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Recent Monte Carlo simulations of a grafted semiflexible polymer in 1+1 dimensions have revealed a
pronounced bimodal structure in the probability distribution of the transverse �bending� fluctuations of the free
end, when the total contour length is of the order of the persistence length �G. Lattanzi et al., Phys. Rev E 69,
021801 �2004��. In this paper, we show that the emergence of bimodality is related to a similar behavior
observed when a random walker is driven in the transverse direction by a certain type of shear flow. We adapt
an effective-medium argument, which was first introduced in the context of the sheared random-walk problem
�E. Ben-Naim et al., Phys. Rev. A 45, 7207 �1992��, in order to obtain a simple analytic approximation of the
probability distribution of the free-end fluctuations. We show that this approximation captures the bimodality
and most of the qualitative features of the free-end fluctuations. We also predict that relaxing the local
inextensibility constraint of the wormlike chain could lead to the disappearence of bimodality.
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Semiflexible polymers have been the focus of intense the-
oretical and experimental research activity in recent years.
The main reasons are their relevance to biology, as many
biologically important macromolecules �including the build-
ing blocks of the cytoskeleton� fall in this category �1,2�, and
inherent challenges in their theoretical study. A widely used
minimal theoretical model of semiflexible polymers is the
wormlike chain, a locally inextensible, fluctuating line with
bending stiffness �3�. The main parameter in the description
of a wormlike chain is the persistence length, Lp. It is defined
as the correlation length of the tangent unit vector along the
polymer contour, and it is proportional to the bending stiff-
ness, � :Lp=2� / �kBT�d−1��, where T is the temperature, and
d is the dimensionality of the embedding space. The flexible
limit of the wormlike chain, L�Lp �L being the total contour
length�, and to a lesser extent the weakly bending limit, L
�Lp, have been well studied theoretically. In both of these
extreme cases, the wormlike chain exhibits scaling behavior.
In the intermediate regime where the total contour length is
of the order of the persistence length, however, scaling
ceases to exist and intriguing phenomena emerge. One of the
most striking features in the fluctuations of a polymer in this
intermediate regime was revealed by recent Monte Carlo
simulations of a grafted wormlike chain in a two-
dimensional embedding space �4�. A grafted polymer has
both the position and the orientation at one end fixed. If we
look at the probability distribution of the transverse �bend-
ing� displacement of the free end, it starts as a delta-function
in the rigid-rod limit, which develops into a Gaussian in the
weakly bending regime, and it becomes Gaussian again �of a
different type� in the flexible regime. Surprisingly, in the
intermediate region, the probability distribution is not a
smooth interpolation between the two Gaussian limits, but it
displays a pronounced bimodality. One can safely claim that
this bimodality is the hallmark of semiflexibility.

We should point out that the emergence of bimodality �or
multimodality� from an initially unimodal probability distri-

bution upon the variation of a timelike variable is not pecu-
liar to the semiflexible polymers. It has been shown that
Lévy flights in steeper than harmonic potentials exhibit a
critical time beyond which an initially unimodal distribution
evolves into a bimodal terminal one �5�. Depending on the
steepness of the confining potential, a trimodal transient may
exist �6�. It has also been shown that a biased one-
dimensional �1D� random walk exhibits trimodality in the
appropriate scaling limit �7�. Another manifestation of bimo-
dality which is formally closer to that in semiflexible poly-
mers occurs in diffusion-convection problems. If a neutral
Brownian particle is carried by a power-law shear flow in the
transverse direction, then the probability distribution of
transverse displacements gives rise to a terminal bimodality,
depending on the exponent of the flow profile �8�. A similar
bimodality occurs when the convective flow is odd and ran-
dom �for a single realization of the randomness� �9�. The
most important difference between the above mentioned
cases and the probability distribution of transverse fluctua-
tions in the grafted semiflexible polymer is that, in the
former, bimodality is terminal, whereas in the latter it is tran-
sient.

If G(r�L� ,��L�) is the probability distribution function for
a wormlike chain having its free end at point r�L�
= (x�L� ,y�L�) with a tangent vector making an angle ��L�
with respect to the clamping direction �x axis�, given that the
other end is at the origin of the coordinate system, it obeys
the following equation �10�:

� �

�L
+ cos �

�

�x
+ sin �

�

�y
−

1

Lp

�2

��2�G„r�L�,��L�… = 0. �1�

If we integrate out the spatial degrees of freedom �x and y�,
the resulting diffusion equation for the angle is simply the
differential equation associated with a path integral of the
Boltzmann weight of the bending energy �3�. The “convec-
tive” terms express the local inextensibility of the wormlike
chain �11�.
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If we integrate out the longitudinal fluctuations, x�L�, we
obtain:

� �

�L
+ sin �

�

�y
−

1

Lp

�2

��2�Gy„y�L�,��L�… = 0. �2�

Integrating out the angle in Gy(y�L� ,��L�) would give us the
desired distribution which was observed in the simulation of
Ref. �4�. Equation �2� can be simplified and solved analyti-
cally �using Fourier transformations� in the weakly bending
limit �L�Lp�, where ��1 and sin ��� �12�:

Gy�y,�� =
Lp

�3

�L2 exp	−
Lp�2

2L

exp	−

6Lp�y − �v�L�2

L3 
 , �3�

where �v�=� /2. We have introduced the extra symbol v be-
cause we want to invoke the analogy with the diffusion-
convection problem of Ref. �8�. According to this analogy,
Eq. �2� describes the motion of a particle in a �2D� space ��
and y�, with L becoming the time variable: it diffuses in the
� direction and it gets carried by a sinusoidal flow in the y
direction. The flow is v�� ,y�= �sin ��ŷ. Note that, in contrast

to the flows considered is Refs. �9� and �8�, this flow has a
periodic profile. The weakly bending limit of the wormlike
chain corresponds to the case of linear shear flow. In that
case, �v�=� /2 is the average convective velocity in the in-
terval �0,��.

Before we implement the effective-medium approxima-
tion, we should mention that attempts to perturbatively cap-
ture the onset of bimodality �from the stiff limit� have failed.
Specifically, we had expanded sin � in Eq. �2� up to the quin-
tic term, and we had treated the nonlinear terms to lowest
order �one loop� in perturbation theory. We had also used the
analytic expressions for the variance and the kurtosis of the
exact distribution in an Edgeworth expansion �13� about the
Gaussian, again without success.

In the effective-medium approach, following Refs. �9,8�,
we hypothesize that the probability distribution of the trans-
verse displacement and the slope of the free end maintains
the form of Eq. �3� for arbitrary bending stiffness �arbitrary
L /Lp�, but with the average “velocity” �v� now being re-
placed by an “effective velocity,” namely sin �. In this ap-
proximation, the probability distribution of transverse fluc-
tuations reads

TABLE I. Longitudinal position of the free end at the peak of the probability distribution, from the simulation, from the analytic
approximation, and their relative difference, for various values of the flexibility, L /Lp.

L /Lp 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2.5 2.8

simulation xmax/L 0.992�1� 0.984�1� 0.977�1� 0.968�1� 0.960�1� 0.940�2� 0.922�2� 0.878�2� 0.798�4� 0.762�4�
analytic xmax/L 0.967 0.943 0.925 0.908 0.893 0.860 0.827 0.770 0.684 0.653

	�%� 2.5�1� 4.2�2� 5.3�2� 6.2�2� 7.0�2� 8.5�3� 10.3�3� 12.3�3� 14.3�6� 14.3�6�

FIG. 1. �Color online� The distribution function of bending dis-
placements, P�y�, from the analytic approximation and from the
simulation, approaching bimodality from the the stiff limit. y has
been rescaled to y /L and s
L /Lp. The lower panel shows the onset
of multimodality with the three peaks.

FIG. 2. �Color online� The distribution funcion of bending dis-
placements, P�y�, from the analytic approximation and from the
simulation, as the polymer approaches the flexible region. The
lower panel shows a detail from the region where bimodality is
most pronounced.
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� exp	−
6Lp�y − �sin ��L�2

L3 
 . �4�

The integral can be evaluated numerically, and the result,
compared with the Monte Carlo simulation data, is illustrated
in Figs. 1 and 2. In the weakly-bending limit, the analytic
approximation gives a narrow Gaussian with a width �y2�
= �13/6�L3 /Lp �there is a discrepancy by a numerical prefac-
tor of about 0.31 with the exact result�. As L /Lp increases,
the distribution flattens and it develops three peaks at L /Lp
�0.77 in the analytic approximation and at L /Lp�0.75 in
the simulation. Increasing the flexibility of the chain, the
central peak is suppressed, and a clear double-peak structure
emerges, which is most pronounced around L /Lp�1.5 both
in the analytic approximation and in the simulation. The re-
sults for the position of the peaks from the two approaches
are quite close. Eventually, the bimodality is suppressed and
a unimodal distribution reemerges in the flexible regime.
This happens at L /Lp�2.8 in the simulation and at L /Lp
�3.8 in the analytic approximation. The reentry into unimo-
dality is accompanied by a transient trimodality in the simu-
lation whereas this trimodality does not appear in the ana-
lytic approximation. The major drawback of the effective-
medium approximation is that it fails to yield the right
scaling for the width of the Gaussian distribution in the flex-
ible regime. It reproduces ��y2��L3/2 of the weakly bending
limit, instead of ��y2��L1/2 of the Gaussian chain. It also
has Gaussian tails which spread into a region of extreme
displacements which is forbidden by the inextensibility con-
straint of the wormlike chain.

We now consider the probability distribution of the longi-
tudinal displacements of the free end. If we integrate out the
transverse displacements, y�L�, in Eq. �1�, we obtain

� �

�L
+ cos �

�

�x
−

1

Lp

�2

��2�Gx„x�L�,��L�… = 0. �5�

Applying the effective-velocity approximation to this equa-
tion, and integrating out the orientational degree of freedom,
we obtain

P�x� =
Lp

�3

�L2 �
−





d� exp	−
Lp�2

2L



� exp	−
6Lp�x − �cos ��L�2

L3 
 . �6�

Plotting P�x� for various values of L /Lp, we obtain a distri-

bution which, apart from the Gaussian-fat tails, qualitatively
agrees with the results from the simulation. Specifically, the
value of x which corresponds to the peak of the distribution
is pretty close to that obtained from the simulation over a
wide range of stiffness �Table I�. The agreement is better in
the weakly bending region. A remarkable feature of this dis-
tribution is that, although it always has only one peak, for
1.8�L /Lp�3.4, it exhibits two convex bumps. This struc-
ture was predicted by the analytic approximation and was
subsequently confirmed by the simulation. The presence of
the two bumps for L /Lp=2.8 is shown in Fig. 3. Note that
this structure is somehow reminiscent of the double-peaked
structure in the spatial density function of a �free� wormlike
chain which was observed in Monte Carlo simulations by
Dhar et al. �7,14�, in an overlapping region of L /Lp. Using
Eq. �6� to calculate the average longitudinal position of the
free end, �x�, we obtain a particularly simple expression:

�x� = L exp	−
L

2Lp

 . �7�

In Table II, we show how this approximate result compares
with the value of �x� obtained from the simulation. The two
results are very close in the weakly bending regime, but they
diverge very quickly as the wormlike chain enters the flex-
ible regime.

Besides providing simple approximations for the prob-
ability distributions of transverse and longitudinal displace-

FIG. 3. �Color online� The distribution function of longitudinal
displacements, P�x�, from the analytic approxima-tion and from the
simulation, for L /Lp=2.8, where it exhibits two convex bumps. x
has been rescaled to x /L.

TABLE II. Average longitudinal position of the free end, from the simulation, from the analytic approximation, and their relative
difference, for various values of the flexibility, L /Lp.

L /Lp 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2.5 2.8

simulation �x /L� 0.953 0.910 0.869 0.829 0.792 0.711 0.639 0.525 0.373 0.340

analytic �x /L� 0.951 0.905 0.861 0.819 0.779 0.687 0.607 0.472 0.287 0.247

	�%� 0.2 0.5 0.9 1.0 1.6 3.4 5.0 10.1 23.1 27.4
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ments, the effective-medium approach can also be used in
order to provide an approximation for the complete distribu-
tion function, G�x ,y ,��:

G�x,y,�� =�18Lp
3

�3L7exp	−
Lp�2

2L



� exp	−
6Lp

L3 ��x − cos �L�2 + �y − sin �L�2�
 .

�8�
Integrating out the angle, we obtain the probability distribu-
tion function for the two-dimensional position of the free
end, P�x ,y�. This distribution, for L /Lp=2/3, is shown in the
density plot of Fig. 4. Comparing it with Fig. 2�a� of Ref. �4�,
one can see that the effective-velocity approximation quali-
tatively agrees with the simulation, and the results for the
position of the crest obtained from the the two approaches

are even quantitatively close. The quantitative agreement im-
proves as the polymer gets stiffer.

Out of mathematical curiosity �and not only!�, one may
want to explore a modified version of the diffusion-
convection problem described by Eq. �2�. This problem con-
tains an extra, dimensionless parameter 
 as the amplitude of
the convective velocity�15–18�:

� �

�L
+ 
 sin �

�

�y
−

1

Lp

�2

��2�Gy„y�L�,��L�… = 0. �9�

While Eq. �2� has only one scale, the parameter 
 in Eq. �9�
causes a separation of scales between the diffusion process
which acts on the time scale �=L and the convection process
which acts on the time scale T=L /
. A rigorous multiscale-
perturbation-theory �19� analysis of this problem is deferred
to future work. The implementation of the simple effective-
medium approach, however, yields quite interesting results.
We now consider the effective velocity to be equal to �v�
=
 sin �, and we look at the dependence of P�y� on 
. It turns
out that, as 
 decreases, the width of the L /Lp interval which
exhibits bimodality shrinks, and, at a “critical” value 
c
�0.66, P�y� becomes unimodal for any L /Lp. In the context
of the wormlike chain, softening the relative strength of
“convection” can be interpreted as relaxing the local inexten-
sibility constraint. We leave the disappearence of bimodality
with the softening of the local extensibility of the polymer as
a conjecture, which will be elucidated in a future work.

Summarizing, in this paper, we used the analogy between
the wormlike chain and a diffusion-convection system, and
we applied an effective-medium approach to analytically ac-
count for some unexpected features in the distribution of the
semiflexible polymer conformations. It is remarkable that
this very simple approximation has been so successful for
three qualitatively different types of convective flow: random
flow �9�, power-law shear flow �8�, and—in our case—
periodic flow.

P.B. thanks R. Metzler for interesting discussions.

�1� J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
�Sinauer Associates, Sunderland, MA, 2001�.

�2� P. Nelson, Biological Physics; Energy, Information, Life �W.
H. Freeman & Co., New York, NY, 2004�.

�3� N. Saitô, K. Takahashi, and Y. Yunoki, J. Phys. Soc. Jpn. 22,
219 �1967�.

�4� G. Lattanzi, T. Munk, and E. Frey, Phys. Rev. E 69, 021801
�2004�.

�5� A. V. Chechkin, J. Klafter, V. Yu. Gonchar, R. Metzler, and L.
V. Tanatarov, Phys. Rev. E 67, 010102�R� �2003�.

�6� A. V. Chechkin, V. Yu. Gonchar, J. Klafter, R. Metzler, and L.
V. Tanatarov, J. Stat. Phys. 115, 1505 �2004�.

�7� A. Dhar and D. Chaudhuri, Phys. Rev. Lett. 89, 065502
�2002�.

�8� E. Ben-Naim, S. Redner, and D. ben-Avraham, Phys. Rev. A
45, 7207 �1992�.

�9� D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. Rev. A 45,
2315 �1992�.

�10� We should mention that the same equation is satisfied by any
point along the polymer contour.

�11� H. E. Daniels, Proc. R. Soc. Edinburgh, Sect. A: Math. Phys.
Sci. 63A, 29 �1952�.

�12� P. Benetatos and E. Frey, Phys. Rev. E 67, 051108 �2003�.
�13� W. Feller, An Introduction to Probability Theory and Its Ap-

plications, Vol. 1 �Wiley, New York, NY, 1957�.
�14� This feature can be reproduced with the methods of Ref. �15�;

it has also been reproduced with different methods in Refs.
�16–18�.

�15� J. Wilhelm and E. Frey, Phys. Rev. Lett. 77, 2581 �1996�.
�16� J. Samuel and S. Sinha, Phys. Rev. E 66, 050801 �R� �2002�.
�17� B. Hamprecht, W. Janke, and H. Kleinert, Phys. Lett. A 330,

254 �2004�.
�18� P. Ranjith, P. B. Sunil Kumar, and Gautam I. Menon, Phys.

Rev. Lett. 94, 138102 �2005�.
�19� E. J. Hinch, Perturbation Methods �Cambridge UP, Cam-

bridge, UK, 1991�.

FIG. 4. �Color� Color density plot representing the 2D probabil-
ity distribution, P�x ,y�, of the free end, for L /Lp=2/3, obtained
from the analytic approximation �Eq. �8��. The longitudinal posi-
tion, x, and the transverse position, y, have been rescaled to x /L and
y /L, respectively.
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