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Abstract

We propose a new class of state space models for longitudinal discrete response data
where the observation equation is specified in an additive form involving both determin-
istic and dynamic components. These models allow us to explicitly address the effects of
trend, seasonal or other time-varying covariates while preserving the power of state space
models in modeling dynamic pattern of data. We develop different Markov chain Monte
Carlo algorithms to carry out statistical inference for models with binary and binomial
responses. In a simulation experiment we investigate the mixing and convergence proper-
ties of these algorithms. In particular, we demonstrate that a joint state variable update is
preferable over individual updates. In addition, different prior choices are studied. Finally,
we illustrate the applicability of the proposed state space mixed models for longitudinal
binomial response data in the analysis of the Tokyo rainfall data (Kitagawa 1987).

Keywords and phrases: Binary time series, longitudinal data, Markov chain Monte Carlo,
probit, regression, seasonality, state space models.



1 INTRODUCTION

Longitudinal discrete data arise from many applied fields, and the development of models for
such data has drawn a lot of attention in the literature. In this paper we consider an observed
time series of discrete observations, {Y;,t = 1,...,T}, where Y; may be either binary or bi-
nomial, in the presence of p time-varying covariates Xi,..., Xy,. For expository convenience,
our discussion in this section focuses only on the binary case. In the analysis of the binary
longitudinal data, the primary objective is to model both the mean of the observed process as
a function of the covariates and the pattern of serial correlation of the data.

Amongst available models for time series of binary observations in the literature, the class of
state space models or parameter-driven models (Cox, 1981) seems to have gained a great deal
of popularity. See for example Fahrmeir (1992), Carlin and Polson (1992), and Song (2000).
A binary state space model consists of two processes: In the first observed process {Y;}, the
conditional distribution of Y; given the ¢-dimensional state variable 6, is given by

Y;|0; ~ Bernoulli(p)

where the conditional mean or the conditional probability of success u; = P(Y; = 1|60;) follows
the observation equation,

(1.1) e =h(G6;)

with a given link function h~'(-) as in generalized linear models (e.g. McCullagh and Nelder,
1989) and a known ¢-dimensional vector G; comprised of some time-varying covariates. We refer
to the linear function G0, with random coefficients 6; to be as the dynamic linear predictor.

In the second process, states {6;} are assumed to follow a ¢-dimensional Markov process, gov-
erned by the state equation,
(1.2) 0, = Hi0, 1 + e,

where H; is a ¢ X ¢g-dimensional transition matrix and the error vector ¢; has zero mean. When
q = 1, two common state processes used in the literature are the random walk, a nonstationary
process with H; = 1, and the stationary AR(1) process with H; = v € (—1,1), a parameter
known as the autocorrelation coefficient.

Generalized from the classical state space models for Gaussian longitudinal data (Jones, 1993),
the binary state space models preserves the desirable model structure. That is, the observation
equation (1.1) characterizes the dynamic nature of the mean pattern for the observed process
while the state equation (1.2) models the serial dependence by a Markov process. Therefore the
state space models are known to be both flexible and easy to interpret. Also see the development
of state space models for longitudinal counts by, for example, Azzalini (1982), Chan and Ledolter
(1995) and Jgrgensen et al. (1996).

In this paper we propose a new class of binary state space models that extends the model
presentation (1.1) by allowing deterministic linear predictors to enter the observation equation,
in order to investigate the effects of trend, seasonal and other given covariates. By a deterministic



linear predictor as opposed to the dynamic linear predictor, we mean a linear function of time-
varying covariates with deterministic (or nonrandom) coefficients. This extension is appealing as
it opens the door for making statistical inferences such as testing hypothesis for some covariates,
which is of scientific interest in many medical or biological studies. Moreover, the inclusion
of both deterministic and dynamic components enables us to assess how and to what extent
the covariates impact on the mean behavior of the observed process under a full strength of
dynamics governed by state space models. Such presence of the two types of linear predictors
in the framework of state space models has been considered in other settings, for instance, in
the analysis of longitudinal count data by, for example, Zeger (1988), Chan and Ledolter (1995)
and Jorgensen et al. (1999).

The difference between the models with and without deterministic predictors can be easily
illustrated by the example of Tokyo rainfall data. The data, reported by Kitagawa (1987),
consist of the daily number of occurrences of rainfall in Tokyo area during years 1983 and 1984.
The central question of the analysis is to model the probability p; of rainfall for each calendar
day over a year. A state space model, which is currently being used for the data analysis, is as
follows,

Mt = h(et) and Ht = Qt,l + Gt,With €t %i N(O, 0'2).

Here the process #; may be thought of essentially as certain underlying meteorological pattern
such as moisture most directly responsible for rainfall. Kitagawa (1987) and Fahrmeir (1992)
studied the parameter estimation for #; with the logistic link function, and Carlin and Polson
(1992) developed an MCMC estimation for #; and Song (2000) proposed Monte Carlo Kalman
filter and smoother for §; with the probit link function. The fitted mean curves ji; = h(@) shown
in their papers clearly indicate the existence of a seasonal pattern. The nonstationarity due to
seasonality appears typical in meteorological settings. In all current analyses mentioned before,
such nonstationarity is not modeled, as the state process takes a random walk that behaves
as independent increments. Although it is known that a random walk is nonstationary, it is
unrealistic to postulate the underlying meteorological process responsible for rainfall follows the
nonstationarity of a random walk. The unsuitability can be seen from several aspects of the
random walk. For instance, the variance of a random walk increases steadily as time increases,
implying that the underlying meteorological system has relatively little variation at the begin-
ning of a year but becomes a lot more volatile at the end. In contrast, we believe that the
nonstationarity in the rainfall data would be present more at level of the first moment in trend,
seasonal and other forms, with however a bounded second moment. For the seasonality has
been noted in the previous analyses, inevitably one faces to a question: Whether or not there is
significant evidence in the data that the seasonality is responsible for the nonstationarity. This
can not be answered by the existing approaches due to the way of modeling the data. Our ap-
proach can provide a solution to the question, by letting the observation equation accommodate
seasonal covariates and in the meantime modifying the state process into a stationary AR(1)
process. For more details of our analysis of the rainfall data see Section 5.

In general, we assume that the state process 6; has zero mean and that given the 6; the
conditional expectation p; of the observed process is u; = h(n; + G0;) where the deterministic



predictor 7, takes the form of the classical decomposition model (Brockwell and Davis, 1996),
Ne = My + S¢.

Here m; and s; represent the trend and seasonal components, respectively, and both may be
modeled further as a linear function of covariates. As far as the statistical inference concerns,
we may simply write both trend and seasonal components together to be Xja, where X; =
(Xu,...,Xy) and parameter vector « consists of p regression coefficients to be estimated.

In this paper we develop a Markov chain Monte Carlo (MCMC) estimation for the proposed
state space models with the observation equation given by

where the dynamic component takes a simple form of a univariate state variable 6;, which may
be regarded as a time-specific effect. With the logistic link function, the 6, describes the random
deviation of the log-odds log{ /(1 —p)} differing from the expected deterministic pattern Xjo
over time. Because of the similarity of model representation (1.3) to generalized linear mixed
models (Diggle et al., 1994), we refer the proposed models to be as state space mized models.

The structure of this paper is as follows. In Section 2 we discuss the state space models for
binary time series and the MCMC algorithm for estimation. Section 3 concerns the models for
binomial time series and the MCMC estimation. A simulation experiment is given in Section 4
to verify the proposed MCMC algorithm. Section 5 presents the details of the analysis of the
Tokyo rainfall data using the proposed method. Finally we make some concluding remarks in
Section 6.

2 BINARY STATE SPACE MIXED MODELS

In this section state space models for binary response variables are investigated. Such models
permit a latent variable representation which is utilized in an MCMC algorithm developed for
parameter estimation.

2.1 MODEL FORMULATION
For a binary longitudinal data (Y;,X;),t=1,...,T, we adopt the so-called threshold approach
(e.g. Albert and Chib, 1993) to model the serial dependence for the binary response vector

Y; = (Y1,---,Yr)". Here we assume that the unobservable latent threshold variable vector
Z: = (Zy,- -+, Zy)" allows for the following linear state space formulation

(21) Zt = —X;a—@t—l—ut,t:l,---,T,

(22) Qt = ’yet,l +€t, t= 1,"',T,

where « is a p-dimensional regression parameter and {6;,¢t = 0,---,7 } denotes the collection

of state variables. It is further assumed that

ii.d.
~Y

w N0, 1) and ¢ T N(0,02),
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where N (u,0?) denotes a normal distribution with mean ;1 and variance 0. Note that the vari-
ance parameters {o? > 0,t =1,---,T} in the state equation (2.2) are assumed to be unknown,
time-varying, and bounded. Therefore the state process governed by (2.2) may accommodate
more flexible patterns of variation for the data than a stationary AR(1) process that is a special
case of (2.2) with the o7 fixed constant. In addition we require mutual independence between
two sets of innovations {u;, t =1,---,T} and {¢,t = 1,---,T}. This implies that given 6;, Z; is
conditionally independent of the other Z;’s and 6,’s, and such a conditional independence may
be easily visualized via a graphic representation given by

Zt— 1 Zt Zt+1
@] @]
L] L] L]
01 0111 0;

As initial condition we assume
90 ~ N(O, 0'(2])

Finally the latent threshold variables Z; are related to the observed binary responses Y; through
the following latent variable representation:

(2.3) YVi=1<—= 27, <0,t=1,---,T.

Representation (2.3) ensures that the marginal distribution of ¥; given both state variable 6,
and covariate vector X; follows a probit model, i.e., u; = P(Y; = 1|6, X;) = ®(X}a + 0;) where
®(-) denotes the cumulative distribution function of N(0,1). This shows that a combination of
(2.1) and (2.3) is equivalent to (1.3) with A(-) = @(-).

We denote the corresponding history vectors by Y; = (Y1,---, V), Z7 = (Z1,---,Z)", 0 =
(0o, -+,0;)" and o2 = (02,---02).

2.2 BAYESIAN INFERENCE USING MONTE CARLO MARKOV CHAIN
METHODS

For the Bayesian approach, we assume independent prior distributions for the parameters
(o, 0%, 02%,7), indicated in a joint density of the form 7 (a, 04, 02%,7) = 7(a) x w(0%) x w(0%) x
(7).

Now we develop MCMC algorithms that allow us to draw samples from the posterior distribution
[, 0%, 0% v, Z5|Y5%]. As usual, [u|w] denotes the conditional distribution of u given w. We
follow Tanner and Wong’s (1987) Gibbs Sampling approach with data augmentation as what
follows shows that the conditional distributions of [Z%|Y%, a, 05, 025 4], [a| Y5, Zk, 05, 05, ],
05:1Y 5, Zs, 03,7, (05 1Y 5, Zh, o, 05, y] and [Y|Y 5, Z5, 05, 0%, o] appear indeed tractable
when appropriate prior distributions are chosen. The rest of this section gives the detailed
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derivations of these distributions in turn, and readers unfamiliar with MCMC methods can for
example consult Casella and George (1992) and Gilks et al. (1996) for an introduction to the
Gibbs Sampler.

LATENT VARIABLE UPDATE:

Since the latent variables Z;’s are conditionally independent given 67., we can immediately reduce
the update of [Z|Y%, a, 04, 0%, 7] to the squentially individual updates of [Z;| Y%, a, 0., 02, 7]
fort =1,---,T. Each of these univariate conditional distribution is equivalent to [Z;| Y7, «, 03]
because given 0% the information contained in ¢ and ~ has no influence on the Z%.. Moreover
we have [Z;|Y 5, a, 05 = [Z4|Yi, 0, 0;),t = 1,...,T due again to the conditional independence.
It is easy to see that these distributions are univariate truncated normal with mean —X}o — 6,
and variance 1. Truncation interval is (—oo, 0](or [0,00)) when Y; = 1(or Y; = 0). It is very
likely to draw samples in the extreme tails, therefore we suggest to use the probability integral
method for the generation of truncated univariate normal random variables in the numerical
implementation (e.g. Robert, 1995).

REGRESSION PARAMETER UPDATE:

The fact that Y7 is completely determined with given Z7 produces the the following reduction,
(| Y5, 25, 0%, 0% ] = [a|Z%, 0], where 6%, = (61,---,07)". Let N,(u, ) denote a p-variate
normal distribution with mean vector i and positive definite variance-covariance matrix .. Un-

der a multivariate normal N, (cy, Xo) prior for «, an application of standard Bayesian techniques
(e.g. Lee, 1996, p. 187) immediately results that [«|Z%., 07, ] is p-variate normal with mean vector

(2.4) ap = —(X'X+3,H) ! {E;nlozo+X'(Zi}+0}1)},

and variance-covariance matrix

(2.5) Y= (St + XIX)

where X = (Xj;)i=1,...15j=1,..p is the T X p matrix of full column rank. For a flat improper prior
of a (2.4) and (2.5) can be simplified by replacing parameters ay = 0 and X5' = 0.

STATE VARIABLE UPDATE:

We propose to jointly update the state variable vector 6 in a single step based on the (T +
1)-variate distribution [04|Y%, Z%, «, 02, v]. To derive this distribution we first consider the
conditional distribution [04|0%, v]. By the Markovity of the state process 03, we can write

(2.6) 07107, 7] = (H[@I@qﬂfﬂ]) [0o]075).

=1
The exponent on the right-hand side of (2.6) takes the form of

T

1 1
(2.7) Z _E(et —0,1)% + ;9(2);

o
t=1 0



which can be rewritten as a quadratic form 63 Y5407 with ©70 = P, D, P!, where

1 —y 0 --- 0 o2 0 -+ 0

0 1 —y --- 0 0 o2 -+ 0
p=| 0 7 D |aan,=| 0T

0 0 0 -1 0 0 - o°

It follows immediately that [0i]|o2¥, 7] is multivariate normal with zero mean vector and variance
covariance matrix given by X, , = P, 1’D;1P;1.

We now apply Corollary 1 given in the Appendix to determine that the conditional distribution
of [04Y5%, Zk, a, 02% 7] is (T + 1)-variate normal. This is because the conditional distribution of
[03]|02,~] is multivariate normal as shown above and the conditional distribution of [Z|c, 03]
is multivariate normal with mean vector —Xa — 67, and variance-covariance matrix equal to the
T-dimensional identity matrix [p. The resulting mean vector and variance-covariance matrix
are given by, respectively,

Y, oA Iy + AY, ;A HZE + Xa), and X, , — X, ,A'(Ip + AX, ,A) T AS,

where
0 -1 0 0 O
0O 0 -1 0 O
A= )
0 0 0 0 —1

Tx(T+1)

For the implementation of this sampling algorithm, it is useful to note that the elements {s;;,7 =

0,---,7,j=0,---,T} of the matrix ¥, , can be computed recursively as
Soo = Ug
S Si—1,47 if1#£7
forj>i:sy = { B e
Sij—17 + 0; ifi=7.

Thus we have E%g = (Sij)i:1,~~~,T+1;j:1,~~~,T+1-

To evaluate the effectiveness of this joint update algorithm for the entire vector 67, in comparison
to alternatively updating single component 6, sequentially in a simulation experiment in Section
4, we list here relevant formulas required in such an alternative updating scheme. In fact our
simulation study uses the AR(1) process for the state variables with o7 = o2 for all ¢. It is
straight forward to show that the conditional distribution

[0T|9t7 13 7£ r, Z;“afy: 027 O-ga OZ] 18 N(/'Lr*a 03*)7

where the mean and variance are given by, respectively,

010, olo?
fox = — 10 _andel =—% forr=0:
252 2 0x 252 27 !
veoy +0 veoy +0



Y(Or—1 + 0,41) — 0*(Z, + XL ) o?

— 2 _ .
s = N and 0y, = oo forr £0.T;
0T71’}/ — 02(ZT + X’TOC) 2 02
/’LT* — 0_2+1 and UT* = 0_27_*—1, fOTT:T.

STATE VARIANCE UPDATE:

For this update we assume an inverse gamma prior for [0?] with density given by

(2.8) (o)) = b?tr(at;(atz)a+1 xp <_f10t2>

with a; > 0 and b; > 0 known hyper parameters, denoted by o2 ~ IG(ay, b;). A straightforward
calculation gives that the density of [6;]6;_1,7] is

(2.9) (O, ) = F&“;—j?: {

Since the prior distributions are independent we can write

1 (0 — 70i—1)? Sty
by 2 '

[9t|9t—1, Ut27 7] [‘7?]
[9t|0t—17 ’Y]

Substituting the expressions (2.8) and (2.9) into the last expression yields that the conditional

[0152|0t7 etfla 7] =

distribution of [07|6;, 0, 1,7] is inverse gamma IG(aj}, bj) with

1 (0, —700)2
a; = a;+ .5 and by = —+M :
by 2
In the special case of the stationary AR(1) process with a constant o? = o2 for all ¢, the
assumption of the prior 02 ~ IG(a,b) gives rise to the posterior [0?|6}., 7] being IG(a*, b*) with

T -1
. T (11 )
a :a+§andb :{g—*—i;l(et—’}/etl)} .

For a less informative but proper prior choice, hyper parameters a and b are chosen in such a
way that IG(a,b) is widely dispersed. When a flat improper prior for o2 is used , the posterior
[02]0%,~] is IG(a*,b*) with

T

1
T 1
a* = 5 1 and b* = {52(9t - 70t1)2} .

t=1

In our simulation experiment presented in Section 4, we found that the less informative priors
for 02 tend to generate large values of estimates for o2 by the MCMC algorithm. Note that
unduly large (or small) values of 0 would lead to a domination of the dynamic component in
the model, which could largely reduce the quality of inference on the deterministic component.
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Therefore it seems desirable to control values of o2 in between two reasonable numbers [ and wu if
possible. The resulting prior choice for 0 would apparently be a truncated IG(a, b) distribution
on [l,u] or more simply a uniform distribution truncated on [/, u]. In our simulation the latter
prior choice is used.

STATE CORRELATION UPDATE:

A causal state process given by (2.2) requires that v € (—1,1). So we assume a uniform prior
distribution on (—1,1) for ~. First ertlng the exponent of [y|04, 0% ] and then turning it into
a quadratic form, we find that [y|65, 0] is univariate normal truncated to (-1,1) with mean .,

and variance 07 given by, respectively,

T 2 1 2
Htgt 1/0 0
f— - — —1
Zt 1 / 3 and 2 t=1"t ‘

T 2
Zt:l etz—l/UtQ ! Ot

In particular, when (2.2) is stationary with o? = o2 for all ¢, the above mean and variance

My =

expressions can be simplified as follows,
~1
Zt 1 0.6, ( - 2 )
fy = —T=——— and a =0’ 0,4 .
S 2

3 BINOMIAL STATE SPACE MIXED MODELS

We now consider longitudinal data with binomial response variables. As seen from what follows,
the MCMC algorithm developed for the data analysis can easily be established by a simple
extension from the previous section. In this section we assume that n; Bernoulli trials Yj;,7 =
1,---,n give rise to the binomial response Y; = > " V;,. The latent variable representation
(2.3) now specifies the correspondence in a componentwise fashion as follows:

(3.1) Vy=1e=Z;<0t=1,--T,i=1,--n.

At a given time 7', let N = Zle n; be the total number of Bernoulli trials, and denote the
history vectors by

Y=, Yo, Y, Yor) and Z = (Zia, s Zng s Zary s Zngr)

Likewise, assume that the latent vector Z7. follows componentwise the state space formulation,

I .

. it — - ity — Ly Ty b= 1y Ly
(3.2) Z Xia—0 +uy, i=1 ny,t=1 T
(33) Qt = ’y@t_l + €¢, t= ]_, N ',T,
where

Wit iLd. N(0,1) and ¢ iLd. N(0,07).

Similarly the mutual independence between the sets of innovations, {u;,i = 1,---,m,t =
-, T} and {¢,t=1,---,T} is imposed.



It is apparent that the only difference between the binary and binomial state space mixed
models appears in the dimension on the observed processes. In effect, the binomial case can be
regarded as an aggregation of a number of independent binary copies, both driven by the same
state process. The immediate implication of this observation is that we need to only modify the
updating procedures for f; and «, because only these two are directly affected by such dimension
expansion.

MODIFIED REGRESSION PARAMETER UPDATE:

To modify the regression parameter update, we first define an expanded design matrix X of N xp
dimension as X = BX, where B = blockdiag(1,,, 1n,, -, ln,), a block diagonal matrix with
the i-th block 1,, being an n;-dimensional vector of ones. As before, X = (X;)i=1,..1:j=1,...p-
Clearly B'B is a T x T diagonal matrix with diagonal elements {n;,t = 1,---,7}. One can
now proceed the procedure of updating regression parameter in an exactly same way as in the
binary case with the X in place of the X.

MODIFIED STATE VARIABLE UPDATE:

The state variable update for the binomial case requires care, to avoid large matrix inversions and
related calculations. First, we proceed as in the binary case to derive that [65.|Y5, Z%, a, 05, 7]
is (7" + 1)-dimensional normal with mean vector

(3.4) Lpost = Y o A'B'(Ix + BAY,, ,A'B") (25 + Xa),
and variance-covariance matrix
(3.5) Ypost = Sno — S0 A'B'(In + ABY, ,A'B') ' BAY, .

Set A, = AY, ;A" It follows from Sherman-Morrison-Woodberry formula (see Ortega and
Rheinboldt, 1970, p.50) that

(Ix + BA,B")™ Iy — B(Ip + A,B'B)'A,B'
(3.6) — Iy—B(B'B) ' {(BB) '+ 4,}) " A,B'.

Using (3.6) we can simplify (3.4) and (3.5), respectively, to
Hpost = 27,014/ [IT - {(BIB)il + AS}_I] BI(Z*T + BXO()

and
Epostﬁ = E'y,a - E'y,(rAl [IT - {(BIB)il + AS}_I] BIBAE%U.

Finally, since both state correlation and state variance updates do not involve the latent vari-
ables, the corresponding procedures of updates for the binary case remain valid in the binomial
case.
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4 A SIMULATION EXPERIMENT

To investigate the performance of the different MCMC algorithms and prior specifications for
the proposed models we conducted a simulation study based on a binary state space mixed
model given as follows:

(41) Zt = —ao—alxt—ﬁt—i-ut, t:].,,200,
0 = 79t71+6t7t:17"'72007

where z; is a time trend equally spaced between —2 and 2, and the true values are ay = 1,

a; = .5 and v = .9. The independent innovations are w, iid N(0,1) and ¢ id N(0,0%) with the
true value 0 = .5(c? = .25). For convenience, we chose as starting condition 6y ~ N(0,0?), so
here 07 = o2. Figure 4.1 shows a longitudinal data of size T = 200 generated from the above
model settings. Note that the deterministic linear predictor is

= o+ oy, t =1,---,200.
[Figure 4.1 about here]

The specific purposes of this simulation are (1) to evaluate the effectiveness of the proposed
MCMC algorithm between two different procedures of the state variable update, individual 6,
updates versus joint §; update, and (2) to assess how the different prior choices for o2 influence
the length of burn-in and other convergence issues. In particular, two priors for o2 were chosen
in the simulation. They are, the flat improper prior and the uniform prior on interval [.1,1]. In
addition, throughout the simulation we used the flat improper prior for regression parameters
a;,7 = 0,1. The four cases considered in the simulation are tabulated as follows,

Case Prior for 0> Update for 0,

ind Flat improper Individual #; updates
improper Flat improper Joint #; update
indtrunc  Uniform[.1,1] Individual 6, updates

trunc Uniform[.1,1]  Joint §; update

The MCMC algorithms were run for 100,000 iterations with every 50th iteration recorded. By
examining the time plots we decided to choose a burnin of 50 recorded iterations. The MCMC
calculations were implemented in Matlab.

Figure 4.2 shows posterior density estimates of the parameters oy, a1,y and o, where the vertical
lines correspond to their true values. From the results we can see that in all cases the true
values are well inside 90% credible intervals. The four estimated posterior modes in most plots
are similar, except for the indtrunc case where we observe some multimodality for the -y
estimation. This indicates that the truncation at 1 has been utilized somewhat differently in
the indtrunc case. In addition for this case the left tails of the posterior densities for oy and
o seem to be much heavier than those for the other cases.

11



[Figure 4.2 about here]

Next we compare the performance of the four algorithms in the aspects of updating the state
variables #;,t = 1,---,200 and the latent variables Z;,t = 1,---,200. In the simulation study,
we know the true underlying values, which are given as the dashed line in Figures 4.3 and 4.4.
In both figures the solid lines represent posterior mean estimates. We observe that the posterior
mean estimates behave quite similar and the true values are within the 90% credible intervals
indicated by two upper and lower dotted lines. Above in Figure 4.2 the indtrunc case has been
identified to produce a different tail behavior for density estimates of ay and a;, and now it
creates a slightly heavy right tail for {6;} but a reasonably consistent tail pattern for {Z,}.

[Figures 4.3 and 4.4 about here]

In addition to the graphical checks provided by Figures 4.3 and 4.4 we calculated an estimate
of the mean squared error, given by

T
MSE(0) = > (67 — gjre)?
t=1
T
MSE(Z) = Y (ZI*' - z™)?,
t=1
where P?(ru¢) denote the posterior mean estimates (true values). Table 4.1 contains these
estimates.
Case MSE() MSE(Z)
ind 188.94 153.84

improper 157.35 123.12
indtrunc 268.97 112.41
trunc 153.16 115.15

Table 4.1: Estimated Mean Squared Errors for State and Latent Variables

From this we see that the individual #; updates give higher MSE estimates for the state variables
than the corresponding joint updates. For the latent variables individual #; updates with im-
proper prior for o2 give the largest estimates, while the other updating schemes perform about
equally good. In summary, joint state variable updates are preferable.

Finally we plot the autocorrelation function of the sampled MCMC chains for the four parame-
ters, shown in Figure 4.5. It is clearly seen that the autocorrelation functions for o and «; decay
significantly more slowly for the procedures with individual state variable updates compared to
the procedures with a joint state variable update. This implies that the algorithms using the
individual state variable update give much slower rate of mixing and hence take more iterations
for convergence. Similar patterns occur in the autocorrelation functions for both parameters of
v and o.
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[Figure 4.5 about here]

In summary, we conclude that the algorithm using the joint state variable update together with
the truncated o2 prior performed superiorly to the other three algorithms. We also notice that
the algorithm using joint state variable update but with the flat improper o? prior worked
reasonably well, which would serve as an alternative to the best when the choice of truncation
interval for the informative prior becomes difficult.

5 ANALYSIS OF THE RAINFALL DATA

We now illustrate the application of the proposed model to analyze the Tokyo rainfall data,
which has been briefly discussed in Section 1.

Let Y; be the number of occurrences of rainfall for a given calendar day ¢ during the years 1983-
1984. So, Y; ~ Binomial(2,p;),t # 60 and Y; ~ Binomial(1,p;),t = 60 (February 29, 1984).
Therefore, we set 1" = 366 in our analysis.

As mentioned in Section 1, most previous analyses assumed a random walk for the state process
and ignored the nonstationarity of seasonality, although the seasonal pattern was revealed by
these studies.

We now apply the proposed binomial state space mixed model to investigate seasonal and
monthly effects with chosen covariates X; = (cos 1y, sin 1, cos 44, sin 44, cos 124, sin 12;)', where

2mmt 2mmt
cosmt:cos< 7;?) and sinmt:sin< 7;7?), m=1,...,T.

So the latent variables {Z;} follow

Ziy = —og—a;co8ly —agsinl; — azcosd; — agsind; — a5 cos12; — agsin 12

_9t+uit7 221727t21,7366,

and in contrast to Kitagawa (1987) the state variables {6,} here follow the stationary AR(1)
process with a common and bounded variance o2. Note again that we take the probit link
instead of the logistic link used in Kitagawa (1987) and Fahrmeir and Tutz (1994).

Our experience with the prior choice in the simulation study led us to favor informative prior for
0?. So we used the uniform prior on the truncation interval [.05,1]. A total of 10,000 iterations
of this MCMC algorithm adopted to the binomial model were run with every 10th iteration
recorded. A burnin of 100 recorded iterations was used for the posterior density estimates.

Figure 5.1 displays the estimated posterior densities for the regression parameters o, ¢ =
0,---,6, the standard error parameter ¢ and the autocorrelation parameter . For compari-
son, we also fit the rainfall data using the probit regression model with the same deterministic
component as in the binomial model but the serial dependence is neglected, and the correspond-
ing point estimates of the regression parameters are indicated by the vertical dotted lines in
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these plots. By the 90% credible intervals, it is evident that the effects of the yearly effect cos(1;),
the seasonal covariate cos(4;) and monthly covariate cos(12;) are present. Meanwhile, the es-
timate of the autocorrelation coefficient 7 is around .4, and such a medium sized v is clearly
not in favor of the random walk model (with v = 1) for the state variables. In conclusion, the
nonstationarity of the rainfall data seems attributed to the seasonality of the meteorological
system that can not be modeled by the process of independent increments. We also found the
estimated o? is around .16.

[Figure 5.1 about here]

In this analysis we also computed the pointwise estimation of the rain probability p, at day
t,t =1,...,366. Figure 5.2 shows the posterior mean estimates p;, t = 1,...,366 based on
the last 900 recorded iterations, represented by the solid line, together with its 90% credible
bounds. The green line indicates the posterior mean estimates of the probabilities computed by
only using the deterministic component. This line without the disturbance of the state variables
0,’s amplifies the seasonal pattern, which has been fitted to the data. By comparing this green
line to the solid line, we may tell how and to what extent the the time-specific random effect 6,
affects the deterministic mean pattern.

[Figure 5.2 about here]

Figure 5.3 gives the posterior mean estimates for the state variables ;, t = 1,...,366 with 90%
pointwise credible bounds. The plot indicates that posterior mean estimates have a zero mean
value and a stable variation over time, so the proposed model seems to be fitting the data well.

[Figure 5.3 about here]

Furthermore, we conclude that for the rainfall data a state space model with an AR(1) structure
is more appropriate than a random walk structure, since we observe that the 90% credible
interval for v ([—.14, .65]) is comfortably away from —1 and 1 and that the variation of the state
variables 6; remains evenly bounded. In addition, if the AR(1) structure was mistakenly used
for the true random walk process, unduly large values for o2 would be frequently seen in the
course of its updating procedure, but this was indeed not the case.

6 CONCLUSIONS AND DISCUSSION

In this paper we proposed a class of state space mixed models for longitudinal discrete data,
useful in finding statistical evidence for the relation between the mean of the observed process
and some covariates of interest. The models with both deterministic and dynamic components
are more flexible to address some substantive issues in data analysis than the state space models
with only dynamic components, providing the access of inferential methods used in regression
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analysis. They are also useful to detect formally causes for nonstationarity, which is often of
scientific interest in applications. In both the simulation study and the analysis of the rainfall
data the proposed MCMC algorithm has shown to work satisfactorily with a reasonably fast
convergence. We found that the improper priors led to reasonable results in the simulation and
may be used when informative priors are not available.

The proposed MCMC algorithm can be modified to deal with the logistic link function, in which
the distribution for updating « will no longer be exact multivariate normal but in principle can
still be done using the Metropolis-Hastings algorithm. The difference in making conclusion
between the choices of the two link functions is very mild, so we did not pursue any further
development with the logistic link.

The authors are currently looking for the possibility of implementing the proposed algorithm
via the BUGS software (http://www.mrc-bsu.cam.ac.uk/bugs). With the hope of such success,
the programming and computational burden for the application of these new models for data
analyst would become less.

Conceptually, perhaps with some analytic efforts, the proposed models can be extended to
analyze longitudinal data with polychotomous responses or with ordinal responses. These data
types are often encountered in practice, and the development of models analogous to our binary
state space mixed models would be needed. At the moment, we are investigating such extensions.
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APPENDIX: PROOFS

Lemma 1 If the following holds for random vectors X € RP, Y € R™ and Z € R®
XY, Z ~ Ny(AY +BZ +¢,%,)
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Y|Z ~ Nu(p, %)

where A is apxm, Bapxs, X apXpand Xy am X m matriz, while c € RP and y € R™.
If 3y is independent of Y then the joint conditional distribution of (Y,X) given Z is as follows:

Y 12 22 EQAI
Al Z~ N,
(A1) <X>| p+m{<AM+BZ+c>’[A22 ¥+ AY, A’
Proof: First note that
(A.2) ()] =mzxpz

The exponential exponent in the density of (A.2) can therefore be written as

(X —AY —BZ —¢)STH X —AY —BZ —¢) + (Y — u)S5;1 (Y — p)
= [(X~Ap—BZ —c) = AY = p)|'S' (X = Ap— BZ — ¢) = A(Y — p)]

+ (V= p)S3 (Y —p)
= (X - Au BZ —¢)STH (X —Ap— BZ — o)+ (Y — p)'[X5" + ASTHA|(Y — )
— (Y —p)AS N (X —Ap—BZ —¢)— (X — Au— BZ — ) A(Y — p)

(A.3)

On the other hand, the exponential exponent in the density of (A.1) is given by

-1
Y _ _ ERRY) Yo Yy Al Y —u
AN =)'y (X —Au = BZ C)}<A22 21+A22A’> (X—AM—BZ—0>’

where the inverse matrix can be written (see Rao, 1973, p.33) as follows
X YA
AYy Xy + AX A

It is now straight forward matrix calculation to show that expressions (A.3) and (A.4) are
identical. Therefore the distributions of (A.1) and (A.2) are equal.

- S+ ASTTA A
B ~X7'A it '

Corollary 1 Under the same conditions as Lemma 1, the conditional distribution of Y given
X and Z is
V[X, Z ~ Nm(,uX,Za ZX,Z)

where

pxz = p+ SeA (S + A AN HX — Ay — BZ —¢)
EX,Z - 22 - EQAI(El + AEQAI)ilAEQ

Proof: Follows immediately from Lemma 1 using standard results for conditional distributions
of multivariate normal random variables.
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Figure 4.3: Pointwise Posterior Mean Estimates of the State Variables 6, with
Pointwise 90 % Credible Intervals
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Figure 5.1: Posterior Density Estimates for the Rainfall Data
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