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Abstract

In a polynomial regression with measurement errors in the covariate,
which is supposed to be normally distributed, one has (at least) three
ways to estimate the unknown regression parameters: one can apply ordi-
nary least squares (OLS) to the model without regard of the measurement
error or one can correct for the measurement error, either by correcting
the estimating equation (ALS) or by correcting the mean and variance
functions of the dependent variable, which is done by conditioning on the
observable, error ridden, counter part of the covariate (SLS). While OLS
is biased the other two estimators are consistent. Their asymptotic co-
variance matrices can be compared to each other, in particular for the
case of a small measurement error variance.

Key words: Adjusted least squares, measurement errors, ordinary least
squares, polynomial regression, structural least squares.



1 Introduction

The polynomial structural regression model with measurement errors in
the covariate and normally distributed variables is given by the equations

k
vi=Y B¢l +e (1)
=0
;=& +6; , (2)

where (&;,€;,0;) ~ i.i.d. N((1e,0,0),Y) with ¥ = diag(ag,az, 03), i =
1,...,n.

Two consistent estimators for the parameter vector § = (5o, ..., 8x)’
have been considered in Kukush and Schneeweiss (2000): the Adjusted
Least Squares (ALS) and the Structural Least Squares (SLS) estima-
tors, see Cheng and Schneeweiss (1998) or Stefanski (1989) for ALS and
Thamerus (1998) or Carroll et al. (1995) for SLS. Both assume o3 to be
known. The first one does not take the distribution of ¢ into account,
whereas the latter one heavily rests on the assumption that £ is normally
distributed.

As in our model ¢ is indeed normally distributed by assumption, one
might expect SLS to be more efficient than ALS, since SLS uses the in-
formation about the distribution of £ while ALS does not. However, as
neither of these estimators are ML estimators, this presumption is not
evident at the outset and therefore needs further investigation. Some
simulation results in Schneeweiss and Nittner (2000) and also in Kuha
and Temple (1999) seem to indicate that SLS has in fact smaller estima-
tion error variances than ALS. The theoretical investigations of Kukush
and Schneeweiss (2000) come to the conclusion that at least in certain
border line cases SLS is, in a sense, more efficient than ALS. In particular
they dealt with the situation where both error variances o? and o3 were
small.

Here we take an approach which is slightly different from the one in
Kukush and Schneeweiss (2000), yet leads to completely different results.
We consider a model with small o3 but comparatively large o?. More
precisely, we let 02 go to zero, but leave o?, together with all the other
parameters of the model, constant.

It turns out that in this situation, much to our surprise, ALS and
SLS are equally efficient, at least up to the order of accuracy that we here



consider and which was also considered in Kukush and Schneeweiss (2000):
the asymptotic covariance matrices of ﬁ ALs and B sr.s are equal up to the
order of o2. This result can be derived using Taylor series expansions of
the formulas for the asymptotic covariance matrices of B aLs and BSLS.

In a similar way, we also derive a small-o3 approximation to the bias
and the asymptotic covariance matrix of the naive Ordinary Least Squares
(OLS) estimator of 8. The OLS estimator is constructed by simply us-
ing the observed, error contaminated, variable x in place of the latent,
error free, variable ¢ and applying the method of least squares to the
polynomial regression. The OLS estimator is inconsistent, but - after a
suitable normalisation - the asymptotic variances of the estimators of the
components of 3 are less than those of the ALS or SLS estimators.

These theoretical results are corroborated by a simulation study.

In Section 2, we study the bias and the asymptotic covariance matrix
of BOLS for small og. In Sections 3 and 4 we do the same for BALS and
BSLS, respectively. Section 5 compares 3OL5 to BALS or 35L5. In Sec-
tion 6 we briefly reexamine the case when both error variances are small,
a case which was also studied in Kukush and Schneeweiss (2000). Section
7 presents some simulation results and Section 8 has some concluding re-
marks. In the appendix we prove the eventual convergence of an iterative
algorithm to the unique solution of the SLS estimating equations.

2 The naive estimator BOLS

2.1 Bias and covariance matrix
With ¢; = (1,&;,...,£F) the model equation (1) can be written as
yi=¢ B+e. (3)

Replacing ¢; with the corresponding vector z; = (1,;,...,2%)" of the

observable variable xz, the (naive) OLS estimator of § is given by

n -1y
Bors = (Z zm‘) >z - (4)
1 1



The estimating error, as derived from (3) and (4), is
1 n -1 1 n 1 n
Bors — B =— <ﬁ ;ad) {E zl:zi(zi - G)'B - - Zl:zle,} . (5)

By the Strong Law of Large Numbers, the bias of BOLS,
b=1lim(Bors — B), is found to be !

b=—(Bz2") " Ez(z— ()8, (6)

and lim,,_,o BOLS =p+0b a.s. .
In order to derive the asymptotic covariance matrix of Sors we use
(5) and the abbreviation S = £ 31 z;z} and consider

3 e LN evE
\/ﬁ (BOLS -8B - b) =S \/ﬁ Zl: {Zzez Zz(zz Q) B Zzzzb}
= 5_1% Z {zi€i — zi(zi — (i)' B — Ez2'b — (2i2; — Ez2")b}

1

= 5’1% 27:: [ziei — {zi(zi — ;) — Ez2(z = Q)'} B — (2i2] — E22")b] ,

where we used (6) in the last equation. By the CLT we finally get

Vi (Bors — B —1b) = N(0,Zors),

Sors = (Bz2)7 [E{(z = ¢)'8)’ 22’ — Bz(z — )'F'E(z — ()<’
+2E{(z—¢)B}(2'b)22' =2 Ez(z — ()'B b’ Ezz2’
+ E(2'b)?22' — Ez2'bb'Ezz2'] (Ezz')7"
+ 02(Ezz') 7t
With the help of (6) this can be simplified to

Yors = (Bz2') P E{(z =)' +2'b}" 22/ (B22') ™" + o2(Bz2)"! (7)

IWe do not use brackets for the expectation operator. The operator E is always
understood to operate on the whole term to the right of E, terms being separated by +
or —. L.i.d. Variables without the observation index i are understood to be the variables
with index i=1, say.




2.2 Expansion of bias and covariance matrix

We want to find approximate expressions for b and Zors as o3 tends to
zero. We have the Taylor series expansion

_ d¢ 1 d*¢ 3

and therefore

zd::(d—ké((%%—+§%d> +f§-d3§§)4—0(6ﬂ, 9)
where we used the identity
diﬁgj’) =2 Z—éi—i +§£§§ + % " (10)
It follows that
Ezz' = ECC' + % o2 Ediggl) + 0 (03) (11)
Similarly by (8),
2(z =) =8¢ ‘fi—g +6° (Z—g‘fl—g % ¢ ‘f;g) +0 (6°)
and thus
Ez(z—() =02 E <z—§fl—§ + % ¢ ‘f;i') + 0 (o) (12)

Finally again by (8) and using (9),

;N2
E{(z - ()} s =02 E (%B) ¢+ 0 (o) (13)

With these results we are now able to present expressions for b and
Yors which are valid up to the order of ¢3. From (6), (11), and (12) we

get "
B Ly fdCde 1 &
b= —o5 (EC') E(d_gd_§+§

) B+ 0 (o}) (14)



In the special case of a linear regression (k=1) the well-known atten-
uation effect for 81 can be seen:

bias(fy) = — (03/0%) BL + O (03) -
Actually, in this case, the bias is given by
bias(pr) = — (03/02) b1 ,

(see, e.g., Schneeweiss and Mittag 1986, p. 140).

Turning to the covariance matrix (7), we first note that by dropping
the term 2'b the right hand side of (7) will change only by a term of order
O (0}) because, due to (14), b = O (02) and due to (8), z — ( is of the
form ad + O (6%). With the help of (11) and (13) we thus get

! 2 2 !
Sors =097 +0507! {E <%5> ¢ - %OSEL d(g ) } 7'4+0 (03) ,
(15)

where we introduced the abbreviation
® = FE((.

We used the following general result, which holds true for any positive
definite matrix A and arbitrary square matrix B and for a — 0:

(A+aB)™' =A™ —aA"'BA™ + 0 (a?).

3 The adjusted least squares estimator BALS

3.1 Covariance matrix

The adjusted least squares estimator of § is the (a.s. unique) solution of
the unbiased estimating equation

> H;Bars = hi, (16)
1 1

where (Hz')rs = t’r‘-‘rs('ri): r,s = 07 - '7k7 (hl)’l‘ = ylt’r‘('rl)a r = 07' . '7k7
with ¢,.(z) being a polynomial in x of degree r such that for z =&+ ¢

E{t,(z) | £} =¢" (17)



The polynomials ¢, (z) satisfy the recursion formula
tryr(x) = tp(z) — 0 7 te_1(2) (18)

with initial conditions to(z) = t_1(x) = 0, c.f. Cheng and Schneeweiss
(1998). o3 is assumed to be known.

According to the theory of unbiased estimating equations the estimator
B ALs is asymptotically normally distributed with asymptotic covariance
matrix

Sars = (EH) " E(HB - h)(HB —h)' (EH) . (19)
We obviously have E(H|{) = (¢’ and thus
EH=FE({'=9%. (20)
Let t = (to(z),...,tx(z))’, then
h=yt=t{B+et,
HB —h=(H-t() B —et,
and thus
E(HB —h)(HB —h)' = E(H —t("\BB'(H — (t') + o Ett'.
The asymptotic covariance matrix can therefore be written as

Yars = 7' {o? Ett' + E(H —t{")BB'(H — (')} @~ (21)

3.2 Expansion of X ,;g

From the recursion formula (18) it follows that

, d?z

50';5 E-{-O(O’?) 5

t=2z—

and by (8) and a corresponding expansion for filzTé we have

t=(+—>0+-—=(67=0})+Ri, (22)

where Ry = 07 O (0)+0 (62) + O (0}). All the following remainder terms
R; will be of the same form.



Because the elements of H consist of the polynomials t,(z), we have
an analogous expansion for H:

d(¢¢’ 1d*(¢¢ :
(dg) 0+ 5 (552) (6°—03) + Ry .
From (22) follows
d 1 d? .
t<j_<j<j+—§§6+2d£§ (6% —0}) + R3
and thus
H—tCZCdCI(S-{-A(é —U§)+R4,

dg

where A is a square matrix. It follows that

E(H —1(") BB (H - () =0} B ( ng> ¢'+0(os) (23

From (22) it also follows that

d¢ d¢’
dé dé

Substituting (23) and (24) into (21), we finally get

! d dl
Saps =020 403 & {E<d§ﬂ> ¢+ d—gd—i}élw(oﬁ)
(25)

Ett' = E((' + 0] E—>—= 40 (0}) (24)

4 The structural least squares estimator BSLS

4.1 Covariance matrix
We can reformulate (1) as a mean-variance model in the latent variable &:

E(yl§) =B
V(yl¢) = o?.



We find a new (conditional) mean-variance model in the observable vari-
able x by taking conditional expectations given z:

E(ylz) = p(x)'8 £ m(x,B) (26)
V(ylz) = o? + ' (M (@) - (@)u(@))B £ o(z,B,02)  (27)
Here u(x) = (1, u1 (), ..., ux(x))' is a vector consisting of components

pr () = E(" )

and (M(x))rs = pr4s(z) , 7,5 =0,..., k.
Now, because of (2), the conditional distribution of ¢ given z is N (uy (), 72)
with

(@) = pio + (1 = 03 /o3) (= pa) (28)

=05 (1-0j/07) (29)

We can therefore compute the conditional moments of & given x as

T

e = 3 (1) 4 (30)

J

. 0 if j is odd

Tl G- ! ifjiseven .
In these formulas the nuisance parameters p, and o2 have to be replaced
with their estimates in order to derive a mean-variance model correspond-

ing to (26), (27), in which fsz5 and 024y ¢ are then found as the solution
to the (asymptotically unbiased) estimating equations

yi — m(z;, ) NV
Z oy, B 02) Mei) =0

LR

Z{yz— Zﬁ {8(@) = i) i)'} B,

c.f. Kukush and Schneeweiss (2000); the second equation is different from
(15) in Kukush and Schneeweiss (2000), but can just as well be used to



estimate and update o2, The "hat” serves to remind us of the replacement
of p, and o2 with their estimates  and s2.

The estimating equations are solved by an iterative procedure (iter-
atively reweighted least squares). In the appendix this procedure is ex-
plained, and it is shown that it converges eventually, i.e., for sufficiently
large n. During the iterations and also as a final result 62 may become
negative. The estimation method can be greatly improved by providing
bounds for 62 , say 162%,, 4 < 62 < n6?,; 5. Whenever one of these
bounds is exceeded, the estimate 62 is set equal to that bound.

The resulting estimators of 3 and o2 are consistent and asymptotically
normally distributed. In particular, the asymptotic covariance matrix
Ysrs of BSLS is given in Kukush and Schneeweiss (2000), (35). From
the discussion in 5.2.2 of that paper it can be seen that the terms in
Ysrs originating from the estimation of the nuisance parameters are of
the order O (o}) and the formula for ¥szs therefore simplifies to

Ysrs = <Ew> jo (5) (31)

where we dropped the dependence on 3 and ¢ in the notation of v(z).

4.2 Expansion of g

As we want to express Y g1, in terms of the parameters of the distribution
of € rather than of x, we first note that y, = pe and o = o¢ + 03.
Expanding (29), (28) and (30), we get

P O'g + 0 (J?)
2
pi(z) = 46— %(é—ugHRs
3
wr(z) = m(z)" + <;> 21 ()" "2 + Rg

_ gr 4 fr—l 5+ <;>§r—262 —r gr—l Z_§ (f —Hg)

+ (g) o2 &2+ Ry,

10



where Rs, Rg, R7 (and the following R; as well) are of the same form as,
e.g., Ry in (22). The latter equation, for r = 0, ..., k, can also be written
in vector form:

B B ¢ 6% d*¢ o E—pe d¢ 1, d*¢
p=p(x) =C+ d—f‘f‘?@—ﬂg Ug d—§+505d—§2+R8~(32)
From this we get
RN (Y9 B A A (9]
pt = (¢ +46 P +3 TS
1 ¢ PC\ € pe dCC)
+U6{2 Cdgz +d£2 0_2 df +R9 (33)
where we used again the identity (10) and in addition the similar identity
dc¢) . d¢ | d¢
i€ ~Cata s

Now the elements of M (z) are the same u,.(z) as the elements of u(zx).
Therefore we have an expansion for M (z) analogous to that of u(z) in
(32):

, d ! 62 d2 ! _ d !

M=) = oes M 8D e )
1, (¢

+= og éég)

Ryp.
5 + F1o

So finally, again using (10), we get

dg d¢’
— ! = 2 .
M —pp' = o} T + Ri1
Now substituting this result into (27), we find

;N2
v=uv(r) =0’ +0} <%B> + Ri2 (34)

. 2
g 1 o3 (d¢
er 2 120 [
v 0_2 1% { O_EZ df B + R13

11

and



d !
- é{uw (éﬁ><<}+RM,

where the last equation follows from (33). Taking expectations and using
(33) again, we derive

w1 a?(¢¢) | ¢ d*C,
B = UZF*'2{E< e Tl tae >_2A}

g E(fgﬂ) | +oed | (3)

where

€= pe d(¢C)
A=E o} ¢ ’

which will now be further analyzed.
Let & = (€ — pe)/oe. Then
EgH =r BT r=1,2,...
because &, ~ N(0,1). By binomial expansion it follows that
E(6+a)&=rE¢+a).
Applying this to a = pe /o we get

3

Egr S* d£
O¢

¢ -

—r B¢ =E

As the elements of d(flgl) are of the form £", we can apply this result to

the expression A and find

d(¢¢’) & _ L d*(¢C)
A=E d¢ ag_ETgﬂ‘

Substituting this expression for A into (35) and again using (10) we
get

! ! 2 !
B _ K T (25) | vote).

- ————E %

% B g B>€€

o2
O.E

12



Finally according to (31), ¥sys can be approximated by

! 2 1
Ysrs = 062 o! +o§ o! {E <%B> ¢! +062 Ej—g%} o 1+0 (U§) ,

which is the same expression as (25).
We thus can formulate the main result of the paper:
For Ug — 0,

Sans = Esps + 0 (03) -

5 Comparison of Yp;s to X475 and Yg;g

As ¥ ars and X s 5 are equal up to the order of og we need only consider
the difference of (25) and (15):

d¢cd¢’ 1 _d?*(¢¢
YALS — X0LS :Jg 052 ot {Ed_gd_§+ 5 E (ggg)}(tl -}—O(Ug)

Unfortunately it is not true in general that the matrix in braces
- call it B - is positive semidefinite. Indeed for £ > 2 and £ ~ N(0,1), the
submatrix of B consisting of the first three rows and columns is

00 1
02 0 |,
1 0 10

—

which is indefinite, as it has a negative determinant. Thus, e.g., for the lin-
ear combination a = 43¢+ 32 the OLS estimator has a larger asymptotic
variance than the ALS estimator up to the order of o§. More precisely:

o2 (@OLS) —0? (&ALS) =2 0?0’3 + 0(0':%) .

However, the diagonal elements of B are obviously all positive except
for the first one, which is zero. This means that the difference of the
asymptotic variances of the ALS and SLS estimators of the j-th element
of 88, j =1,...,k, is always positive for small enough o3.

In this sense, OLS is superior to ALS or SLS, as far as the asymptotic
variances go. It should be remembered, however, that OLS is a biased
estimator.

13



6 Case of small 02 and o2

In this section we briefly return to a case dealt with in the earlier discussion
paper Kukush and Schneeweiss (2000) where o2 and o2 both tend to zero.
The results of that earlier paper can now be derived very simply. We make,
however, the simplifying assumption that o3 and ¢? remain proportional
to each other while going to zero, i.e.:

03 = K202 (36)

with some fixed constant £ > 0. We also derive a formula for the asymp-
totic covariance matrix of So s not considered in Kukush and Schneeweiss

(2000).

6.1 Expansion of Yy s and X ,rg

As in the various approximation formulas that were used in the derivation
of (15) only § or o} was involved, (15) remains essentially unchanged
except that the last term in braces multiplied by o? is O (Ug) and can
therefore be dropped. We thus have

;o\ 2
Yors =02 &t {@ +K2E <%ﬂ> gc'} &'+ 0 (0}).
If we introduce the term
L (dC" \?
v = v0l6,8) = 1+ #* (25 (37)
d¢
we can write Yorg as
YorLs = 0'62 o! EU()CCI ot + 0 (O'g) . (38)

The same arguments can be applied to the derivation of (25). Again
the last term in braces can be dropped and consequently ¥ 475 will be
the same as Y15 up to the order considered:

Sars = ZoLs + O (03) .

14



6.2 Expansion of Xg;g

In the expansion (33) for uu' we need only the first term:

' = ¢+ 0 (8) + 0 (03). (39)

The expansion (34) for v is taken over, but with ¢} replaced by k%02, so

that, using the abbreviation (37), we have:

, (d¢ N\
v =071+ K <d_§ﬂ> + Ry = 02 vo + Ry (40)
with Ri» = a3 O (8) + O (6%) + O (a})
Equations (39) and (40) imply

w1 L 0w+ 2 o)

2
v (o) Vo 05

hence
! !
gH _ i{E£+O(gg)} ,

and finally

Therefore by (31),
vg

N\ —1
Ysps =02 <E£> + 0 (03) - (41)

Thus if U? and o2 both go to zero Yars and Ygps differ at the order
O (03) = O (0?), and SLS turns out to be more efficient than ALS in this
case, see Kukush and Schneeweiss (2000), Theorem 3.

15



7 Some simulation results

We simulated a quadratic model with 5 = (0,1, —0.5)" and a cubic model
with = (0,1,—-0.5,0.5)". The sample size was taken to be n = 200
and n = 900. We let £ ~ N(0,1). The error variances were set equal in
Schneeweiss and Nittner (2000). Here, however, we studied two different
scenarios. In the first one we took o2 = 20 and o} = 0.05, so that the
theoretical results of Sections 2 to 5, which are approximations for small
o2 but not so small 62, would come out more clearly. The other scenario
deals with the case of Section 6, when both error variances are small. We
took 02 = 0.002 and ¢ = 0.01. The number of replications was N = 1000.

We replaced ALS by a modified ALS method, called MALS. MALS
has the same asymptotic properties as ALS, but is much stabler for small
n, see Cheng et al. (2000).

We computed bias and standard error of the various estimators di-
rectly from the 1000 replications and compared them to the theoretical
approximation values as computed from (14), (15), and (25) in the first
scenario and (14) and (38) in the second scenario. The results corroborate
the theory, especially when the sample size is large (n = 900), but to a
large extent also in the case of smaller sample size (n = 200). Naturally,
the simulation results are less stable for the cubic regression, but even
there they agree sufficiently well with the theoretical results.

In the second scenario, we also computed the differences of the empir-
ical covariance matrices of the three estimators. They were standardized
by multiplying them with n/o%. The results agree well with the theoreti-
cal statements in that the difference ¥ 4,5 — Yo s is very small, whereas
EALS — ESLS is large.

16



Quadratic model: § = (0,1,-0.5)', pg = 0,07 = 1,02 = 20,05 = 0.05

Bias

OLS MALS SLS

n = 200 | theoretic simulation | simulation | simulation

Bo -0.025 -0.0431 -0.0202 -0.0197

o1 -0.050 -0.0661 -0.0213 -0.0190

5P 0.050 0.0552 0.0095 0.0088

n = 900 | theoretic simulation | simulation | simulation

Bo -0.025 -0.02237 0.0016 0.0017

o -0.050 -0.05303 -0.0061 -0.0054

5P 0.050 0.04375 -0.0033 -0.0034

Standard Deviation

OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation theoretic
5o 0.3883 0.3874 0.3943 0.3939 0.3947
51 0.3098 0.3052 0.3207 0.3210 0.3256
B2 0.2139 0.2169 0.2403 0.2402 0.2361
n =900 | theoretic simulation | simulation | simulation theoretic
Bo 0.1830 0.1838 0.1871 0.1872 0.1860
51 0.1461 0.1477 0.1553 0.1553 0.1535
B 0.1008 0.1018 0.1128 0.1125 0.1113

17



Cubic model: 8 = (0,1,-0.5,0.5)", pg = 0,07 = 1,02 = 20,05 = 0.05

Bias

OLS MALS SLS

n = 200 | theoretic simulation | simulation | simulation

Bo -0.025 -0.0201 0.0048 0.0034

o1 0.025 0.0096 -0.0728 -0.0132

5P 0.050 0.0465 -0.0021 0.0000

B3 -0.075 -0.0635 0.0311 0.0068

n = 900 | theoretic simulation | simulation | simulation

Bo -0.025 -0.0292 -0.0046 -0.0043

o1 0.025 0.0190 -0.0192 -0.0035

5P 0.050 0.0495 0.0023 0.0019

OB -0.075 -0.0685 0.0068 0.0006

Standard Deviation

OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation theoretic
Bo 0.3972 0.4151 0.4256 0.4241 0.4035
51 0.5325 0.5352 0.6049 0.5846 0.5689
B 0.2421 0.2509 0.2869 0.2777 0.2619
53 0.1497 0.1587 0.2004 0.1858 0.1656
n =900 | theoretic simulation | simulation | simulation theoretic
Bo 0.1873 0.1876 0.1920 0.1911 0.1902
51 0.2510 0.2376 0.2674 0.2575 0.2682
B2 0.1141 0.1137 0.1276 0.1242 0.1235
53 0.0706 0.0669 0.0821 0.0769 0.0780

18



Quadratic model: 3 = (0,1, -0.5)', ug = 0,07 = 1,02 = 0.002,03 = 0.010

Bias
OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation
Bo -0.005 -0.0044 -0.0000 0.0003
o1 -0.010 -0.0100 -0.0007 0.0004
5P 0.010 0.0095 -0.0000 -0.0002
n = 900 | theoretic simulation | simulation | simulation
Bo -0.005 -0.0048 0.0001 0.0002
o -0.010 -0.0100 -0.0001 -0.0000
5P 0.010 0.0097 -0.0001 -0.0001
Standard Deviation
OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation
Bo 0.0128 0.0123 0.0125 0.0093
o 0.0145 0.0143 0.0145 0.0121
5P 0.0124 0.0118 0.0121 0.0092
n = 900 | theoretic simulation | simulation | simulation
Bo 0.0061 0.0059 0.0060 0.0045
o1 0.0068 0.0065 0.0066 0.0056
Ba 0.0059 0.0054 0.0056 0.0042

19



Difference of Covariance Matrices

n=200

0.026  0.081

—0.094 -0.036

0.093 0.026
%(EMALS - Xors)

0.580 1.241

—1.306 —0.566

1.397 0.580
%(EMALS —Xs1s)

n=900

|3

—-0.008  0.175
—0.068 —0.079

(Xmars — Xors)

o

(SIS

( 0.068 —0.008

|3

0.554 1.167
—1.283 —0.540

(Xmars — Esrs)

o

(SIS

( 1.369  0.554

20

—0.094
—0.036
0.128

—1.306
—0.566
1.223

—0.068
—0.079
0.140

—1.283
—0.540
1.209

|
|

|
|



Cubic model: § = (0,1,-0.5,0.5)', ug = 0,07 = 1,0Z = 0.002,03 = 0.010

Bias
OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation
Bo -0.005 -0.0042 -0.0002 0.0002
o1 0.005 0.0016 -0.0086 -0.0021
5P 0.010 0.0094 0.0002 0.0002
B3 -0.015 -0.0133 0.0028 0.0010
n = 900 | theoretic simulation | simulation | simulation
Bo -0.005 -0.0054 -0.0008 0.0002
o1 0.005 0.0049 -0.0017 -0.0013
5P 0.010 0.0103 0.0008 -0.0002
OB -0.015 -0.0146 0.0004 0.0005
Standard Deviation
OLS MALS SLS
n = 200 | theoretic simulation | simulation | simulation
Bo 0.0396 0.0318 0.0324 0.0136
o1 0.0961 0.0672 0.0693 0.0299
5P 0.0522 0.0452 0.0463 0.0259
B3 0.0406 0.0313 0.0324 0.0190
n = 900 | theoretic simulation | simulation | simulation
Bo 0.0187 0.0174 0.0178 0.0063
o1 0.0453 0.0384 0.0398 0.0144
5P 0.0246 0.0227 0.0235 0.0119
OB 0.0191 0.0163 0.0169 0.0089
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Difference of Covariance Matrices

n

;JE(EMALS —Yors)

|3

(Xmars — Esis)

o

(SIS

%(EMALS —Yors)

%(EMALS —Xs1s)

0.795
—0.493
—1.163

0.157

17.368
—11.793
—22.198

5.765

1.322
—0.288
—2.041

0.157

25.017
—18.048
—30.203

7.438

22

n=200
—0.493 —1.163
5.720 0.609
0.609 1.955
—-2.620 -0.252
—11.793 —22.198
78.149 12.380
12.380 29.421
—-32.179 —6.421
n=900
—0.288 —2.041
9.246 0.361
0.361 3.349
—-3.650 —0.340
—18.048 —30.203
123.641 18.954
18.954 36.927
—47.745 —7.876

0.157
—2.620
—0.252

1.481

9.765
—-32.179
—6.421
13.765

0.157
—3.650
—0.340

1.744

7.438
—47.745
—7.876
18.647



8 Conclusion

We compared three estimators of the parameter vector § of a polyno-
mial regression with measurement error: the naive ordinary least squares
(OLS), the adjusted least squares (ALS), and the structural least squares
(SLS) estimators. Although OLS is inconsistent it is still worthwhile to
compare it with the consistent ALS and SLS estimators because often
the standard errors of OLS are so small as compared to those of ALS
and SLS that in certain occasions OLS might be preferable despite its
inconsistency. SLS relies on the knowledge of the regressor distribution
(structural case), which here is taken to be a normal distribution. ALS
is not based on any distributional assumptions about the regressor (func-
tional case) and is therefore more robust than SLS. Here, however, we
do not study robustness properties (for this see Schneeweiss and Nittner
(2000)). Instead we assume that SLS takes the normal regressor distri-
bution correctly into account. In this case one might suppose that SLS is
more efficient than ALS.

In order to study efficiency properties of the estimators we compute
their asymptotic covariance matrices. As they are hard to compare in
general we restrict our investigations to borderline cases with small error
variances. Such cases seem to be quite realistic in practical applications.
We study two scenarios: in the first, the measurement error variance o3
tends to zero, in the second both error variances, o2 and o2, the variance
of the error in the equation, tend to zero. For both cases approximate
formulas of the asymptotic covariance matrices are derived which then
can be compared to each other.

For small ag it turns out that, surprisingly, ¥ 4rs = ¥srs up to the
order of ag, whereas Yo s differs clearly from ¥ 415 and X g55. We can,
however, not say that Xors < X 4rs. In fact there are linear combinations
a = a'f for which the variance of &opg is larger than the variance of &gps.
On the other hand, for the components of ®3, where ® = E((’, we can
say that the OLS estimator has smaller variance than the ALS (or SLS)
estimator if ¢} is small enough.

In the case where 02 and ¢} are both small it turns out, again sur-
prisingly, that Y¥ors = Yars up to the order of og, whereas now Ygsrg
differs from X 45,5 and Yo s. In fact we have essentially that detX 4,5 >
det¥ sy s in the limit, see Kukush and Schneeweiss (2000).

We not only have these qualitative results, we also have explicit quan-
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titative formulas for the covariance matrices (see (15), (25), (38), (41))
and for the bias of OLS (see (14)) up to the order of o3. These for-
mulas can be used to compute approximately these covariance matrices.
Simulations show that these approximations are fairly accurate for small
error variances. It might be advantageous, though, to replace the matrix
® = E((' with Ezz' in these computations, but we did not try out this
modification.

Appendix: Convergence of iteratively re-
weighted least squares

We investigate the convergence properties of ”iteratively reweighted least
squares”, which is an iterative procedure intended to solve the estimating
equations for 8s1s and d.srs- For convenience we repeat the estimating
equations of Section 4.1 in a slightly different form:

—Zy’ bR ) =0 (12)

gl = — _12{%— (z:)' B} — ZBA (43)

where A(z;) = M(x;) — fuz;)plz;)'

Let ©g be a closed bounded subset of R**! and © = © x [a,b] with
0 < a < b < oo. We suppose that the true values 3° and o?, satisfy the
following condition: 3° is an interior point of O3, and

0%y € (a,0) (44)

In Kukush and Schneeweiss (2000) it is shown that under this condition
the system (42), (43) has a solution Bszs, 6251 a.s. for all n > ng(w),
and Bsrs = B°, 62, —= 0o as., as n — oo. (Actually this was shown
for a slightly different system of estlmatmg equations, but the arguments
are still valid for (42), (43)). However, this was only an existence not a

uniqueness proof and no procedure to actually find a solution was pro-
vided.
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Here we consider the following iterative procedure to solve (42), (43)
uniquely. From (42) derive the partial solution
y

-1
_ iz
po= ( 23 o 6) ' vm“& J

L o(8,0%) (45)

Note that as n — oo,

1 (@) (z)
n ; o( x,,ﬂ, Eov(:v,ﬂ,af) (46

S|

uniformly on O a.s. , see Kukush and Schneeweiss (2000), proof of Lemma
1. The limit matrix in (46) is positive definite. Therefore the function
¢ : 0 — RFF! in (45) is well defined a.s. for n > n;(w).

Denote also the function on the right hand side of (43) by v(5), where
¥ : ©g — IR. Then the system of equations (45), (43) can be written as

B =wB,0?), (47)
ol =9(p) . (48)
Introduce the projector P on the interval [a, b],
z , if z€]a,b]
P(z)=¢ a , if z€(—o00,a)
b , if ze€(b+00).

We modify (48) to
ol = Poi(B) . (49)

Now the following iterative algorithm is proposed:

1. Given estimates ) € ©4 and U?(j)

of the algorithm, find

€ [a,b] from the j-th iteration

U =Poy(sY). (50)

2. Find
BUHY) = (W) 20+, (51)
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The initial value 5(© ¢ ©p can be chosen arbitrarly (e.g., as the naive

OLS estimate), and we get o?® =po »(B©). This algorithm leads to
the desired solution.

Lemma: The system (47), (48) has a unique solution Bsws, 6251 as.
for n > na(w) and
i () =3 i 2(4) — 42
nh_)ngoﬂ Bsrs » 7}1_{2006 Ocsrs &.5.
Proof: The proof consists of several steps.
1. Substituting (54) into (47) we define a new function F : ©5 — RFF!
by

F(B) = ¢(B,Poy(B)) . (52)

The system of equations (47), (54) is equivalent to the system
B=F(p) (53)
02 = Po(p) (54)

We want to show that the function F' thus defined is a contraction mapping
acting on the compact set ©3.
2. We show: The partial derivatives of ¢ tend to zero. Denote

1~ i) ! () 1o~ )¢
A, =N g 2N A
" nzlz o(xi, B,02) " nzl:ﬁ(m,-,b’,of)
Then from (45) we have

- Ll elx)
D =A BB+ A Y
@(6706) n /8 + n nzl:’f}(lﬂ“ﬁ;o'?)

Denote § = (f',02)". For every partial derivative -~ we have

ad;
9 (0) 104, _19Bn 0
= —A A "B,+ A
26, n g, An ButAn5g ) B
— 8An — 1 " elﬂ('rz)
—_ A1 ATl Z
1 n ov(z;,0)
-1 ) [ %%
+ An n Zell‘l’(ml) 172(512,,9) ° (55)

1
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Now, uniformly on © a.s. we have as n — oo

Ay Bl

B - E ﬂ(z)ﬂ (z)

Twu(z,0)
a0 = w2 et (wi)gg; (67 (@0,0)) = Boule)'(2) 5g; ( ( ).
%]g; =30 ﬂ(mi)ga%j (67 (2:,0)) = Eop(z)p' (z) ai (v (,0)) .

The limits of B,, and of 0B,,/08; follow from the fact that E({|z) = p(z).
All four limits imply that uniformly on © a.s.

94, A1 9B

_A?
n 06, 0,

The other terms in (55) also converge to 0 uniformly on © a.s. Therefore

()
oo’

lim sup
n—o0 0cO

H =0, a.s. (56)

3. The partial derivatives of ¢ are bounded. Indeed, as @3 is a compact
set we have

sup sup
n>k+2 BEOs

—B)H < 00 a.s. (57)

4. The mapping F is a contraction. First note that without loss of gen-
erality we may assume that ©p is convex - if not, simply take the convex
hull of ©g as the new ©g. For 31,82 € ©3 we then have:

IF(B1) = F(B)ll = [|¢(Br, 021) = ¢(Ba, 0%)|| -

Here 0% £ Pop(B;) , i = 1,2. Next,

2o Vi = sl + (o2 = o2

1E'(B1) = F(Ba)|| < sup
€O

We have for n > k + 2
o2 —ok| = |Pow(Br) — Potp(Ba)l < [(Br) — (Bl
2 - g

IN

sup  sup
n>k+2 BEOs
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Therefore

I1E(B1) = F(B)l

IN

O¢(8) H 0y(B) H _
o |56 (. m, s |75 -

= A= B - (58)

But according to (56) and (57), A, = 0 as n — oo a.s.
5. The mapping F' is a contraction ©g — ©3. To prove this we use

the fact that § = (BfgLs, 62515)" is a consistent solution of (47), (48), see
Kukush and Schneeweiss (2000). As 6 converges a.s. to an interior point

of O, we have that 6 will be also an interior point of O a.s. for n > N(w),
and for some r = r(w) > 0, which does not depend on n, we will have

B(Bsps,m(w)) C O foralln > N(w),

where B(f,r) denotes a ball with center f and radius r. Then, for
n > N(w), 6 will also be a solution of (47), (54), and Bsrs will be a
solution of (53):

F(Bsvs) = Bsvs - (59)
For each 3 € O3 we now have, due to (58) and (59),

HF(/B) - BSLSH <A\

_y < Ap,  max — Bl -
B Bsvs| < Anmax 18— ol

But A\, — 0 a.s., therefore for n > Nj(w)
F(B) € B(Bsrs,r(w)) C Op .

Thus for n > Ny(w), F : ©g — O, and in addition, due to (58),

IF(B1) — F(B2)I| < = 161 - Bl -

Hence F'is a contraction on O3 for sufficiently large n .

6. Because of (59) BSLS is a fixed point of the contraction F. Applying
Banach’s Theorem, it now follows that a.s. for n > Ny(w) BSLS is the
unique solution of the equation 8 = F(f), 8 € ©g, and any sequence

BUTY = F (W), B € @5, converges to the solution BsLs.
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7. Having found a convergent sequence fU) — BSL S, we can substitute
these 3U) into (50) and find that for all n > Ny(w)

o0t = Potp(Bsps) = 6751 -
This proves the lemma.

Remark. Suppose that A, < 1, and A, - maxg, g,co, |51 — B2|| < r(w).
Then

69 < Bsus| < 30 [[F89) - Pav )| < - 80 - 59
p=j p=j
- %.Hg(o)_g(l)H_
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