization and with respect to the lat-
tice sites the relative positions of the colloidal particles
within a trimer with orientation S� �+1,−1� are param-
etrized by the single dimensionless distance parameter :

R1 = Sa1, R2 = Sa2, R3 = Sa3. �A5�

The effective interaction of the colloidal particles with the
external electric potential is proportional to the laser inten-
sity and the dielectric contrast at optical frequency, i.e.,

�D�r� = − V0�I�r�/4�E0�2� , �A6�

where V0
0 equals V0 used for the parametrization of the
external potential in experiment of Ref. �22�.

The strong mutual repulsion of the three constituents is
mediated via a screened Coulomb interaction

�C�r� =
q2

r
e−�r, �A7�

where � is the inverse Debye length, r is the center to center
distance, and q2= ��Z*e0�2 / �4��0�r�� e�Rs / �1+�Rs� with Z*e0

being the charge on the surface of a single particle, �r is the
dielectric contrast of water, and Rs is the radius of a colloidal
particle �43,44�. Introducing dimensionless parameters 
=r /a and k=�a the screened Coulomb repulsion scales as
�C��=E0 exp�−k� /, where E0=q2 /a.

The internal potential energy of a single trimer, EC
=�i�j�C�ij� and ij the distance of two colloids within the
trimer,

EC/E0 =
�3


e−k�3, �A8�

is competing with the compression of the external dielectric
potential, ED=�i�D�i� and i the distance of a colloid from
the center of mass of the trimer,
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ED/E0 = − 3v0�1 + 2 cos 2�� , �A9�

where v0=V0 /E0.
The size of a trimer is determined by minimizing the total

potential energy, EC+EH, see Fig. 21, with respect to .
The minimum defines the binding energy Eb, which for
typical experimental parameters exceeds the thermal scale
by approximately two orders of magnitude, i.e., Eb
�102kBT, for 1 /�=570 nm, a=11.5 �m, E0=105kBT, and
V0=60–110kBT. The separation of scales justifies the idea to
treat the assembly of three colloidal particles corresponding
to a lattice site as a rigid composite object.

In the picture of composite objects the trimer-trimer inter-
action enters as residual interaction expected to be much
smaller than the binding energy. The trimer-trimer interaction
lifts the orientational degeneracy and is the origin of the
ordering phenomena under consideration. Since the Coulomb
interaction is strongly screened it is sufficient to consider
only neighboring lattice sites. For the three different geo-
metrical arrangements of the trimers, see Fig. 2, the interac-
tion energy is determined by the sum of the nine direct
colloid-colloid contributions of the rigid triangles,

E� = E0 �
s,t=1

3
1

��s,t�
exp�− k��s,t�� . �A10�

Explicitly, elementary geometrical considerations yield for
the tables of the distances in dimensionless units

1 = � 1 + 20 �1 + 0 + 0
2 �1 + 0 + 0

2

�1 + 0 + 0
2 �1 − 20 + 40

2 1 − 0

�1 + 0 + 0
2 1 − 0 �1 − 20 + 40

2 � ,

2 = � 1 �1 − 30 + 30
2 �1 − 30 + 30

2

�1 + 30 + 30
2 1 �1 + 30

2

�1 + 30 + 30
2 �1 + 30

2 1
� ,

3 = � 1 − 20 �1 − 0 + 0
2 �1 − 0 + 0

2

�1 − 0 + 0
2 �1 + 20 + 40

2 1 + 0

�1 − 0 + 0
21 + 0

�1 + 20 + 40
2 � ,

�A11�

where 0 is the equilibrium size of the trimer. For the experi-
mental parameters used above, one obtains E1�0.01 kBT,
E2�0.1 kBT, E3�1 kBT, and thus J
0 �see Eq. �4��, which
shows that phase transitions are to be expected in the realistic
experimental setups.

For the case of dimers the chain of arguments is along the
same lines as above, and one finds for the dimer-dimer inter-
actions in the four different geometrical arrangements exhib-
ited in Fig. 8�b�,

E� = E0 �
s,t=1

2
1

��s,t�
exp�− k��s,t�� , �A12�

where

1 = 
 1 �1 + 20 + 40
2

�1 − 20 + 40
2 1

� ,

2 = 
 1 + 0 �1 + 30
2

�1 + 30
2 1 − 0

� ,

3 = 
�1 − 30 + 30
2 �1 + 30 + 30

2

�1 − 0 + 0
2 �1 + 0 + 0

2 � ,

4 = 
 1 1 + 20

1 − 20 1
� . �A13�

For the experimental parameters, as used in the experiment
with trimers, one obtains E1�10−2kBT, E2�10−1kBT, E3
�1kBT, E4�10kBT, or equivalently, K
0 and M �0 which
sets the colloidal dimer system in the regime of the herring-
bone ground state. In order to explore the other regions of
the phase diagram one would have to change the colloid-
colloid interaction, for example, paramagnetic particles
could be used.

Small residual thermal fluctuations of the composite ob-
jects, e.g., stretching modes or small oscillations around the
minimum of a gross orientational state, can be absorbed in
temperature dependent nearest-neighbor interaction energies.
For example, one can use a perturbative approach, as has
been done for the elastic constants in the case of colloidal
suspensions in one-dimensional troughs �17�.

FIG. 21. Dependence of the binding energy of a trimer on its
size. The equilibrium trimer extension is determined by the mini-
mum of the binding energy, �1/3.
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