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Abstract-IPRS is a freely available software system which consists of about 250 library functions in C, 
and a set of application programs. It is designed to run under UNIX and comes with full source code, 
system manual pages, and a comprehensive user's and programmer's guide. It is intended for use by 
researchers in human vision, pattern recognition, image processing, machine vision and machine learning. 

IPRS (Image and Pattern Recognition System) is a software system intended for use 

by researchers and students in human vision, pattern recognition, image processing, 
machine vision and machine learning. It is designed to cater for most needs in building 
complete image interpretation systems, as it spans from low-level image processing 
functions to high-level complex technologies for clustering image content and abstract 

data, pattern recognition and modelling of visual function. 

The development of the IPRS library was initiated by one of us (T. C.) in 1991 to 
facilitate the transfer of software between research groups involved in vision research, 
motivated by previous work by this author in psychophysics and modeling of human 
visual function. Such transfer can significantly ease the task of comparing techniques 
and results from different vision-research groups. 

IPRS is designed to run under UNIX and was initially developed on Silicon Graphics 
workstations. It was then ported to other platforms, so that it can now also be installed 
on DEC stations, Suns, and PCs running Linux. It is available as C source code, and 
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the main requirements for installing the IPRS software are the GNU C-Compiler (gcc) 
and GNU make (gmake). 

IPRS comes in two basic forms: as a library of C functions and as a set of Unix 

application programs. Of the application programs, many are designed to mimic 

the C library functions as closely as possible. These applications allow fast and 

versatile combination of image processing functions by using the UNIX shell feature 

of pipelining the output of one program to the input of the next. For instance, the 

combined effect of several image processing functions with varying parameters can 

be visualized 'on the fly'; this can be helpful for selecting an appropriate stimulus in 

a psychophysical experiment. See the Appendix for an example. 
IPRS also contains a number of larger application programs which serve to illustrate 

the development of complete systems for object recognition and texture classification 

under the IPRS framework. An example is the evidence-based object recognition 

system (Caelli and Dreier, 1994), which combines IPRS functions for segmentation, 
feature extraction, clustering and neural networking to form a robust visual object- 

recognition system. The evidence-based system has also been successfully used for 

modelling results from human pattern learning and recognition experiments (Juttner 
et al., 1996). Other examples for the application of IPRS can be seen in Dance and 

Caelli (1993), and Dillon and Caelli (1995). 
A number of machine-dependent application programs allow for image displaying, 

editing, printing, and other functions. On systems equipped with Xl 1 in combination 

with the Motif runtime library, the construction of graphical user interfaces is sup- 

ported. Such interfaces may facilitate the user's communication with the functions 

provided by IPRS, as can be seen from a simple demonstration program which is 

provided with the IPRS package. 
Nevertheless, the main part of IPRS is the extensive set of about 250 C library 

functions, which support a wide range of data types and allow arbitrary-dimensional 
data structures. There is no limitation to 2- or 3-dimensional structures since higher 

dimensionality is useful, for instance, for representing feature spaces. The data types 
available for images cover the usual Cartesian types, such as boolean, byte, inte- 

ger, float, complex and rgb. Additionally, abstract data structures are supported such 

as edge or region descriptions, feature spaces, rule and neural network descriptions. 
These are paricularly suited for implementing higher level functions such as seg- 
mentation, feature extraction, and rule generation designed for image understanding, 
machine learning and pattern recognition. 

The library functions cover the following classes of operations: 

. low-level image processing, filtering, Fast Fourier transforms, scaling, thresholding, 

histogram equalisation, edge detection and others; 

9 image compression, including predictive coding, causal and non-causal filtering, 
curvature and pyramidal structures; 

. image segmentation; 

. feature extraction from arbitrary-dimensional data; 

. clustering and automatic rule generation in arbitrary-dimensional feature spaces, 

including clustering and sub-clustering, and hierarchical rule structures; 
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. graph matching; 

. neural networks and other learning paradigms; 

. machine-dependent functions for displaying, printing, etc. 

For almost every C library function and application program, a system manual entry 
is available. Further, there exists a printable manual of about 300 pages which covers 

most of IPRS and includes issues such as programming guidelines for developers and 

a general description of data structures. The manual is available in Postscript format 

at the ftp site mentioned earlier. 

The IPRS library can easily be extended by providing functions that meet individual 

requirements. For example, a package for nonlinear image processing based on the 

Volterra-Wiener series has been developed by using the IPRS feature of arbitrary- 
dimensional image structures. The calculations in Krieger and Zetzsche (1996) were 

performed with this extended IPRS software. 
The complete IPRS system, including all sources and manuals, is freely available 

via anonymous ftp at the previously mentioned site. The authors who have contributed 

to IPRS make no claims on the reliability or appropriateness of algorithms, code, or 

application programs contained within IPRS. Currently, no support is available. 
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APPENDIX I: OVERVIEW OVER THE IPRS DATA TYPES 

The general image format 

typedef struct { 

char *parameter; 

int mode; 

int numimages; 

int *type; 

void **image; 

char **name; 

} IPRS_IMAGE; 

The IPRS_IMAGE image format is the general image format. It can contain any 
number of sub-images, each of which can be any image of any size and format. The 

sub-images can also be of type IPRS_IMAGE, so trees and linked lists of images can 

be formed. 

The parameter string allows the user to store a description together with an image. 
This can be the date of creation, operations performed on the image, etc. Also, the 

performance of functions can be controlled through certain parameters. 

The Cartesian image format 

typedef struct { 

char *parameter; 

int numdim; 

int *dim; 

char *image; 

} IPRS_BYTE_IMAGE; 

This structure is an example for a Cartesian image format. Other formats available 

are of type INT, FLOAT, COMPLEX, RGB, etc. The Cartesian image formats are all 

stored as linear arrays of elements. The images are of arbitrary dimensionality, with 

the number of dimensions given by numdim and the length of each dimension given 

by the dim array. 

Non-Cartesian image formats 

There are many non-Cartesian image formats, adapted to specific purposes and ap- 

plications. Examples are EDGE_IMAGE to describe edges in images, FEATURE_ 

SPACE_IMAGE to store extracted image features, and NNET_IMAGE to store neural 

network connection weights. 
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APPENDIX II: IPRS PROGRAM EXAMPLE 

The following line provides a simple example for using IPRS programs from the 

UNIX command line shell: 

unix% highpass -I srcfile -c 50 threshold -t 100 [ 

scale -s 255 xshow 

Here, highpass will perform a filter operation on the input image srcf ile. The 

cutoff frequency is given by the parameter -c. The result of this operation is piped 
to the thresholding program which will set all pixels to 0 whose value is lower than 
the parameter given by -t, whereas pixels whose value exceeds this threshold will be 
set to 1. The scale function multiplies its input by a constant (here 255) and finally 
the resulting image is displayed on the monitor, using the xshow function. 

In order to give the reader both an idea of the program structure and show an 

example of how to add programs that match individual requirements here is a listing 
of the source code of the threshold routine mentioned above: 

#include<iprs.h> 

char help[] = 

"Threshold an image\n" 
" -I -> input filename\n" 
" -0 -> output filename\n" 
" -t -> threshold\n"; 

void main(int argc,char **argv) 

{ 

char *infile=NULL,*outfile=NULL; 

IPRS_IMAGE *in,*out; 

float th=1. 0 ; 

/***** Scan the command line arguments for options. 

The control string is similar to the scanf 

function. With no input/output filename stdin/ 

stdout are assumed. Recognizes reserved options 

to enable debugging, tracing, etc. *****/ 

iprs_getargs(argc,argv,help,"%ft %II %IO",&th, &infile, 

&outfile); 

/***** Read input file *****/ 

in=iprs-load-image(inf ile); 

/**** Create output image *****/ 

out=iprs_imagetobyte(in); 
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iaii tnresnoiaing Iunction +++++/ 

i rs threshold_image(in,out,th); 

z 

iprs -threshold- image (in, out,th); 

/**** Save output image *****/ 

iprs_save_image(out,outf ile); 

/**** Display debugging summary, depending on debugging 

flags *****/ 

iprs_debug_exit(); 

} 

void iprs_threshold_byteimage( 

IPRS_BYTE_IMAGE *src, 

IPRS_BYTE_IMAGE *dest, 

char threshold) 

{ 

int num,i,j; 

char *sptr; 

char *dptr; 

/***** Inform about begin of function for tracing, 

debugging, etc *****/ 

iprs_debug_enter("iprs_threshold_byteimage"); 

/***** Macros to check for valid image pointers *****/ 

IPRS_STDERR_IMAGE(src); 

IPRS_STDERR_IMAGE(dest); 

/***** Determine total image size *****/ 

f or(num=l,i=O;i<dest->numdim;i++) num*=dest->dim[i]; 

/***** Set the pointers to image data *****/ 

sptr=src->image; 

dptr=dest->image; 

/***** Loop through all image points and do 

thresholding *****/ 

f or(i=O;i<num;i++) { 

if((*sptr)>threshold) *dptr=l; 

else *dptr=0; 

sptr++; 

dptr++; 

} 

/***** Set the parameter string for operation 
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history *****/ 

iprs_set iparam(dest,"THRESHOLD",(int)threshold); 

/***** Inform about end of function *****/ 

iprs_debug_exit(); 

} 

/***** Determine which actual threshold function 

to call *****/ 

/***** for the general image format *****/ 

void iprs_threshold_type( 

void *src, 

int srctype, 

IPRS_BYTE_IMAGE *dest, 

float threshold) 

{ 

iprs_debug_enter("iprs_threshold_type"); 

IPRS_STDERR_IMAGE(dest); 

switch(srctype) { 

case IPRS_IMAGETYPE_BYTE: 

iprs_threshold_byteimage(src,dest,(char)threshold); 

break; 

case IPRS_IMAGETYPE_INT: 

iprs_threshold_intimage(src,dest,(int)threshold); 

break; 

case IPRS_IMAGETYPE_FLOAT: 

iprs_threshold_f loatimage(src,dest,threshold); 

break; 

case IPRS_IMAGETYPE_RGB: 

iprs_threshold_rgbimage(src,dest,(int)threshold); 

break; 

default: 

/***** Call an error function that gives 

formatted output *****/ 

/***** If no error handling function is set 

it will exit *****/ 

iprs_ierror("%e : %t",IPRS_IMAGETYPE_NS,srctype); 

break; 
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} 

iprs_debug_exit(); 

} 

/***** Handle thresholding for general image format *****/ 

void iprs_threshold_image( 

IPRS_IMAGE *src, 

IPRS_IMAGE *dest, 

float threshold) 

{ 

int i,iprs-freef; 

IPRS_BYTE_IMAGE *image; 

iprs_debug_enter("iprs-threshold_image"); 

IPRS_STDERR_IIMAGE(src); 

IPRS_STDERR_IIMAGE(dest); 

IPRS_STDERR_NUMSUB(src,dest); 

/***** Loop through all sub--images *****/ 

for(i=O;i<src->numimages;i++) { 

/***** If a sub --image is again a general image, 

do recursion *****/ 

if (src->type[i]==IPRS_IMAGETYPE_IMAGE) { 

iprs_threshold-image(src->image[i],dest->image[i], 

threshold); 

} else { 

/***** else create temporary byte image 

if necessary *****/ 

/***** to hold thresholding result 

and call iprs_threshold_type *****/ 

image=iprs_typetobytef(dest->image[i],dest->type[i], 

&iprs_freef); 

iprs_threshold_type(src->image[i],src->type[i],image, 

threshold); 

if(iprs_freef) { 

/***** now convert back to destination actual type *****/ 

/***** and remove temporary image *****/ 
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iprs_bytetype(image,dest->image[i],dest->type[i]); 

iprs_f ree_byte image(image); 

} 

} 

} 

iprs_debug-exit(); 

} 


