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We consider the influence of disorder on the nonequilibrium steady state of a minimal model for intracellular
transport. In this model particles move unidirectionally according to the totally asymmetric exclusion process
�TASEP� and are coupled to a bulk reservoir by Langmuir kinetics. Our discussion focuses on localized point
defects acting as a bottleneck for the particle transport. Combining analytic methods and numerical simula-
tions, we identify a rich phase behavior as a function of the defect strength. Our analytical approach relies on
an effective mean-field theory obtained by splitting the lattice into two subsystems, which are effectively
connected exploiting the local current conservation. Introducing the key concept of a carrying capacity, the
maximal current that can flow through the bulk of the system �including the defect�, we discriminate between
the cases where the defect is irrelevant and those where it acts as a bottleneck and induces various novel phases
�called bottleneck phases�. Contrary to the simple TASEP in the presence of inhomogeneities, many scenarios
emerge and translate into rich underlying phase diagrams, the topological properties of which are discussed.
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I. INTRODUCTION

The effects of disorder on the phase behavior have been
investigated in a multitude of statistical mechanics models
and there is by now a good understanding of the ensuing
equilibrium phenomena �1,2�. In contrast, in nonequilibrium
statistical mechanics, the effect of disorder on dynamics and
nonequilibrium steady state is far from being well under-
stood �3�.

One of the best studied cases is the totally asymmetric
simple exclusion process �TASEP� �4–20�. It is defined as a
one-dimensional lattice gas where particles are hopping sto-
chastically in one direction subject to hard-core repulsion
�for reviews see Refs. �21,22��. Two types of disorder have
been studied: hopping rates may either depend on the particle
attempting to jump �particle-wise disorder �4–6� or each lat-
tice site may be associated with a random quenched hopping
rate �site-wise disorder� �7–20�. As intuitively expected, such
defects generally induce phase separations if the particle traf-
fic exceeds a certain threshold �6�.

Our studies are motivated by an important class of intra-
cellular transport processes mediated by molecular motors
like kinesin, dyneins, or myosins moving along cytoskeletal
filaments like microtubules or F-actin �23�. The dynamics of
each of these molecular engines is a complicated stochastic
process, which we idealize by a Poisson process with a
single rate limiting step only. There is now convincing evi-
dence that transport along the cytoskeletal filaments is one-
dimensional and binding sites are periodically spaced �24�.
Since each of the binding sites can be occupied by at most
one of the molecular motors, particle exclusion can play a
crucial role. Though there is no clear evidence in vivo, at the
moment, that motor densities are large enough for particle
exclusion to dominate the transport properties, there are in
vitro investigations underway studying the transport of kine-
sin along microtubules at high-volume concentrations �25�.
Each molecular track has a finite length, and in general one

would like to allow for the enzyme reservoirs at both ends to
have different densities and/or attachment rates at the left
and right end to be different from each other and different
from the hopping rate in the bulk. All this taken together
defines the TASEP, introduced originally as a model for the
kinetics of biopolymerization on a nucleic acid template
�26,27�. For it to be a proper minimal model for molecular
intracellular transport it has also to account for the fact that
microtubules are embedded in the cytosol with a reservoir of
motors in solution. This allows for motors to attach from the
solution to the molecular track or detach from it and become
part of the reservoir again �28�. Then one arrives at the
TASEP with Langmuir kinetics �TASEP/LK� introduced in
Ref. �29�, which exhibits phase separation even in the ab-
sence of any defects.

In this paper we would like to study the effect of an iso-
lated defect on the nonequilibrium steady state of this mini-
mal model for intracellular transport. We focus on a site-wise
disorder that may be mediated by structural imperfections of
the microtubular structure or proteins associated with the mi-
crotubules that change the affinity of the motors with the
track. There has been evidence that these microtubule asso-
ciated proteins might even be responsible for some diseases
connected to motor proteins �30,31�.

Let us now introduce the model under investigation. We
consider a simple exclusion process on a finite lattice with N
sites �labeled i=1, . . . ,N�, where the occupation number ni of
each site can be either 0 or 1. The dynamics of the system is
described by a fully unidirectional continuum stochastic pro-
cess in which each particle jumps randomly with rate ri to its
right-neighboring vacant site. At the left, boundary particles
are introduced in the lattice with rate �, while at the right
boundary they are extracted with rate �. This defines what is
known as totally asymmetric simple exclusion process
�TASEP� for ri=r �we define the time scale by setting r=1�.
We supplement this process in two ways, as shown in Fig. 1:
�a� the system is coupled to a bulk reservoir via Langmuir
kinetics; namely, particles can attach to a site in the bulk with
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rate �A and can detach with rate �D �32�; �b� a special site k
of the system represents a bottleneck and has a slower hop-
ping rate rk=q�1 �33�. Both cases have been separately
studied previously and show nontrivial features. In this work
we investigate the combined effect of these two perturbations
to the usual TASEP: our study concerns a detailed analysis of
the nonequilibrium steady-state properties, with emphasis on
the resulting phase diagrams. Two essential ingredients to
carry on such an analysis are the local density of particles
�i��ni� and current profile ji�ri�ni�1−ni+1��; where the
brackets stand for the average over the histories. Following
the same steps as in Refs. �29,34� �see also Ref. �35� for a
recent review�, the stationary density is shown to obey a
hierarchy of equations involving nearest-neighbor correlation
functions

0 = ri−1�ni−1�1 − ni�� − ri�ni�1 − ni+1��

+ �A�1 − ni� − �D�ni�, i = 2, . . . ,N , �1�

0 = ��1 − n1� − �n1�1 − n2�� , �2�

0 = �nN−1�1 − nN�� − ��nN� , �3�

where, to account for the defect at site i=k, we have

ri = �1, if i � k

0 � q � 1, if i = k .
	 �4�

To be sure to capture an interesting interplay between
boundary-induced phenomena and bulk dynamics �see Refs.
�29,34,36�� we shall consider a mesoscopic limit where local
adsorption-desorption rates are rescaled such that the gross
rates �A,D are comparable to the injection-extraction rates at
the boundaries

�D = N�D, �A = N�A. �5�

Keeping the gross rates fixed in the limit N→	 introduces
interesting competition between boundaries and bulk.

This work is organized as follows: Sec. II summarizes the
main properties of the TASEP, TASEP coupled to the Lang-
muir kinetics, and TASEP with a single inhomogeneity. In
Sec. III, we outline the effective theory on which we build
our analysis. Section IV is devoted to the discussion of our
results �phase diagrams and density profiles�. Finally, we
present our conclusions in Sec. V.

II. REVIEW OF PREVIOUS RESULTS: SEPARATE
ROLE OF ON-OFF KINETICS AND DEFECT

The effective theory presented hereafter is built on the
properties of models akin to the one under consideration
here, namely, the TASEP and TASEP coupled to Langmuir
kinetics. It is thus appropriate to briefly review the main
features of the latter and to summarize the results for the
simple TASEP in the presence of a single inhomogeneity.

A. The TASEP

In the absence of attachment and detachment and with
uniform hopping rate, the model defined above reduces
to the TASEP. Much is known about the nonequilibrium
steady state of this paradigmatic model. Both exact methods
�37–41� and approximated mean-field solutions
�26,27,42,43� show that as a function of the entrance and exit
rates there are three distinct nonequilibrium steady states.
For ��1/2 and �
� there is a high-density phase �HD�,
where both the density and the current are determined by the
exit rate �. Mean-field theory gives a spatially constant
density �i=1−� larger than 1/2 and a constant current
ji=��1−��. Thus, the current is dominated by the low exit
rate, which acts as a bottleneck for the transport.

In contrast, for ��1/2 and ���, the low entrance rate is
the limiting factor for the particle current, which is now
given by ji=��1−��. Since �i=� is always smaller than 1/2
in this parameter range, the phase is also termed the low-
density �LD� phase.

If both � and � become larger than the critical value 1/2
the density becomes constant �*=1/2 independently of the
parameters at the boundaries. The current is limited by the
particle exclusion in the bulk and its maximal value is j*

=1/4; therefore, this phase was termed the maximal-current
�MC� phase.

B. The TASEP with on-off kinetics

Supplementing the TASEP, a genuine driven �nonequilib-
rium� process, with on-off �or Langmuir, equilibrium� kinet-
ics results in a system termed TASEP/LK. If the rates of the
Langmuir kinetics are faster than, or comparable to, the hop-
ping rates, the on-off kinetics always dominates the driven
process. To guarantee the particles to cover a relevant portion
of the lattice before detaching, the mesoscopic limit men-
tioned in Eq. �5� has been introduced �29�. This imposes a
time scale where competition between the boundary, driven
processes, and the on-off kinetics, is effective and results in
rich collective phenomena.

Considering Eqs. �1�–�3� with ri=1, the mean-field analy-
sis simply consists of neglecting any spatial correlations re-
sulting in the following decoupling approximation:

�nini+1� 
 �ni��ni+1� = �i�i+1, �6�

ji 
 �ni��1 − �ni+1�� = �i�1 − �i+1� . �7�

Taking the continuum limit with the new spatial variable 0
�x� i /N�1 and using the mesoscopic limit of Eq. �5� one
obtains

FIG. 1. Schematic representation of the TASEP with on-off ki-
netics in the presence of a bottleneck at the site i=k �thick tick�. The
allowed moves are: forward jump �with rate q�1 in i=k and r=1
elsewhere�, entrance at the left boundary �with rate ��, exit at the
right boundary �with rate ��, attachment �with rate �A�, and detach-
ment �with rate �D� in the bulk.

PIEROBON et al. PHYSICAL REVIEW E 74, 031906 �2006�

031906-2



�2� − 1��x� − �D� + �A�1 − �� = 0. �8�

For the sake of simplicity, let us consider the case where the
two rates are the same ��D=�A=��. In this case, Eq. �8�
reads

�2� − 1���x� − �� = 0. �9�

This equation obviously has two solutions: a linear one with
slope � and a constant one coinciding with the critical den-
sity of the TASEP

��x� = �x + C and ��x� = �* = 1
2 , �10�

where C is a constant to be determined by the boundary
conditions. The linear density profile results in a space-
dependent current, which in mean-field reads

j���x�� = ��x��1 − ��x�� . �11�

Equation �9� has to be supplemented by the boundary
conditions

��0� = �, ��1� = 1 − � . �12�

When the solution of Eq. �10� cannot be matched continu-
ously with the left and right boundaries �12�, the density
profile displays a localized discontinuity �or shock� in the
bulk. This translates into the emergence of mixed phases.
The latter are discussed in Refs. �29,34� and are summarized
in the TASEP/LK phase diagram of Fig. 2�a�. Let us illus-
trate this concept by considering the transition from the LD
to the LD-HD phase. In the former, the density is determined
by the left boundary and reads

��x� = ���x� � �x + � . �13�

Lowering the exit rate � �with fixed ��, there is a site where
both the currents imposed by the left and the right bound-
aries meet at xw �see Fig. 2�c��. This is a mixed LD and HD

phase. As shown in Fig. 2�b�, the density has a sharp phase
boundary �shock� at xw,

��x� = ����x� � �x + � , for 0 � x � xw

���x� � 1 − � + ��x − 1� , for xw � x � 1.
	
�14�

Another feature of the TASEP/LK is the particle-hole
symmetry, i.e., the properties of the system are invariant un-
der the exchanges �↔�, x↔1−x, and �↔1−�. This trans-
lates in Fig. 2, which is symmetric with respect to the line
�=� �29�.

The case �A��D follows along the same lines but is
mathematically more involved; for its treatment we refer to
Ref. �34�. In the following sections we will consider �A
=�D=� and present the case �A��D only at the end of
Sec. IV.

C. The TASEP with a single inhomogeneity: A brief review

Before presenting the details of our theoretical treatment
of the TASEP/LK system in the presence of a bottleneck, and
to gain some intuitive understanding of the underlying phys-
ics, it is convenient to outline the properties of the simple
TASEP perturbed by a localized inhomogeneity �7,10�. Here
we consider the TASEP with a defect at site k where the
hopping rate is q�1.

Consider the LD phase, where the system is “diluted” and
the particles are well separated. In such a “low traffic” situ-
ation, one does not expect any macroscopic effects arising
from the presence of the bottleneck. One rather expects a
local peak in the density profile �see Fig. 3�a��: �i�k=� and
�k=�+h �LD phase�, where h is the height of the local jump
imposed by the defect. Since an exclusion process without
coupling to a bulk reservoir has a spatially constant current
ji=��1−��, one finds h=h�� ,q�=��1−q� /q. Thus, the
height of the density peak increases with � and q−1. This can
certainly not happen without bound. In fact, h cannot exceed
hmax=1−2�. This may be seen as follows. If h
hmax, there
would be a site i1 such that �i1

��+hmax=1−� and �i1+1


�+hmax. This case has to be discarded as it contradicts
current conservation: ji1

=�i1
�1−�i1

�� ji=��1−��. There-
fore, for given � and �, there is a critical value of q�

* below
which the local peak is no longer a possible solution. The
critical q�

* follows from the requirement that the height of the
peak cannot exceed hmax, i.e., h�� ,q�

*�=hmax. One thus finds

FIG. 2. �a� Phase diagram of TASEP/LK for K=1. One recog-
nizes seven phases: in addition to the TASEP LD, HD, and MC
phases, there are four more coexistence phases, namely, the LD/HD,
LD/MC, MC/HD, and LD/MC/HD phases. The shaded region high-
lights the LD/HD coexistence where a localized domain wall ap-
pears. �b� Typical density profile in the LD/HD phase and �c� the
corresponding current profile. At the matching point xw between the
left �j�� and right �j�� currents a domain wall develops and con-
nects the left ���� and right ���� density profile.

FIG. 3. Transition between a spike �a� and a step �b� in the
density profile for the TASEP with defect. Stochastic simulations
are performed on systems of size N=128 with parameters q=0.1,
xd=0.5, �a� �� ,��= �0.05,0.8�, �b� �� ,��= �0.8,0.8�.
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q�
* =

�

1 − �
. �15�

Equivalently, if one keeps q fixed, a local peak is obtained
for

� �
q

1 + q
= �c. �16�

It directly follows from the underlying particle-hole sym-
metry that the same reasoning holds in the HD phase ��

� and ��1/2�. There the system is so “packed” that the
bottleneck is only responsible for a local dip in the density
profile: �i�k=1−� and �k=1−�−h�� ,q�, with h�� ,q�

*�
�hmax� =1−2�. Thus, in the HD phase, a local dip is only
possible for

q�
* �

�

1 − �
� q �17�

or, keeping q fixed, for

� �
q

1 + q
= �c. �18�

We conclude that, for a fixed value of q, there are critical
values for the entrance and exit rates above which the defect
leads to a jump in the density profile. In contrast to the local
density perturbation �“spike”� for small � and �, this is a
macroscopic effect and does not vanish in the thermodynam-
ics limit �while the spike width scales as 1 /N�.

Denoting, respectively, by �L and �R the densities on the
left and right of the inhomogeneity, one expects a sharp step
profile displaying a jump at the defect position

�L = 1
2 + � and �R = 1

2 − � . �19�

Thus, the current through the defect is

jk = q�k�1 − �k+1� = q� 1
2 + ���1 − � 1

2 − ��� , �20�

while the current flowing through the bulk of the track reads

ji�k = � 1
2 + ��� 1

2 − �� . �21�

As the current is conserved, these expressions should coin-
cide, which gives the jump in the density profile

2� =
1 − q

1 + q
. �22�

This is an important quantity, which measures the strength of
the defect: �=0 when q=1 and �=1/2 for q=0.

Thus, for the density profile, one finds

�L =
1

1 + q
and �R =

q

q + 1
, �23�

while the q-dependent current flowing through the entire sys-
tem, playing the role of an effective �bottleneck-induced�
MC, reads

jd
* =

q

�1 + q�2 �
1

4
. �24�

Since there is a jump and the density profile is flat on both
sides of the defect, one may effectively split the systems into
two parts connected by current conservation �see Fig. 5 and
Refs. �10,44,45��. The effective exit rates of the left sub-
system and the entrance of the right one are therefore

�eff = �eff =
q

1 + q
. �25�

It follows from this discussion that for the TASEP, only
the MC phase is affected by the presence of a bottleneck,
while the LD and HD phases remain unaltered. The resulting
phase diagram therefore still displays the same topological
features �with three phases: LD, HD, and MC� as in the
homogeneous case, with the lines �=�=1/2, delimiting the
MC phase, lowered to �=�c and �=�c.

III. EFFECTIVE MEAN-FIELD THEORY

In this section, we describe an effective mean-field theory
for the nonequilibrium steady state of the TASEP/LK in the
presence of a bottleneck.

As for the TASEP perturbed by the presence of a localized
defect, there are regions of the parameter space where the
inhomogeneity affects the system only locally �Fig. 4�. In
other regions, the defect has macroscopic effects and is said
to be relevant �see Fig. 3�. In this case, the properties of the
system are studied by splitting the lattice at the defect site k
into two subsystems �again termed L and R� and performing
a continuum limit �see Fig. 5�. In such a limit, the position of
the defect becomes xd� limN→	k /N, and the density can be
written as

��x� = ��L�x� , 0 � x � xd

�R�x�, xd � x � 1
	 . �26�

In the presence of a bottleneck, the current is locally con-
served for the same reasons as in the TASEP/LK system �34�
�essentially because the attachment/detachment rates scale as
in Eq. �5��

FIG. 4. Transition between spike �a� and step �b� for the
TASEP/LK with defect. Stochastic simulations are performed on
systems of size N=128 with parameters q=0.1, xd=0.5, �=0.1, �a�
�� ,��= �0.05,0.8�, �b� �� ,��= �0.8,0.8�.
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ji+1 − ji =
1

N
��A − ��A + �D��i+1� →

N→	
0. �27�

This allows coupling of both subsystems R and L along the
same lines as for the simple TASEP perturbed by an isolated
inhomogeneity, with effective right and left boundaries given
by Eq. �25�.

Suppose now that we are in the parameter range where the
defect dominates the current and density profile. Then we
may argue as in the previous section and obtain for the cur-
rent at the defect site

jk = jk+1 =
q

�1 + q�2 �28�

and the corresponding densities

�k =
1

1 + q
, �k+1 =

q

1 + q
. �29�

Again this implies a defect-induced jump in the density of
magnitude

2� � �k − �k+1 =
1 − q

1 + q
. �30�

A key difference to our previous discussion of a pure TASEP
in Sec. II is that these properties apply only locally in the
vicinity of the defect. In the continuum limit, the density
profile is linear �see Eq. �10�� and has to match the boundary
conditions given by Eqs. �29�. Hence the density profile
�d�x� imposed by the defect reads

�d�x� = ���x − xd� +
1

1 + q
, �L�

��x − xd� +
q

1 + q
, �R� � . �31�

Since the mean-field current-density relationship is given by
Eq. �11�, this immediately implies for the current

jd = ��x − xd� +
q

1 + q
� 1

1 + q
− ��xd − x�� . �32�

In stark contrast to the simple TASEP, here the current is
a space-dependent quantity. As illustrated in Fig. 6, the sig-
nature of a defect is the depletion on a macroscopic scale of
the current profile �Fig. 6�b��. Correspondingly, the density
displays a “zigzag” shape with a jump at xd and a linear
profile in its vicinity as expressed in Eq. �31� �see Fig. 6�a��.

At x=xd±, the current imposed by the defect reaches the
maximal value j*=1/4. Thus, the depletion or screening
length  induced by the bottleneck is the solution of
�d�xd±�=�*=1/2 and reads

 =
�

�
. �33�

The defect is thus screened best for a strong coupling to the
reservoir ����� and, of course, if the inhomogeneity is
weak, i.e., �→0.

Since the screening length increases with the strength of
the defect it can even become larger than the length of the
subsystems. This happens when  is larger than the distance
to either one of the boundaries. According to the conditions
xd−�0 and xd+
1, this happens when �
max��1 ,�2�
�and fixed �� or, equivalently, when ��min��1 ,�2� �with
fixed q�, where

�1 = �xd and �2 = ��1 − xd� , �34�

�1 =
�

xd
and �2 =

�

1 − xd
. �35�

If ��min��1 ,�2� the screening length is shorter than both
lengths of the subsystems. When the location of the defect is
not centered, two additional cases arise: for �1����2 ��2

����1� the screening length stays within the subsystem R
�L�, while it is larger than the size of the sublattice L �R�.

In the TASEP and in the TASEP/LK the maximal current
that can flow through the system is a constant j*=1/4. For
the TASEP with a defect, that value is lowered to jd

*=q / �1
+q�2 �see Eq. �24��. As the current is space dependent and
locally conserved, in the TASEP/LK with an inhomogeneity,
the maximal flow of particles that can be transported through

FIG. 5. Schematic representation of the division into two sub-
systems allowing to apply a mean-field theory. The last step �bottom
of the figure�, illustrates the continuum limit that we are considering
�see the main text�.

FIG. 6. Sketch of the signature of the strong defect �zigzag
shape� in the density �a� and current �b� profile.
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the bulk of the system varies spatially and is limited by the
condition of having to match the value jd �Eq. �32�� in the
vicinity of the defect. This suggests naming such a quantity
the carrying capacity C�x� of the system.

The more drastic effect of the bottleneck appears when its
strength satisfies �
max��1 ,�2�. In this case, the defect
screens the entire system and, as shown in Fig. 7�a�, the
carrying capacity reads

C�x� = C1�x� = jd�x� . �36�

In intermediate cases, when the screening length covers
part of the system, one has three possible scenarios illus-
trated in Figs. 7�b�–7�d�, namely,

C�x� = C2�x� = � jd�x� , �x − xd� � 

j*, else
	 , �37�

C�x� = C3�x� = � jd�x� , 0 � x � xd + 

j*, xd +  � x � 1
	 , �38�

C�x� = C4�x� = � j*, 0 � x � xd − 

jd�x� , xd −  � x � 1
	 . �39�

For each possible carrying capacity of Fig. 7, one obtains
different phase diagrams. All these scenarios are discussed in
the next section.

To determine the global current and density profiles from
the carrying capacity, one compares the latter with the cur-
rents imposed by the open boundaries

j� = �� + �x��1 − � − �x� , �40�

j� = �� + ��1 − x���1 − � − ��1 − x�� , �41�

corresponding to the left and right density profiles

���x� = �x + � , �42�

���x� = ��x − 1� + �1 − �� . �43�

As C�x� acts as an effective maximal current in the bulk,
j��x� and j��x� cannot exceed its value. Actually, as for the
TASEP �where C=1/4�, the entrance and exit boundaries
only matter on the macroscopic part of the system where
they impose currents smaller than C�x�. Thus, by matching
j��x� and j��x� with the carrying capacity, one determines
boundaries separating boundary-induced phases and mixed
ones.

IV. RESULTS: PHASE DIAGRAM OF THE TASEP/LK
IN THE PRESENCE OF A BOTTLENECK

In this section we discuss the four possible scenarios aris-
ing for each carrying capacity presented above. We explicitly
construct the density profiles and the phase diagrams when
the screening length is larger than the size of the two sub-
systems �carrying capacity C1�x�� and when  is shorter than
the size of the two subsystems �carrying capacity C2�x�, as
well as the cases characterized by C3�x� and C4�x��. In the last
subsection we extend the results obtained so far for the case
of equal attachment and detachment rates ��A=�D� to the
more general situation �A��D.

A. Large screening length: The case C1„x…

Let us first consider the case where the carrying capacity
is entirely determined by the defect, i.e., C1�x�= jd�x�. In this
situation, sketched in Fig. 7�a�, the bottleneck is strong
enough and always imposes a current jd�x�� j*. Then we
may distinguish between three cases depending on the mag-
nitude of the current imposed by the left and right boundary
�see Fig. 8�.

There are two extreme cases: the entrance and exit bound-
ary currents j� and j� exceed the carrying capacity C1�x�; the
current through the system settled at the value jd�x� imposed
by the defect �this is the situation for the left subsystem
presented as case 3 in Fig. 8�. Thus, the density exhibits the
piecewise profile given by Eq. �31�. As the current is inde-
pendent of the left and right boundaries, this phase is termed
pure bottleneck phase �BP�. In contrast, for low entrance and
exit rates one recovers the TASEP/LK density profile per-
turbed by a local spike or a dip �see the previous section�.
This is presented as case 1 in Fig. 8.

In intermediate regions of the parameter space, a situation
like the one presented as case 2 in Fig. 8 appears. Similarly
to what happens for the homogeneous TASEP/LK, when the
densities ��, ��, and �d cannot be matched continuously,
shocks form in the density profile and then we have coexist-
ence of several phases. This can happen either on the left or
right subsystem. The positions of the shocks follow from the
local conservation of the current, i.e., j��xw

L�= jd�xw
L� �on L�

and j��xw
R�= jd�xw

R� �on R�. With Eqs. �32�–�41�, one finds

xw
L =

1

2
xd +

1

�
�1

2
− � − �	� , �44�

FIG. 7. The four typical carrying capacity profiles C�x�
displayed by the system �parameters �= �0.3,1.5,0.5,0.5�,
xd= �0.5,0.5,0.7,0.3�, q=0.3�. Depending on the defect strength q,
on the position xd of the defect, and on the rate �, the defect-
imposed current jd combines in four different ways with the maxi-
mal current j*. Each of these profiles induces a topologically dis-
tinct phase diagram �see the text�.
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xw
R =

1

2
1 + xd +

1

�
�� + � −

1

2
	� . �45�

The conditions for having domain walls within the two sub-
systems are 0�xw

L �xd and xd�xw
R �1. This translates into

the following conditions for the entrance and exit rates:

1
2 − � − �xd � � �

1
2 − � + �xd, �46�

1
2 − � − ��1 − xd� � � �

1
2 − � + ��1 − xd� . �47�

These conditions allow the identification of two values of
the boundary rates �c

− and �c
− for which the domain wall

enters, respectively, the left or right subsystem, and two val-
ues �c

+ and �c
+ for which the domain wall exits the left or

right subsystem;

�c
± � 1

2 − � ± �xd, �48�

�c
± � 1

2 − � ± ��1 − xd� . �49�

Within the range defined by these critical rates, a shock is
localized in each subsystem. At values above �c

− and �c
− the

defect becomes relevant and at least part of the density and
current profile is dictated by the defect. This suggests naming
the corresponding regions of the parameters space bottleneck
phases.

Let us now construct the density profiles in the various
bottleneck phases focusing first on the left subsystem. De-
pending on the entrance rate, one distinguishes two cases: �i�
The density profile corresponding to case 2 in Fig. 8, arising
when �c

−����c
+, is presented in Fig. 9�a� �numerical simu-

lations are discussed later�. Here, j� intersects the left branch
of C1�x� at xw

L , where a domain wall forms. Then the density
�of the left subsystem� reads

�L�x� = ����x� , 0 � x � xw
L

�d�x� , xw
L � x � xd.

	 �50�

This coexistence phase is called LD-BP since it is character-
ized by the coexistence of a low density and a bottleneck
phase. �ii� The density profile corresponding to case 3 in Fig.
8, arising for �
�c

+, is shown in Fig. 9�b�. Here, j� is always
above the left branch of C1�x� and the defect imposes an
effective high-density phase �called simply BP� correspond-
ing to the maximal current jd on subsystem L. The corre-
sponding density profile reads �L�x�=�d�x�.

One proceeds in a similar way for the right subsystem
�R�. When �c

−����c
+, there is coexistence between high-

density �boundary-induced� and an effective low-density
�defect-induced� phases, called BP-HD �see Fig. 9�d��. This
results in a domain wall at xw

R and in the density

�R�x� = ��d�x� , xd � x � xw
R

���x� , xw
R � x � 1.

	 �51�

When �
�c
+, the defect dominates and imposes an effective

low-density phase called BP, where the density is �R�x�
=�d�x�.

Considering the whole system, by combining the above
mixed phases �on R and L� we obtain the following four
bottleneck phases:

FIG. 8. Construction of the current profile. Top: For given car-
rying capacity C1�x� �solid line� and fixed exit rate �=0.2, various
scenarios arise when the entrance rate �= �0.05,0.2,0.6� is varied.
Bottom: Three different profiles are shown in the small graphs
�solid line: global current profile, dashed line: defect and boundary
currents� emerging from three different left boundary conditions.
Parameters are xd=1/2, q=0.3, �=0.3, �=0.2, �= �0.05,0.2,0.6�.

FIG. 9. Examples of density profiles in the bottleneck phases for
a carrying capacity C�x�=C1�x�. Stochastic simulations �continuous
line� are compared to analytical mean-field predictions �dashed
line�. The system size is N=4096 and the parameters are q=0.3,
xd=0.5, �D=0.3, LD-BP: �� ,��= �0.3,0.6�, BP: �� ,��= �0.6,0.6�,
LD-BP-HD: �� ,��= �0.3,0.3� and BP-HD: �� ,��= �0.6,0.3�.
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The emergence of these four defect-dominated mixed
phases is the most dramatic effect of the bottleneck when
�
max��1 ,�2�. We have checked the predictions of our MF
theory against stochastic numerical simulations �following
the Bortz-Kalos-Lebowitz scheme for kinetic Monte Carlo
�46�� and, as shown in Fig. 9, have found good agreement
�both qualitative and quantitative� with the predictions of the
MF theory. Of course, due to finite-size effects, boundary
layers form in the vicinity of the shocks and ‘‘soften’’ the
transition in the density profile. When the system size is
increased, the accuracy of the MF theory improves and the
density profile displays a sharp jump. In addition to bound-
ary layers �as already noted in Ref. �7�� for the simple
TASEP perturbed by one defect, in the bottleneck phases,
one notes a slight but systematic deviation from the MF pre-
dictions �see, e.g., Figs. 9�b� and 9�d��. This effect is due to
correlations not taken into account by the mean-field ap-
proximation and is long range, scaling as the inverse of the
distance to the defect �7�.

The various phases are summarized in the � /� phase dia-
gram of Fig. 10. In this figure, because xd=1/2 and �A
=�D=�, the particle-hole symmetry �which still holds in the
presence of the bottleneck� results in the invariance of the
phase diagram with respect to the line �=�.

As can be seen from the phase diagram of Fig. 10, the
bottleneck-induced mixed phases �LD-BP-HD, LD-BP, BP-
HD, and BP� occupy the upper right part of the diagram �the
shadowed region in Fig. 10�. Only at the borders of the phase
diagram, corresponding to particularly low �high� entrance
�exit� rates, one recovers the same phases as in the defect-

free TASEP/LK model �there the defect is irrelevant�. For
�
�c

+ and �
�c
+, i.e., in the right top corner of the phase

diagram �the darkest shadowed region in Fig. 10�, the entire
system is in a pure bottleneck phase. By tuning the strength
of the defect � and the on-off parameter �, the phase bound-
aries can be shifted to recover the short screening length case
�discussed in the following� and eventually the usual
TASEP/LK behavior �when the defect is irrelevant�. On the
other hand, by increasing the strength of the defect �or by
reducing the on-off rate� the phase boundaries move toward
the axes of the phase diagram and can even merge with them.

Actually, this occurs for a defect strength �̃. Above this
threshold, the whole � /� phase diagram is characterized by
bottleneck phases �the homogeneous LD, HD, and LD-HD
phases are squeezed out of the diagram�. The critical strength

�̃ is therefore the maximum between the value determined by
the conditions �c

−=0 and �c
−=0, which leads to

�̃ = max� 1
2 − �1, 1

2 − �2� . �52�

Note that for a too strong defect, �
�̃, the control of the
system from the boundaries is lost.

B. Short screening length

We now consider the case where the screening length is
short so that the carrying capacity reaches the value j*

=1/4 in the bulk of the system.

1. Symmetric screening

We first consider the case illustrated in Fig. 7�b� where the
carrying capacity loses the trace of the defect in the system at
a distance larger than the screening length

C2�x� = � jd�x� , �x − xd� � 

1

4
, else � . �53�

This situation arises when ��min��1 ,�2� �with fixed �� or,
equivalently, when �
max��1 ,�2� �with fixed ��. This car-
rying capacity corresponds to the richest case in terms of
new bottleneck phases, due to the profile of C2 characterized
by four distinct regions.

As in the previous situation, the bottleneck is relevant and
induces new mixed phases when �
�c

− and �
�c
−, where

these critical values are again given by Eqs. �48�. Elsewhere
in the parameter space, the homogeneous TASEP/LK profiles
locally perturbed by a spike �or a dip� are recovered.

When the system is driven above its carrying capacity
�� ,�
1/2�, it exhibits the current profile given in Eq. �53�,
corresponding to a density profile

�L�x� = ��*, xd − x 
 

�d�x� , xd − x � 
	 . �54�

As the current profile of Eq. �53� reaches the MC value,
contrary to the case of a large screening length, this is no
longer a pure bottleneck phase but corresponds to a MC-
BP-MC phase �see the dark shadowed region in Fig. 12�.

FIG. 10. Phase diagram for �=0.3, q=0.4, and xd=1/2, i.e., for
the carrying capacity C1�x� �large screening length�. Continuous
lines are the phase boundaries introduced by the defect; dashed
lines are the phase boundaries already present in the model without
bottleneck. The shadowed region indicates the bottleneck phases
where the defect is relevant, the darkest one highlights the pure
bottleneck phase �for the meaning of the different phases see text�.
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Between these two extremal situations, more intricate
mixed phases appear. As in the previous case, phases char-
acterized by shocks appear when the boundary currents
match jd.

Contrary to the previous situation, where jd covered the
whole subsystem, now the defect-imposed current extends
up to a distance equal to the screening length from the bottle-
neck. Hence, shocks can emerge only in a macroscopic re-
gion, xd−�xw

L �xd and xd�xw
R �xd+, in the vicinity of

the defect. These conditions translate into new critical values
of the entrance and exit rates, namely,

�c� =
1

1 + q
− �xd, �c� =

1

1 + q
− ��1 − xd� . �55�

As a new scenario, here the boundary currents can reach
the upper-bound j*=1/4 on the subsystems L and R when
j��xL�= j��xR�=1/4. With Eqs. �40� and �41�, one finds that
this occurs at

xL =
1 − 2�

2�
, xR = 1 −

1 − 2�

2�
. �56�

We note that these quantities are independent of the proper-
ties of the defect, which is thus screened. Let us consider a
density profile that exemplifies the richness of this case.
When �c�����*=1/2 the resulting current j��x� saturates
at the value 1/4, while the density reads �L�x�=1/2 for xL

�x�xd−. Similarly, on the subsystem R, when �c���
��*=1/2 and the current j��x� saturates at the value 1/4,
the density is �L�x�=1/2 for xd+�x�xR. Within the range
of the screening length, xd−�x�xd+, the carrying capac-
ity and the current flowing through the system coincide with
jd�x� and the density is given by Eq. �31�. Summarizing, in
this case the density profile is piecewise and one distin-
guishes five regions

��x� =�
���x� , 0 � x � xL

�*, xL � x � xd − 

�d�x� , xd −  � x � xd + 

�*, xd +  � x � xR

���x� , xR � x � 1.
� �57�

This case, denoted LD-MC-BP-MC-HD, is illustrated in Fig.
11 and corresponds to the coexistence of a low-density and
high-density �on L and R, respectively�, two maximal cur-
rents �one in both subsystems�, and a bottleneck-induced
mixed phase.

The three possible scenarios for the bottleneck phases on
the two sublattices results in nine mixed phases on the whole
system, as summarized in Table I.

We have also checked our MF predictions against sto-
chastic numerical simulations, as illustrated in Fig. 11.
Again, we have found qualitative and quantitative agree-
ment. The small deviations from the MF theory observed in
Fig. 11 can be explained along the above discussion on the
role of the correlations and finite-size effects.

The � /� phase diagram corresponding to a system with a
carrying capacity C2�x� is shown in Fig. 12 and characterized
by the transition lines corresponding to the critical values
�c

− ,�c� ,�* and �c
− ,�c� ,�*. The nine bottleneck-induced

TABLE I. Bottleneck phases for the case C�x�=C2�x�. For each phase, the label �1–9� refers to a given
region of the �shadowed part� of the phase diagram represented in Fig. 12.

Left ↓/Right → BP-HD BP-MC-HD BP-MC

LD-BP LD-BP-HD7 LD-BP-MC-HD4 LD-BP-MC1

LD-MC-BP LD-MC-BP-HD8 LD-MC-BP-MC-HD5 LD-MC-BP-MC2

MC-BP MC-BP-HD9 MC-BP-MC-HD6 MC-BP-MC3

FIG. 11. Examples of density profile �top� and current �bottom�
for the system in the LD-MC-BP-MC-HD phase: the defect is rel-
evant and the carrying capacity is C2�x�. Results of stochastic simu-
lations �continuous line� are compared to analytical mean-field pre-
dictions �dashed line�. The system size is N=4096, K=1, �=�D

=1.5, q=0.3, �� ,��= �0.2,0.2�, and xd=1/2: one can clearly distin-
guish the various phases and note a discontinuity in the density
profile in the proximity of the defect, while the current profile is
continuous.
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phases appear in the core of the phase diagram �shadowed
region in Fig. 12�. Contrary to the phase diagram obtained
with C=C1, instead of a pure bottleneck phase, here one finds
a MC-BP-MC coexistence phase, which is independent of
the entrance and exit boundaries �right top corner of Fig. 12�.
This phase, obtained when �
�* and �
�*, is the “bottle-
neck analogous” of the MC phase in the homogeneous
TASEP/LK system.

2. Asymmetric (partial) screening

To conclude the study of the case �A=�D=�, let us
briefly consider the scenarios where the system displays a
carrying capacity of type C3�x� or C4�x�. This is possible
when the defect is not at the center of the system. In fact, the
carrying capacity of the system is C3�x� when �1����2 and
is C4�x� when �2����1. As one can infer from the profile
of C�x�=C3�x� �see Fig. 7�c��, on the subsystem L �R� this
case is identical to that discussed for C�x�=C1�x� �C�x�
=C2�x��. Therefore, it directly follows from the above table
that there are six new phases for the system displaying a
carrying capacity C3�x�. The latter are summarized in the
following table:

Similarly, six bottleneck phases are also obtained for a
carrying capacity C�x�=C4�x�, as it is clear from the table
below.

The corresponding phase diagrams directly follow from
those discussed above for the carrying capacities C1�x� and
C2�x�.

C. Topological features

The above discussion has shown that the sole presence of
a localized bottleneck is responsible for the emergence of
new �sub�phases and drastic topological changes of the � /�
phase diagram. Here we aim to discuss further the important
structural changes induced by the bottleneck in the density
and current profiles of the TASEP/LK by considering the
� /� phase diagram �see Fig. 13�.

We have already seen that the most appealing properties
of the phase diagrams of the model under consideration are
the new bottleneck �sub�phases. As summarized in Figs. 10
and 12, a large portion of the � /� phase diagram is domi-
nated by the defect properties. The phase boundaries separat-
ing the usual phases from the bottleneck �i.e., �=�c

− and
�=�c

−� are straight lines since they depend only on the de-
tachment rate and on the strength and position of the defect,
but not on the entrance and exit rates.

In the simple TASEP, the transitions between the usual
phases and the bottleneck phases can be considered as dis-
continuous, since the influence of the defect changes
abruptly from a local peak to a global step �see Fig. 3�. In the
case of TASEP/LK with bottleneck, a shock continuously
enters the system and the transition can be considered indeed

FIG. 12. Phase diagram for �=0.3, xd=1/2, and q=0.8, i.e., for
the carrying capacity C2�x� �short screening length�. Continuous
lines are the phase boundaries introduced by the defect; dashed
lines are the phase boundaries already present in the model without
bottleneck. The shadowed region indicates the bottleneck phases
where the defect is relevant; the darkest one highlights the bottle-
neck phase independent of the entrance ��� and exit ��� rates �see
the text and Table I�.

FIG. 13. Cut of the phase diagram in � and � �parameters: �
=0.4, xd=1/2, �
1/2�. Solid lines identify usual phase transitions,
while the dashed line identifies the peculiar transition between rel-
evant and irrelevant defect. The multiple coexistence points P and
Q are shown in the graph �see the main text�.
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continuous, as it was in the simple TASEP/LK �the dashed
line in Fig. 13�.

The phase boundaries �c
+ ��c

+�, for �
�1 ��
q2�, and
�*=1/2 ��*=1/2�, for ���1 ����2�, separate the point
where the density profile is dominated by the defect from the
one where the boundary currents still play a role. Consider-
ing the position of the domain walls xw

L and xw
R as the order

parameters, the transitions are all continuous. A similar tran-
sition is also identified by the boundary �c� ��c�� since the
matching point �no longer a shock� xL �xR� enters the system
continuously.

The physical modifications in the system following the
transition between a carrying capacity C1�x� and C2�x� can be
observed if we plot the cut of the phase diagram in � and �
�choosing �
1/2�, as done in Fig. 13. In this graph, the line
�c

− identifies the transition between relevant and irrelevant
defect, while �c

+, �c�, and �*=1/2 are the transitions between
bottleneck phases. The line �=1/2−�D was present in the
pure TASEP/LK. The line �=�1 identifies the continuous
transition between the two different carrying capacities,
C1�x� and C2�x�. There are two relevant points in the phase
diagram where different phases coexist, indicated with P
�five phases� and Q �four phases� in Fig. 13.

D. Results and phase diagrams when �AÅ�D

In this section we discuss the case where the attachment
and detachment rates differ, �A��D. This is mathematically
more tedious, as for the homogeneous TASEP/LK model at
MF level, one needs to solve Eqs. �8� and �12�, the solution
of which implies multivalued �Lambert� functions with two
real branches �34�. Introducing the binding constant K
��A /�D�1, the Langmuir isotherm �I reads �I�K / �K
+1�. Here, having split the problem in two subsystems one
has to consider the equation

�2�L,R − 1��x�
L,R�x� = �K + 1��D��I − �L,R�x�� , �58�

again supplemented with the �subsystems� boundary condi-
tions Eqs. �12� and �25�

�L�0� = �, �L�xd� =
1

1 + q
, �59�

�R�xd� =
q

q + 1
, �R�1� = 1 − � . �60�

We refer the readers to Ref. �34� for a detailed mathematical
treatment of this kind of equation, and report our results for
the phase diagram and density profiles of the TASEP/LK
model in the presence of a bottleneck when �D��A �i.e.,
K�1�. As for the homogeneous model, one can take advan-
tage of the underlying particle-hole symmetry to restrict the
discussion to the case K
1 �34�. Except for the mathemati-
cal treatment of the MF bulk equation, we follow the same
lines as in the case K=1. Again, one has to distinguish the
case where the carrying capacity coincides with the current
imposed by the defect �C�x�= jd�x�� from the situation where
C�x� reaches the maximal current value jK

* . While for K=1
the maximal current available in the bulk is j*=1/4, here
jK
* �x�� j* is a nonconstant space-dependent quantity. When

C�x�= jd�x�, except some topological asymmetries, one essen-
tially recovers the same phase diagram as in the K=1 situa-
tion when the carrying capacity is of C1�x� type: as illustrated
in Fig. 14, the new bottleneck �sub�phases are BP, MC-BP,
LD-P, and LD-BP-HD �see Fig. 15 �left� for an example of
current and density profiles�. Again, we notice that the core
of the phase diagram is entirely determined by the defect �the
shadowed region in Fig. 14�, which is also responsible for a
pure BP for sufficiently high rates � and �.

On the other hand, when K�1 it follows from the ana-
lytical solution of the above-mentioned MF equation that
there is only one �finite� screening length on the subsystem
R. In fact, it turns out that the left branch of jd�x� can never
reach the maximal current jK

* �x� on the subsystem L �so, for
K�1, there is no finite screening length on the subsystem
L�: the screening length may only be shorter than the length
of the subsystem R, with the point xd+�1. It follows that
carrying capacities of types C2�x� and C4�x� are topologically
prohibited �even in the asymmetric case xd�1/2� when
K�1.

In contrast to the case K=1, as in general the current j��x�
cannot reach the value jK

* �x�, the carrying capacity of type
C3�x� gives rise to four bottleneck phases �instead of six as
for the case K=1�, namely, the LD-BP-HD, LD-BP-MC, BP-
HD, and BP-MC. An example of BP-MC current and density
profiles is shown in Fig. 15 �right�.

V. CONCLUSION

This work has been devoted to the study of the influence
of a bottleneck �pointwise disorder� on the stationary prop-

FIG. 14. Phase diagram for K=2, �D=0.1, xd=1/2, and q
=0.3, i.e., for the C1�x�-like carrying capacity. Continuous lines are
the phase boundaries introduced by the defect �BP�; dashed lines
are the phase boundaries already present in the model without
bottleneck. The shadowed region indicates the bottleneck phases
where the defect is relevant; the darkest one highlights the pure
bottleneck phase. The numbers stem for the different phases:
LD-BP �1�, BP �2�, LD-BP-HD �3�, and BP-HD �4�. For the de-
scription of the phases see the text and Figs. 15.
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erties of a biologically inspired stochastic transport model
obtained by coupling two paradigmatic equilibrium and non-
equilibrium processes. Namely, we have considered the com-
petition between the TASEP and Langmuir kinetics �LK� in
the presence of open boundaries and a bottleneck, which
locally slows down any incoming particles. The current and
density profiles in the nonequilibrium steady state have been
investigated analytically via an effective mean-field theory
built on splitting the lattice into two subsystems. Our analyti-
cal results were checked against numerical �Monte Carlo�
simulations.

As a consequence of the competition between the TASEP
and LK dynamics, the effects of a single bottleneck in the
TASEP/LK model are much more dramatic than in the
simple TASEP �10�, or the so-called �-TASEP �TASEP for
extended objects� �14�, where a localized defect was shown
to merely shift some transition line in the phase diagram, but
do not affect its topology. Here, new and mixed phases in-
duced by the bottleneck have been obtained.

As a key concept of our analysis, we have introduced the
carrying capacity, which is defined as the maximal current

that can flow through the bulk of the system. In contrast to
the simple TASEP, the spatial dependence of the current,
caused by the Langmuir kinetics, makes the carrying capac-
ity nontrivial: The defect depletes the current profile within a
distance that we called screening length. This quantity in-
creases with the strength of the defect and decreases with the
attachment–detachment rates. The competition between the
current imposed at the boundaries and the one limited by the
defect determines the density profiles and the ensuing phase
diagram. When the boundary currents are dominant, the
phase behavior of the defect-free system is recovered. Also,
above some critical entrance and exit rates, the system trans-
ports the maximal current, independently of the boundaries.
Between these two extreme situations, we have found several
coexistence phases, where the density profile exhibits stable
shocks and kinks. Indeed, above some specific parameter
values the phase diagram is characterized by bottleneck
phases. Depending on the screening length imposed by the
defect, which can cover the entire system or part of it, dif-
ferent phase diagrams arise. The latter are characterized by
four, six, or nine bottleneck phases, which have been quan-
titatively studied within our mean-field theory.

The analysis carried out in this work can be straightfor-
wardly extended to many variants of the TASEP/LK model.
As an example, let us mention the case of a lattice gas where
dimers �modeling the usual two heads of molecular motors�
would move as bound entities according to the �-TASEP
�with �=2� �47� and could experience Langmuir-type on-off
kinetics. Recently, such a system has been studied �without
disorder� within an appropriate mean-field-like scheme �36�.
The pointwise version of this system could be investigated
along the same lines described in the present work.

In addition to direct extensions, we think that the method
outlined in this paper could pave the way to study the
TASEP/LK models in more “realistic” and biophysically rel-
evant situations, as in the presence of clusters of competing
defects or quenched sitewise randomness.
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