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We investigate the nonequilibrium steady state of a one-dimensional �1D� lattice gas of dimers. The dynam-
ics is described by a totally asymmetric exclusion process �TASEP� supplemented by attachment and detach-
ment processes, mimicking chemical equilibrium of the 1D driven transport with the bulk reservoir. The
steady-state phase diagram and current and density profiles are calculated using both a refined mean-field
theory and extensive stochastic simulations. As a consequence of the on-off kinetics, a phase coexistence
region arises intervening between low and high density phases such that the discontinuous transition line of the
TASEP splits into two continuous ones. The results of the mean-field theory and simulations are found to
coincide. We show that the physical picture obtained in the corresponding lattice gas model with monomers is
robust, in the sense that the phase diagram changes quantitatively, but the topology remains unaltered. The
mechanism for phase separation is identified as generic for a wide class of driven 1D lattice gases.
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I. INTRODUCTION

Driven lattice gas models have recently received much
attention due to their possible application to intracellular
transport �1�. The relevance of nonequilibrium transport to
biology has been recognized for almost 40 years. In two
pioneering papers MacDonald and co-workers �2,3� modeled
ribosome motion on mRNA using a one-dimensional �1D�
driven lattice gas model, which later became known as the
totally asymmetric simple exclusion process �TASEP�.

In this model each particle occupies a site on a one-
dimensional lattice and advances stochastically unidirection-
ally �hence the term “totally asymmetric”�. The nontrivial
properties arise by imposing the constraint that each site may
at most be occupied by one particle, and that moves are
forbidden if the target site is already occupied �hence the
term “exclusion”�. Of particular interest are systems with
open boundary conditions where particles may enter and
leave the 1D lattice at the left or right boundary with rates �
and �, respectively. Remarkably, this 1D driven system with
open boundaries exhibits a nontrivial phase diagram with �
and � as control parameters �4�.

For low extraction rate � a high density �HD� phase oc-
curs, where the density profile is controlled by the right
boundary. Symmetrically, for low injection rate � a low den-
sity �LD� phase appears, where the density profile is deter-
mined by the left boundary. For high values of both � and �
the bulk density is independent of the boundary conditions
and the system carries its maximal current �MC�.

Exact solutions were found both for periodic and open
boundary conditions through exact methods, such as recur-
sive relations, Bethe and matrix product ansatz �5,6�.

The stochastic fluctuations have been investigated in
terms of static and dynamic correlation functions by exact
methods �7–9� and phenomenological approaches �10,11�.
The rich phenomenology, as well as the availability of exact
results has established TASEP as one of the paradigmatic
models in nonequilibrium statistical mechanics �12–14�.

Over many years the TASEP has served as a testing
ground for a mathematical analysis of nonequilibrium prob-

lems. More recently, the applications to biology have again
become the focus of attention in the context of systems of
extended particles. For example, ribosomes bind to mRNA
occupying 12 codons and progressively advance by a single
codon through two cycles of GTP �Guanosine-triphosphate�
hydrolysis �elongation step�. The implications of mutual
steric hindrance of �-mers �monomers, dimers, 12-mers�
have been studied by stochastic simulations and “refined
mean-field theory” for �-TASEP �15,16�. The picture already
found for monomers has been corroborated also by exact
methods �Bethe ansatz �17� and mapping to zero range pro-
cess �18��.

Intracellular transport, where a molecular motor �kinesin�
is moving along a molecular track �microtubule�, is yet an-
other example of 1D nonequilibrium transport in a biological
system �see, e.g., Refs. �19,20��. In marked contrast to di-
rected motion of ribosomes on mRNA here there is an ex-
change of molecular motors with the surrounding cytosol
acting as a particle reservoir. This observation has motivated
a recently proposed extension of TASEP, by supplementing
the unidirectional hopping with Langmuir �on-off� kinetics
�21,22�. Single motor experiments suggest that both pro-
cesses compete on the scale of the microtubule, i.e., a motor
explores a significant fraction of the track before detaching
�23�. To capture such an interplay mathematically, a mesos-
copic limit has been suggested, where local adsorption-
desorption rates have been rescaled in the limit of large but
finite systems, such that the gross rates are comparable to the
injection-extraction rates at the boundaries �22�. The study of
this system has shown an unexpectedly rich and different
phase diagram with phase coexistence regions. Surprisingly
in the mesoscopic limit the density profiles show a sharp
discontinuity �a shock separating low from high density
phases� or cusp in a large portion of the phase diagram.

Here we propose a model for intracellular transport incor-
porating both coupling to a reservoir as well as the finite
extension of particles. The model is motivated by the fact
that many processive molecular motors �e.g., kinesins, dy-
neins, and myosin V� are composed of two heads �trail and
lead� that bind specifically each to a subunit of the molecular
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track ��- and �-tubulin in the case of microtubules�. Hence
we concentrate on particles which occupy two sites, i.e.,
dimers, and advance by a single site per hopping event.

The theoretical challenge arises from finding an appropri-
ate and quantitative description that captures both the on-off
kinetics as well as the �-TASEP features on an equal footing.
Whereas for monomers a straightforward decoupling of cor-
relations yields a consistent mean-field theory, such an ap-
proach fails even to describe the chemical equilibrium of a
pure on-off kinetics �15�. In the following paragraphs we
review some aspects of our model where the geometric con-
straints usually play an important role introducing nontrivial
static and dynamic correlations.

At the static level the geometrical frustration emerges al-
ready in the equilibrium thermodynamics of the one-
dimensional Tonks gas. Identical extended particles are dis-
tributed according to the grand canonical ensemble on a one-
dimensional lattice. A hard core repulsion reduces the task to
a combinatorial problem �24,25�. It turns out that the single
site occupation densities do not determine the configurational
probabilities, contrary to the monomer case. There the Lang-
muir kinetics are specified in terms of attachment and detach-
ment rates �A and �D, or equivalently the binding constant
K=�A /�D. The coverage density is simply determined by a
single site consideration, resulting in the Langmuir isotherm:
�I=K / �K+1�=�A / ��A+�D�. This is to be contrasted with
the dimer case where a full evaluation of the grand canonical
partition function is required leading to an equilibrium cov-
erage density �26�

�I = 1 −
1

�1 + 4K
. �1�

At a dynamical level a nontrivial approach to the steady
state is found in the on-off kinetics in the fast attachment
limit: at short time scales only deposition processes are fre-
quent, while detachment processes are still unlikely. The ki-
netics belong to the class of problems referred to as random
sequential adsorption �RSA� and the so-called “Flory pla-
teau” �27� is reached exponentially fast. After this transient
the particles can detach �on longer time scales� freeing new
gaps; this process results in a long tail relaxation where the
isotherm is approached with a power law t−1/2. Such behavior
has been explained using the mapping of the gap dynamics
to a 1D reaction diffusion system A+A→� �for a review see
Refs. �28–30� and references therein� for which this anoma-
lous power law dynamics is known. This two step relaxation
has been found also in other models like in irreversible depo-
sition of dimers �i.e., RSA� with diffusion �31� and is intrin-
sically related to the extended nature of the particles.

Driving a system of extended particles far from equilib-
rium, e.g., introducing the �-TASEP dynamics, suggests a
variety of competing time scales and ordering phenomena,
i.e., nonequilibrium phase transitions. The purpose of this
paper is to shed light on density and current profiles in the
stationary state for a model incorporating such aspects, as
well as to provide a complete analytical theory supported by
simulated data.

This paper is organized as follows: in Sec. II we specify
the model under consideration and introduce the used for-

malism. Section III exemplifies results of the stochastic
simulations and puts extracted features into proper perspec-
tive. In Sec. IV we construct a suitable set of mean-field
equations relying on results for �-TASEP and on-off kinetics.
In Sec. V, with the help of these equations, we rationalize the
MC data and study the complete phase diagram. In the Con-
clusion, Sec. VI, we discuss the robustness of the model,
give a possible generalization to �-mers, and summarize our
main results.

II. MODEL AND NOTATION

We consider a finite one-dimensional lattice with sites la-
beled i=1, . . . ,N, of unit length L=1; consequently the lat-
tice spacing reads a=L /N. The first two sites �i=1,2� and
the last two sites, �i=N−1,N� represent, respectively, the left
and right boundary. The lattice is partially covered by
dimers, i.e., composite objects consisting of two monomers
rigidly tied together. A dimer occupies two lattice sites, see
Fig. 1; we refer to the monomer to the right of the dimer as
the lead head and correspondingly to the left monomer as the
trail head.

A microscopic state C of the system consists of a configu-
ration of nonoverlapping indistinguishable dimers on the lat-
tice. Nonoverlapping requires that no two heads �trail or
lead� occupy the same lattice site. We specify the dynamical
evolution by the following set of updating rules:

�i� If the lead head of a dimer occupies a site i
=2, . . . ,N−1 and the following site is empty, the dimer
advances one step with unit rate.

�ii� At site i=1 a dimer enters the lattice with its trail head
with rate � provided that the first two sites are empty.

�iii� A dimer with its lead head on site i=N leaves the
lattice with rate � emptying the last two sites.

�iv� Everywhere in the bulk �i.e., trail head on a site i
=2, . . . ,N−2� a dimer leaves the lattice emptying two
sites with a site independent detachment rate �D.

�v� Everywhere in the bulk �i=2, . . . ,N−2� a dimer enters
the lattice with its trail head, provided that the consid-
ered site as well as its right neighbor is empty, with a
site-independent attachment rate �A.

The first three rules encode the usual totally asymmetric
simple exclusion process of extended objects ��-TASEP�,
while the last two implement the coupling of the lattice to a
reservoir of dimers with fixed chemical potential �32�.

The rules entail that a complete description of the under-
lying stochastic Markov process is given in terms of the

α β
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L

τ

ωA ωD

FIG. 1. Schematic representation of the model and allowed
moves: forward jump �with rate �=1�, entrance at the left boundary
�with rate ��, exit at the right boundary �with rate ��, attachment
�with rate �A�, and detachment �with rate �D� in the bulk.
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time-dependent probability P�C , t�. The time evolution is
governed by the associated master equation

�tP�C� = �
C��C

�WC�→CP�C�,t� − WC→C�P�C,t�� , �2�

where the transition rates WC�→C can be inferred form the
dynamical rules.

It is expected that the system evolves towards a stationary
ensemble Pst�C� for long times. Due to the lack of detailed
balance this macroscopically stationary state does not corre-
spond to an equilibrium ensemble, i.e., there is no Gibbs-
Boltzmann measure to be inferred from thermodynamics ar-
guments. The macroscopic quantities we aim to compute are
understood as averages over this distribution.

To exploit probabilistic methods we label sites according
to: empty �state s=0�, occupied with the trail head �state s
=1� or with the lead head �state s=2�. The configuration C
can be represented as a string of occupation number C
= �n1 , . . . ,nN�, with ni� �0,1 ,2�. The quantity of fundamen-
tal interest in the following is the average site-dependent
dimer density in the stationary state. In particular we shall
derive equations for the density of the lead head �ni=2� at
site i, �i	
�ni,2

�. Since the dimers are rigidly connected, the
corresponding density for the trail head at site i simply reads
�i+1.

The probability of having site i in state s will be denoted
by p�i ,s�	 P�ni=s�. Since the states mutually exclude, the
probability p�i ,2� immediately yields the average lead head
density: �i= p�i ,2�. The coverage density �i

c is the sum of the
lead head density and the trail head density, i.e., �i

c= p�i ,2�
+ p�i+1,2�. Consistently with the notation the joint probabil-
ity will read p�i ,s ; j ,s��. We also shall need the conditional
probability p�i+1,s � i ,s��, i.e., the probability for site i+1 to
be in state s provided site i is in state s�.

In the simulations we will concentrate on the average cov-
erage density �i

c, and the spatially resolved current ji, defined
as the flux of particles through site i per unit time. Only
averages on the stationary state will be considered: a com-
parison between ensemble and time-moving averages cor-
roborates the hypothesis that the system is ergodic.

As indicated in the Introduction, a nontrivial competition
between boundary induced phenomena and bulk dynamics
arises in the mesoscopic limit, i.e., the gross on and off rates,
	A and 	D, should be of the same order of magnitude as the
boundary entry and exit rates � and �. This requires that the
single site on and off rates, �A, �D, scale with the system
size N as

�A =
	A

N
, �D =

	D

N
�3�

with 	A and 	D fixed.

III. MC RESULTS AND DESCRIPTION OF THE PHASE
DIAGRAM IN GENERAL

In this section we present the method used to perform
numerical simulations and the results obtained from them.

Density profiles much different from the TASEP motivate
our interest in the model.

A. Method

We have simulated the stochastic equation through a ki-
netic Monte Carlo algorithm, to determine the average den-
sity profile in the stationary state with high accuracy. The
results have been obtained using a random sequential updat-
ing algorithm by Bortz, Kalos, and Lebowitz �BKL method
or n-fold way� �33,34�: a list of all sites which are possible
candidates for a successful move is stored and dynamically
updated. The method is �for the present case� faster than the
conventional algorithms and constitutes a reliable way to
simulate real time dynamics, although here we focus on
equal-time averages in the stationary state �note that the al-
gorithm is equivalent to Gillespie’s, commonly used in
chemical reactions �35��.

Explicitly, we keep three lists of sites for the respective
allowed moves: there are NJ sites where particles can per-
form a jump forward, NA sites that may accept a particle
from the reservoir, and ND sites from which a particle can
detach. Furthermore, we keep track of the occupation of the
boundaries �n0 and nN�. One of these moves is selected ran-
domly with the appropriate weights: 1
NJ, �A
NA, �D

ND, �
 �1−n1�, �
nN−1. Then we increment time by an
interval drawn from an exponential distribution with time
scale T= ���1−n0�+�nN+NJ+�ANA+�DND�−1. The lists are
updated correspondingly and the procedure is iterated for
many events. We have started the algorithm from an empty
configuration and after the stationary state has been reached,
the coverage density and the current have been measured.
Moving time averages typically cover a window of O�106�
time units. We have investigated finite-size effects by consid-
ering lattices varying from 128 up to 4096 sites. Further-
more, we have checked the ergodicity by comparing time-
moving and ensemble averages. The longest simulations
performed took approximately a day on a 1-GHz processor.

B. Results

We exemplify our results by fixing the binding constant
�K=	A /	D� to K=3 and the entrance and exit rates to �
=0.1 and �=0.6; see Fig. 2. The parameters chosen here are
to illustrate the phase behavior; biologically relevant param-
eters are discussed for monomers in Ref. �36� and a faithful
mapping to experimental knobs is presented in Ref. �37�.

We have measured the stationary density profiles as well
as the current for different values of the detachment rate 	D.
For very small 	D we find almost flat profiles for both � and
j, in accordance with the picture of simple dimer TASEP
�3,15,16�. On the other hand, for very large detachment rates
the on and off kinetics dominates the bulk of the density
profile. However, contrary to equilibrium thermodynamics of
on and off kinetics, a large directed current is simultaneously
present.

For intermediate values of the detachment rate, neither the
density profile nor the current is constant anymore. There
appear rather narrow regions where the density steeply rises
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from an almost linear profile to one that approaches the iso-
therm value. Such findings are similar to the ones of mono-
meric TASEP coupled to Langmuir kinetics �22,41�, where it
has been shown that the steep increase corresponds to a do-
main wall of a coexistence phase in the mesoscopic limit.

IV. CONSTRUCTION OF THE MEAN-FIELD
EQUATION

Since the stationary density profiles for TASEP of mono-
mers coupled to Langmuir kinetics have been successfully
described in terms of mean-field theory, it appears promising
to look for an analytical description for dimers also. How-
ever, it turns out that in the case of dimers the conventional
mean-field approach, i.e., a decoupling of correlations at
lowest order starting from the quantum Hamiltonian formu-
lation, see, e.g., Ref. �41�, is inappropriate: the nontrivial
correlations, arising from the fact that the particles are ex-
tended, manifest themselves already at the level of pure
TASEP of dimers �15�.

The failure of conventional mean-field approach requires
the introduction of phenomenological methods. The aim of
this section is to identify useful strategies that are capable to

deal first with the simple on and off kinetics of extended
objects without directed motion and second with pure
TASEP for dimers. We will then combine the two cases to
obtain a formulation for the complete problem, and we will
provide arguments that the aspects of correlations are cap-
tured on a reliable level for both processes. In order to cap-
ture the competition between boundary effects �injection and
extraction� and bulk processes �attachment and detachment�
in a finite system, the mean-field approach has to properly
balance the relative importance of both mechanisms. To em-
phasize this aspect we shall refer to our analytical approach
as a mesoscopic limit.

The density profile in the mesoscopic limit will be de-
scribed in terms of a balance equation. The evolution of the
course-grained dimer density is determined by �i� a flux j of
dimers within the lattice that encodes the asymmetric diffu-
sion, �ii� two source terms that represent the on-off kinetics
of dimers:

�t� = − �xj + FA − FD. �4�

The nontrivial task is to provide reasonable expressions for
the current and the sources in terms of the local density. In
Sec. V we shall compare the analytical results to stochastic
simulations and demonstrate the validity of this approach.

A. On-off kinetics of dimers

1. Probabilistic approach

The dynamics of the on-off kinetics in a rate equation
approach is described by the difference between a gain term
Fi

A and a loss term Fi
D:

�t�i = Fi
A − Fi

D. �5�

These two terms are proportional to the attachment and de-
tachment rates �A and �D. Clearly the detachment flux is
exactly given by Fi

D=�D�i �38�.
An attachment event at site i �lead head� requires both

sites i and i−1 to be empty �i.e., in state 0�. The correspond-
ing attachment flux then reads Fi

A=�Ap�i−1,0 ; i ,0�, and
knowledge of the joint probability is needed. In order to
obtain closed equations for the lead head density we break
the hierarchy of joint probabilities resulting from the master
equation. Here, we rely on an ad hoc approximation for the
conditional probabilities: p�i ,0 � i−1,0� p�i ,0 � �i−1,0�∨ �i
−1,2�� �39�. The idea is that the probability of having site i
empty is independent of having a lead head or a hole in the
site i−1: note that this is precisely what usually the mean-
field approximation does in monomeric lattice gases, where
correlations are broken factorizing the density: 
nini+1�= 
ni�


ni+i�. In Appendix A we show that this assumption yields
a closed expression for the joint probability:

p�i,0;i − 1,0� =
p�i − 1,0�p�i,0�

1 − p�i,2�
. �6�

Eliminating the probabilities for single empty sites and col-
lecting results, the rate equation for the lead head density
reads

FIG. 2. Stochastic simulations results for stationary density pro-
files and corresponding currents for a system of N=4096 lattice
sites. The x axis represents the normalized position, i.e., x= i /N.
Parameters have been fixed to �=0.1, �=0.6, K=3, and 	D are
varied as indicated in the figures.
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�t�i = �A
�1 − �i−1 − �i��1 − �i − �i+1�

1 − �i
− �D�i. �7�

As a next step we perform a continuum limit. Relabeling
position as a fraction of the system size, x	 i /N, the density
�i becomes a function ��x� in the mesoscopic limit N→�.
The average density at the neighboring sites are obtained by
expansion in powers of the lattice constant a=1/N:

��x ± a� = ��x� ± a�x��x� +
1

2
a2�x

2��x� + O�a3� . �8�

Introducing a new rescaled time �=at and eliminating the
single site on and off rates �A and �D in favor of the gross
kinetic rates 	A and 	D we obtain the rate equation in the
mesoscopic limit:

��� = 	A
�1 − 2��2

1 − �
− 	D� + O�a2� . �9�

It is natural to expect a density limited to the range
�0,1 /2�, because there cannot be more than one lead head
per site. In the stationary regime the physical solution corre-
sponds to the constant density �I, Eq. �1�, determined solely
by the binding constant K=	A /	D. This value of the iso-
therm is consistent with the one obtained by McGhee and
Von Hippel �26� for the general case of �-mers.

2. Tonks gas approach

To corroborate the results presented above, we compare
the isotherm of the rate equation with the one computed from
the grand canonical partition function of the Tonks gas. In
particular, we shall identify the fugacity z with the binding
constant K.

The statistical mechanics of the Tonks gas on an open
lattice consists of distributing extended objects on the N
sites, respecting the excluded volume constraint. In the case
of the canonical ensemble this reduces to the combinatorial
problem of counting the number of ways to distribute n
dimers on N lattice sites. Using the standard trick to repre-
sent the two occupied sites of each dimer by a “stick” and the
N−2n empty sites by “balls” �25�, one immediately con-
cludes

Z�n,N� = �N − n

n
� . �10�

The corresponding grand canonical partition function is
readily evaluated using the previous result,

ZN = �
n=0

N

znZ�n,N� =
��1 + 4z + 1�N+1 + ��1 + 4z − 1�N+1

2N+1�1 + 4z
,

�11�

where z denotes the fugacity �40�. The average density is
then obtained in the thermodynamic limit by

� = lim
N→�

1

N
z

�

�z
ln ZN =

1

2�1 −
1

�4z + 1
� . �12�

Since the master equation of pure on and off kinetics ful-
fills detailed balance, the stationary state is given in terms of
the grand canonical ensemble. By a single detachment event
a configuration C of n dimers connects to some new configu-
rations C� of n−1 dimers. For such configurations the de-
tailed balance condition implies P�C� / P�C��=�A /�D=K.
Conversely, the ratio can be determined also from the grand
canonical Boltzmann factors. Since, apart from the total ex-
clusion, energy does not enter the problem, the probabilities
are determined by the number of dimers only: P�C�=zn /ZN

and P�C��=zn−1 /ZN. Combining both expressions, we con-
clude z=K as in the case of monomers.

The last result shows that the “isotherm” obtained using
ad hoc approximations �Sec. IV A 1� is at least consistent
with thermodynamics. Let us mention that in equilibrium the
situation is probably better than in the general case, since
correlations are quickly washed out by the coupling to the
reservoir. The relaxation towards equilibrium can be rather
different from the naive picture of rate equations, see, e.g.,
Ref. �42�.

B. TASEP of dimers

In pure TASEP particles cannot leave or enter the track
except at the boundaries. Correspondingly in the bulk a con-
servation law holds,

�t�i = ji−1 − ji. �13�

The currents ji can be determined by probabilistic arguments.
A hopping event of a dimer at site i requires first that site i is
occupied by a lead head and second that site i+1 is empty.
Since we fixed the hopping rate to unity this yields

ji = p�i,2;i + 1,0� . �14�

Hence also in the case of pure TASEP the master equation
induces a whole hierarchy of joint probabilities. To close the
equation we rely on the same ad hoc approximation for the
conditional probabilities as for the on and off kinetics. In
Appendix A we show that this implies for the current a
closed expression,

ji =
�i�1 − �i+1 − �i+2�

1 − �i+1
. �15�

Performing the continuum limit as in Eq. �9� one obtains

��� = − �x���1 − 2��
1 − �

+
1 − 2�2

�1 − ��2

a

2
�x� + O�a2�� . �16�

Since, at the very end, we consider large but finite systems
we have kept the leading correction in a, which will turn out
to be relevant for the formation of shocks and boundary lay-
ers.

The equation of continuity in the bulk has to be supple-
mented with appropriate boundary conditions. Relying again
on the same ad hoc assumption for the conditional probabil-
ity, and performing the continuum limit, one finds

��0� =
�

1 + �
, �17a�
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��1� =
1 − �

2
. �17b�

The details are presented in Appendix B. The properties of
these equations have been studied in detail in Ref. �16�. The
resulting phase diagram is topologically equivalent to the
one of TASEP of monomers. The continuum analog for the
current-density relation, Eq. �15�, reads

j =
��1 − 2��

1 − �
�18�

and exhibits a maximum at a distinguished density �*

=1/ �2+�2�. This value will play an important role in the
more general case of TASEP coupled to on and off kinetics.

C. Combining TASEP and on and off kinetics

As anticipated at the beginning of this section, we identify
the current and the source terms of Eq. �4� and we re-
expressed everything in terms of the density. The current is
described by Eq. �18� and the on and off kinetics by Eq. �9�.
By taking the mesoscopic limit we have introduced the gross
attachment and detachment rates and rescaled the time con-
sistently in both processes. The balance equation to order a
can be easily rewritten as

��� = − �x�−
a

2

�x�

�1 − ��2 +
��1 − 2��

1 − �
� + 	A

�1 − 2��2

�1 − ��
− 	D�

�19�

with the boundary conditions, Eq. �17�. These equations con-
stitute the mean-field description to be discussed in the fol-
lowing section.

Equation �19� may also be recast in a form reminiscent of
a nonlinear Smoluchowski equation �43�:

��� = − �x�A���� − B�����x�� + C��� , �20�

where the coefficients A, B, and C depend on �. The second
coefficient will prove not to be relevant since it scales to zero
with increasing the system size to infinity.

We may now interpret j���=�A��� as an effective particle
current and C��� as a source or drain term; see Fig. 3 for an
illustration. As will become clear in the following section the
maximum of j��� and the zeros of C��� play an important
role for the analytical form of the stationary solution.

V. SOLUTION OF THE MEAN-FIELD EQUATION AND
PHASE DIAGRAM

This section is devoted to a discussion of the phase dia-
gram emerging from combining TASEP of dimers with on
and off kinetics. We shall derive density profiles within a
mean-field approach, identify different phases and phase
boundaries as the kinetic rates are varied. In particular, we
demonstrate the role of the binding constant in the topologi-
cal changes of the phase diagram as a certain critical value is
reached.

A. Emergence of shocks and boundary layers

The mean-field equation for the stationary density profile,
Eq. �19�, supplemented with ���	0, is a second order dif-
ferential equation as long as the lattice constant a is small but
finite. In the limit a↘0 the differential equation degenerates
into a first order one. However, the density profile has to
match the two boundaries, and it appears that the problem is
overdetermined. Indeed one can construct separately a den-
sity profile fulfilling either the left or right boundary condi-
tion. The two branches will be referred to as �� and ��,
respectively. In general, the two branches do not join
smoothly together. One expects the solution of the second
order differential equation to be well approximated by the
two branches �� and �� except for a region where the solu-
tion rapidly crosses over from one branch to the other. Upon
decreasing the lattice constant a the crossover region shrinks
leading eventually to a discontinuity of the density profile for
a=0. Depending on the position of such a discontinuity xw
we refer to it as a shock �0�xw�1� or a boundary layer
�xw=0 or xw=1�.

To locate the position of the shock or boundary layer we
rely on a very general argument already used in Refs.
�22,41�. The second order differential equation for the sta-
tionary density profile can be written in the form of a balance
equation �xj=FA−FD, where the current along the track
reads

j = −
a

2

�x�

�1 − ��2 +
��1 − 2��

1 − �
. �21�

Integrating over a small region of width 2�x around the
shock one obtains

j�xw + �x� − j�xw − �x� = �
xw−�x

xw+�x

�FA − FD�dx . �22�

In the limit a↘0 the left-hand side reduces to j��xw+�x�
− j��xw−�x� �where we have defined j�=���1−2��� / �1
−��� as the current set by the left boundary and similarly for
the right one j��. Performing the limit �x↘0 the right-hand
side of Eq. �22� vanishes and yields the matching rule in
terms of the currents,

j��xw� = j��xw� . �23�

Equivalently the rule implies for the densities at the match-
ing point,

FIG. 3. �a� Graph of the current-density relation �A��� in Eq.
�20�. �b� Graph of the source-drain C��� term in the Smoluchowski
equation �20� for different values of K and 	D=0.1.
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���xw� =
1

2

1 − 2���xw�
1 − ���xw�

. �24�

Let us make a comment. The fact that the in-track current is
continuous at the shock is consistent with the idea of the
mesoscopic limit. The fluxes due to attachment and detach-
ment are important only on the length scale of the system
size. Locally, i.e., on the scale of the lattice constant, the
balance equation is dominated entirely by the unidirectional
hopping process �TASEP�.

B. Analytical solution

The left and right branches of the stationary density pro-
file are determined by solving Eq. �19�, once we set the left-
hand side to zero and discard the second order derivative,
i.e.,

1

	D
�x���1 − 2��

1 − �
� = K

�1 − 2��2

�1 − ��
− � �25�

�where the binding constant K=	A /	D has been intro-
duced�, which has to be supplemented by the appropriate
boundary conditions, Eq. �17�. By separation of variables the
general solution G���=x+const is obtained after a straight-
forward integration with

G��� =
1

	DK
�ln�1 − �� + A+ln��+ − �� + A−ln��− − ��� ,

�26�

where we introduced the zeros of the source term

�± 	
1

2�1 ±
1

�1 + 4K
� �27a�

and the amplitudes

A± 	
K

1 + 4K

1 − 4�± + 2�±
2

�1 − �±���± − ��
. �27b�

The function G��� exhibits a singularity in the physical re-
gime 0���1/2 at the isotherm of the on and off kinetics
�I=�−. One easily checks that G��� exhibits an extremum
when the corresponding current, Eq. �18�, is maximal, i.e., at
�=�*. For �I��* ��I��*� the extremum of G��� corre-
sponds to a maximum �minimum�. A change of topology of
the graph of the solution occurs once both distinguished den-
sities coincide �I=�*, which happens at a critical value of the
binding constant K*= �1+�2� /2. At this special value the
amplitude A− vanishes and the function G��� becomes
smooth and monotonic in the physical regime 0���1/2.

After matching the boundary conditions, the left and right
solutions are obtained up to inversion of a function

L����� 	 G��� − G��/�1 + ��� = x , �28a�

R����� 	 G��� − G��1 − ��/2� + 1 = x . �28b�

Upon inverting, the singularity of G��� transforms into a
horizontal asymptote, whereas the extremum manifests itself

as a branch point, see Fig. 4. The functions are multivalued
with three branches, to be referred to as W0

+, W0
−, and W−1.

C. High binding affinity: K�K*

For large binding constants, K�K*, the equilibrium den-
sity of the on-off isotherm is larger than the critical density at
which the current of pure TASEP is maximal, �I��*, see
Fig. 4.

For densities smaller than �I, the track accumulates par-
ticles from the reservoir, since

FA − FD = 	D
1 + 4K

1 − �
��� − �−��� − �+�� . �29�

Hence the isotherm acts as an attractor. This property has to
be reflected in the left and right solutions of the balance
equation for the current, �xj= ���j���x��=FA−FD. For ��0�
=� / �1+����*, the branches W0

± are unstable. For densities
���I the coupling to the reservoir induces a decrease in

FIG. 4. The functions W−1 �dashed lines�, W0
− �full lines�, W0

+

�full lines� for �a� K=4, 	D=0.05 �high binding affinity� and �b�
K=0.25, 	D=0.05 �low binding affinity�. The branches W0

+ and W0
−

are separated by the isotherm density �I. Varying � or � results in a
simple shift parallel to the x axis. In �a� and �b� the thick lines
represent the solutions where the branch point hits the right and left
end of the system. The dotted lines indicate the critical density
value �* �where branch point occurs� and the isotherm �I.
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density, whereas W0
+ is increasing. Similarly for �*����I

the net gain due to the on and off kinetics is not reflected by
the decreasing function W0

−. One concludes that for the left
solution the only physical branch is W−1. For ���*

=�* / �1−�*�=1/ �1+�2�, i.e., the critical entrance rate of
dimer TASEP, a left boundary layer necessarily appears.

For the right solution the argument is just reversed, i.e.,
the physical branches are W0

±. The critical exit rate �* of
dimer TASEP is determined by ��1�= �1−�*� /2=�* and
equals �*=1/ �1+�2�. For exit rates larger than the critical
one a right boundary layer emerges. The complete phase dia-
gram is obtained by identifying different scenarios to match
left and right solutions. The boundary conditions, Eq. �17�,
can be satisfied by the stable branches of the left and right
solution only for ���* ,���*, respectively. The merging
of the two solutions by Eq. �24� is achieved at some position
xw. Depending on whether the �i� 0�xw�1, �ii� xw�0, and
�iii� xw�1, a domain wall in the bulk emerges �i�, a bound-
ary layer at the left �ii� or right �iii� appears. For ���* an
additional boundary enters the system. The result of such an
analysis is presented in Fig. 5, and the chain of arguments
follows the one of Ref.�41�.

For example, for large entrance rate � and low exit rates �
the density profile is in a high density phase �HD�, i.e., the
solution ��x� exceeds �*, and is given by the stable right
solution ���x�. At the left end x=0 a boundary layer appears.
Similarly a region of a low density phase �LD� and low
density–high density phase coexistence �LD/HD� with ap-
propriate boundary layer and domain wall is inferred from
the figure.

For ���* the right solution is replaced by the critical
right solution ��=�*, which constitutes the analog to the
maximal current phase in TASEP: the system indeed cannot
transport more than the current j�* imposed by the critical
exit rate �*.

Changing the exit rate beyond �* does not affect the den-
sity profile except in a small boundary layer. This phenom-
enon is similar to a superconductor where an external mag-
netic field does not enter the sample except for a short
penetration depth. This analogy suggests to denote this re-
gion in the phase diagram by M �Meissner� phase. The co-
existence of low-density and Meissner phase �LD/M� ex-
tends the coexistence phase �LD/HD� for ���*.

The phase boundaries can be computed analytically up to
inversion of a function. For example, the HD–LD/HD phase
boundary is obtained by requiring the domain wall to fall on
the left end of the system xw=0. Thus the continuity condi-
tion, Eq. �24�, translates the boundary condition ��0�=� / �1
+�� to ��x+0�= �1−�� /2. In terms of the implicit solution,
Eq. �28b�, this implies

R��1 − �

2
� = 0. �30�

Similarly the LD–LD/HD phase boundary is determined by
placing the domain wall at xw=1, which yields

L�� �

1 + �
� = 1. �31�

For ���* the preceding equations still hold provided � is
replaced by the critical exit rate �* �45�. Correspondingly,
phase boundaries degenerate to straight vertical lines.

Density profiles exemplifying different regions of the
phase diagram are shown in Fig. 6 and compare nicely to the
corresponding simulated data.

The low density phase disappears from the phase diagram
upon increasing 	D at fixed K. Such a topological change
occurs, once the phase boundary of the LD/M coexistence
phase hits the � axis of the phase diagram �i.e., �=0�. The
condition is inferred from Eq. �31� and reads

L�=0� �*

1 + �*� = 1. �32�

A numerical solution of the preceding equation for 	D
* as a

function of K is presented in Fig. 7.
In the limit 	D→0+ the LD/HD coexistence phase

shrinks continuously to the line �=� and one recovers the
dimer TASEP phase diagram. For 	D�	D

* , the coexistence
phases constitute only a marginal region in the �-� plane,
located close to the � axis. The phase diagram is dominated
by the HD and M phases, however, the density profile ap-
proaches the constant value �I in the bulk, as expected from
pure on-off kinetics �46�.

D. Low binding affinity: K�K*

If K�K* the functional form of the solutions is still given
by Eqs. �26�, �28a�, �28b�. However, now the isotherm �
=�I lies below the critical density, �I��*. By the same rea-

FIG. 5. High binding affinity; phase diagram for K=2, 	D

=0.1. In the low density �LD� phase the profile is given by the left
solution �� and a boundary layer appears at the right �r�. The posi-
tion of boundary layers �r, l�, as well as the relevant bulk solution
���, ��, and ��*� are indicated for all phases �HD: high density
phase; LD/HD: low density–high density coexistence phase; M:
Meissner phase; LD/M: low density–Meissner coexistence phase,
see text�.
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soning as above, see Eq. �29�, the left stable branches are the
ones which approach the isotherm, W0

± in Fig. 4�b�, while the
only stable solution for the right side is W−1, i.e., reversed to
K�K*.

Using the same methods as for the high binding constant,
phases and phase boundaries are identified by matching the
appropriate left and right solutions. A cut of the parameter
space at fixed 	D and K is presented in Fig. 8. The high
density phase disappears from the phase diagram for detach-
ment rates exceeding a critical value 	D

* �K�, see Fig. 7 �47�.
Let us stress that there is an important difference with

respect to the monomeric analog, namely the particle-hole
symmetry is no longer present. Correspondingly, a symmetry
transformation does not yield the phase diagram of the “low
affinity” from the one of the “high affinity.” Yet, the ex-
change of high densities and low densities, left and right, exit
by entrance rates yields the correct topology of the phase
diagram as well, as qualitatively the density profile.

E. Critical case K=K*

The limiting case when the binding constant equals the
critical one, K=K*, requires a separate analysis, since the

amplitude A− vanishes, canceling exactly the logarithmic di-
vergence at �=�− �nota bene �−=�*=�I�. This signals that
�=�*=const is a spurious solution of the balance equation
for the stationary density profile. It corresponds to the maxi-
mal current �MC� phase of pure dimer TASEP. Indeed for
K=K* Eq. �25� simplifies to

FIG. 6. �a� Density profiles for K=2 and 	D=0.1 in systems of
N=4096 lattice sites; parameters �� ,��= �0.1,0.6�, �0.2,0.6�,
�0.6,0.6�, �0.6,0.2�. �b� Approach of the mesoscopic limit of the
density profile for �=�=0.1, 	D=0.1, K=2 and different system
sizes �N=128, 256, 512, 1024, 4096�; the domain wall becomes
steeper with the increasing of N. Wiggly lines represent simulated
data, while dotted lines indicate analytic solutions.

FIG. 7. Critical detachment rate 	D
* as a function of the binding

constant K �solid line shows 	D
* �K� for dimers, dotted line for

monomers�. The dashed line K* separates the cases of “high” from
the “low” binding affinity �for dimers�. For large K the critical
detachment rate approaches zero. Insets represent the different to-
pologies of the �-� section of the phase diagram.

FIG. 8. Low binding affinity; phase diagram for K=0.8, 	D

=0.1. Legend as in Fig. 5.
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�� − �*��2� − �2 + �2�
�1 − ��

�x� − 	D�� −
1
�2

�� = 0. �33�

The nontrivial solution Eq. �26� specializes to

G��� =
2�2 − 2

	D
�ln�1 − �� − �2 ln� 1

�2
− ��� , �34�

which is a monotonic function in the physical regime. Cor-
respondingly, the inverse function is single valued.

The properties of the phase diagram for K=K* are ob-
tained by assembling the resulting left and right branches, as
well as the constant critical density �*, for different boundary
conditions. We have determined numerically the line where
the domain wall hits the left and right end, xw=0 and xw=1,
respectively, by solving Eqs. �30� and �31�. Moreover, both
left and right solutions now can approach the critical one
�i.e., �=�I� in the bulk and therefore a triple phase coexist-
ence LD-MC-HD is possible. This phase is bounded by the
lines �=�* above and �=�* on the right. Furthermore, the
curve g�� ,��, where the left and right currents match addi-
tionally the critical one separates the triple phase coexistence
from the LD-HD phase. Implicitly g�� ,�� is given by the
condition L���* / �1+�*��=R���1−�*� /2�.

Depending on the value of the kinetic rate 	D, different
topologies for the phase diagram arise. For example, for low
	D seven phases are present in the �-� diagram �see Fig. 9�.
Upon increasing 	D, a first topological change, analogous to
the case of high binding affinity, occurs, i.e., the LD phase
exits the phase diagram. By solving Eq. �32�, one obtains the
critical value 	a

*�0.339 45, see Fig. 7. At another critical
value 	b

*�0.524 96 the HD phase disappears, and at still
higher detachment rates 	D�	c

*=0.864 41 the LD-HD co-
existence phase is no more present and the phase diagram

�but not the density profiles� is independent of 	D. Repre-
sentative graphs of these topologies are shown in Figs. 7 and
10.

VI. CONCLUSIONS

We have studied the nonequilibrium dynamics of a 1D
driven lattice gas with open boundaries, where individual
particles are considered as dimers occupying two lattice sites
simultaneously. Upon combining a generalized mean-field
theory with extended stochastic simulations, we have ex-
plored the phase behavior of the nonequilibrium steady state
as a function of the kinetic rates. In particular, we have ana-
lyzed the interplay between the coupling of the system to a
reservoir at the boundaries and at the bulk.

In the following we compare our results with those ob-
tained for the analogous problem of simple TASEP of mono-
mers coupled to Langmuir kinetics. The balance equation in
the stationary state that constitutes the equivalent of Eq. �19�
has been derived in Refs. �22,41�:

1

	D
�x���1 − ��� = K�1 − �� − � . �35�

Although the structure of the equation is the same, �xj=FA
−FD, the current and the source terms obey a rather different
functional dependence. In particular, the equation exhibits a
particle-hole symmetry, i.e., density profiles and the com-
plete phase diagram is symmetric with respect to the follow-
ing transformation rule ��x�↔1−��1−x�, 	D↔	A, �↔�.
Also, a TASEP for dimers disregarding the on-off kinetics
can be cast in a particle-hole symmetric form, introducing an
effective hole density �̄ by the requirement j���= j��̄� and
interchanging � with �; this explains why the phase diagram
is symmetric along the diagonal. Similarly, a pure on-off
kinetics is invariant with respect to the transform 	A↔	D
and an effective hole density �̄= �1−2��2 / �1−��. However,
one may easily show that the two symmetries of simple
dimer TASEP and on-off kinetics never coincide for any K
�0, implying that the coupling of both processes breaks the
particle-hole symmetry.

It is remarkable that the topology of the resulting phase
diagram is almost unaffected by this broken symmetry. In
fact, the single qualitative change of topology occurs at K
=K* for intermediate 	D, see Figs. 7 and 10�b�. The origin of
the robustness of the picture can be traced back to the fol-
lowing observations: �i� in a mean-field approach the balance
equation for the stationary density profile is an autonomous

FIG. 9. Critical case; phase diagram for the case K=K*, 	D

=0.1. Seven phases appear: LD, MC, HD, and all the possible co-
existence: LD/MC, MC/HD, LD/HD, LD/MC/HD. Legend as in
Fig. 5.

FIG. 10. Different topologies of the phase diagram for K=K*

and �a� 	a
*�	D�	b, �b� 	b

*�	D�	c
*, and �c� 	D�	c

*. Phases
are indicated in the graphs.
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first order ordinary differential equation; �ii� the current-
density relation exhibits a single extremum for both cases
�48�; �iii� the solution ��x� is obtained by quadrature and
inversion of a function resulting in a multivalued function
with a simple branch point �due to the maximum in the
current-density relation� and a horizontal asymptote �due to
the on-off isotherm�. Although the shape of the explicit so-
lution depends on the details of the density current relation
and the functional form of the on-off kinetics, the overall
topological features remain unchanged. This reasoning ex-
plains that particle hole symmetry is relevant for the topol-
ogy of the phase diagram only if the branching point is can-
celed by a zero of the on-off kinetics, i.e., precisely at K
=K*. We conclude that the scenario for K=K* presented in
Fig. 10 generalizes the monomer TASEP coupled to Lang-
muir kinetics. Nevertheless, there are many differences in the
numerical values of several quantities, which are summa-
rized in Table I.

An interesting difference between monomers and dimers
resulting from the broken particle-hole symmetry can be read
off from Fig. 7, where the change of the phase diagram to-
pology is shown as a function of 	D and K. For monomers
not only the critical value K* is shifted, but the line 	D�K� is
continuous. Both the lines 	D=	D

* and K=K* mark continu-
ous transitions, but they concern two different events: while
at K=K* the shape of the analytical solution changes, at

	D=	D
* a domain wall enters the system. In the monomers

the critical detachment rates 	a
* and 	b

* coincide and the
topology of the phase diagram in Fig. 7 is such that it is
impossible to go from a configuration as in the bottom-left to
the one in the top-right by changing K without crossing the
transition line 	D

* . The �continuous� transition occurring at
	D=	D

* can be studied experimentally since the density pro-
files are remarkably different.

It is possible to generalize the continuous equation to the
case of a system containing �-mers, using directly the con-
tinuous results presented in Refs. �16,26�:

1

	D
�x� ��1 − � ��

1 − ��− 1��� = K
�1 − � ���

�1 − ��− 1����−1 − � . �36�

The qualitative picture is contained already in the case of
dimers; although the functional form of the solution depends
on the size of the �-mers, the scenario of three branches,
characterized by the maximum of the current-density relation
�* and the horizontal asymptote �I, is robust.

In conclusion, we have studied a driven one-dimensional
lattice gas of dimers where the dynamics of the totally asym-
metric exclusion process has been coupled to the on-off ki-
netics in the bulk. We used the ad hoc “refined” mean-field
for the TASEP part introduced in previous works �3,15,16�
and proved that it is consistent with the assumptions made
for the on-off part. The main effect of extended nature of
dimers on the phase behavior of the system is related to the
breaking of a symmetry in the problem �particle hole�. This
does have quantitative but not qualitative consequences on
the density profile and on the phase diagram. The origin of
the robustness of the picture found for monomers can be
traced back to the form of the stationary density profile
which depends exclusively on the form of the current-density
relation and of the isotherm of the on-off kinetics. This sug-
gests that the TASEP dynamics washes out the interesting
two-step relaxation dynamics that characterizes the on-off
kinetics of dimers. The nontrivial outcome is that, in these
systems, the diffusion �yet asymmetric� always dominates
the large time-scale relaxation. Further studies on the dy-
namical correlation functions could point out more subtle
differences between the dynamics of dimers and monomers.
We conjecture that quite interesting phenomena would arise
upon taking into account other interactions between the par-
ticles, which suggest to consider alternative current-density
relations �with more maxima� or nontrivial on-off isotherm
�cooperative on-off kinetics�.
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APPENDIX A: CONDITIONAL PROBABILITY

In this appendix we derive an approximate expression for
the joint probability p�i ,0 ; i−1,0� and p�i ,2 ; i+1,0� starting
from the mean-field assumption

TABLE I. Differences and analogies between the model with
monomers and dimers: the current-density relation presents in both
cases a maximum at �* which appears at different values, but the
particle-hole symmetry which is trivial in the monomers is actually
effective in the dimers; the boundary conditions, as well as the
current, need to be set differently in the dimers in order to keep
track of their geometry; as a consequence of this the critical values
of the boundary rates are different from the critical density in the
case of dimers; the isotherm is related to the binding constant in a
nontrivial way in the case of dimers; the particle-hole symmetry is
preserved by the sources only in the monomers case. See the text
for more details.

Quantity Monomers Dimers

Particle dens. � �

Coverage dens. � 2�

j ��1−�� ��1−2��

1−�

FA 	A�1−�� 	A

�1−2��2

1−�

FD 	D� 	D�

��0� � �
1+�

��1� 1−� 1−�
2

�* 1
2

1
�2�1+�2�

�*=�* 1
2

1
1+�2

j* 1
4

1
�1+�2�2

j� ��1−�� ��1−��

1+�

j� ��1−�� ��1−��

1+�

�I
K

1+K
1
2

�1− 1
�1+4K

�
K* 1 1

2 �1+�2�
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p�i,0�i − 1,0�  p�i,0��i − 1,0� ∨ �i − 1,2�� . �A1�

Since the event �i ,0 ; i−1,1� is excluded by the dimer geom-
etry, the mean-field approximation assumes the occupancy of
site i to be independent of the state of the previous site.
Using Bayes theorem, the right-hand side of Eq. �A1� can be
expressed as

p��i,0���i − 1,2� ∨ �i − 1,0��

=
p��i − 1,0� ∨ �i − 1,2���i,0��p�i,0�

p��i − 1,0� ∨ �i − 1,2��
. �A2�

The conditional probability in the numerator is unity, p��i
−1,0�∨ �i−1,2� � �i ,0��=1, since a trailhead cannot occupy
site i−1 if site i is empty. Moreover, the events �i ,0� and
�i ,2� in the denominator are mutually exclusive, p��i
−1,0�∨ �i−1,2��= p�i−1,0�+ p�i−1,2�. Collecting results
and using Eq. �A1�

p�i,0�i − 1,0� =
p�i,0�

p�i − 1,0� + p�i − 1,2�
. �A3�

The normalization condition compatible with the geometry
of the dimers allows us to rewrite the denominator, p�i
−1,0�+ p�i−1,2�=1− p�i−1,1�=1− p�i ,2�, and one obtains
Eq. �6�.

A similar argument can be used to compute the joint prob-
ability p�i ,2 ; i+1,0�, using p�i+1,0 � i ,2� under the same
initial hypothesis

p�i + 1,0�i,2�  p�i + 1,0��i,0� ∨ �i,2�� . �A4�

Using this equation and the normalization condition p�i
+1,0 � i ,0�p�i ,0� + p�i+1,0 � i ,1�p�i ,1�+ p�i +1,0 � i ,2�p�i ,2�
= p�i+1,0� �together with the fact that p�i+1,0 � i ,1�=0 for
obvious geometric reasons�, one can show that p�i
+1,0 � i ,2� p�i+1,0 � i ,0�.

APPENDIX B: BOUNDARY CONDITIONS

We recall the arguments given previously �3,15,16� to jus-
tify the boundary conditions, Eq. �17�.

Left boundary. The left boundary conditions in the con-
tinuum limit can be derived from the rate equation. The in-
coming flux is given by the entrance rate multiplied by the
probability of having the first two sites free, which is derived
from the normalization condition on site i=2 �given that site
i=1 can never contain a trailhead�:

p�1,0;2,0� = 1 − p�2,2� − p�2,1� = 1 − �2 − �3, �B1�

while the outgoing flux is determined by the usual relation.
This yields to

���1 = ��1 − �2 − �3� −
�2�1 − �3 − �4�

1 − �3
. �B2�

In the continuum limit �in first approximation� of the station-
ary state �2=�3=� and therefore the equation can be solved
for � in terms of � to get Eq. �17a�,

��0� =
�

1 + �
. �B3�

This can be seen as if the left density was imposed by the
reservoir density to which the system is coupled, which is
not �, but � / �1−��, therefore �

�s
= �

1−� =�. Note that the
current-density relation leads to the following boundary con-
dition on the current:

j�0� = j� =
��1 − ��

1 + �
. �B4�

Right boundary. On the right boundary the last two sites
are emptied at the same time and there is no exclusion on the
last site i=N, therefore the incoming current on the second to
last site i=N−2 is the usual one while the outgoing current is
given by the occupation of the site i=N−1 �since the last site
is empty�; consistently with the continuity property, the out-
going current at site i=N−2 is also the gain term for the last
site, while the loss term is given by ��N:

���N−1 =
�N−2�1 − �N−1 − �N�

1 − �N−1
− �N−1, �B5a�

���N = �N−1 − ��N. �B5b�

It is obvious that in the continuum limit the density in the
last two sites is different and only a coarse grained quantity
like the average density �which is half the coverage density�
makes sense: �= ��N−1+�N� /2. One considers this last defi-
nition, the stationary state of Eq. �B5a� with constant incom-
ing current �that gives ��1−2�� / �1−��=�N−1� and the sta-
tionary state of Eq. �B5b� �that gives �N−1=��N�, to obtain

��1 − 2��
1 − �

= �
2�

1 − �
, �B6�

which finally gives the right boundary condition:

��1� =
1 − �

2
. �B7�

The right boundary condition for the current reads

j�1� = j� =
��1 − ��

1 + �
, �B8�

which has naturally the same form of the left condition be-
cause of the effective particle hole symmetry.

Note also that in the HD phase the particles wait a long
time before detaching giving rise to peculiar correlations: the
�coverage� density profile exhibits a sawtooth profile super-
imposed to the analytical one. By using linear analysis on the
discrete map it can be shown that these correlations decay
exponentially �but not as fast as the usual boundary layers� to
the fixed point.
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